JPH08193104A - Integrated production of water-soluble sulfonated polymer - Google Patents

Integrated production of water-soluble sulfonated polymer

Info

Publication number
JPH08193104A
JPH08193104A JP7160859A JP16085995A JPH08193104A JP H08193104 A JPH08193104 A JP H08193104A JP 7160859 A JP7160859 A JP 7160859A JP 16085995 A JP16085995 A JP 16085995A JP H08193104 A JPH08193104 A JP H08193104A
Authority
JP
Japan
Prior art keywords
solvent
polymer
solution
halogenated hydrocarbon
sulfonated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7160859A
Other languages
Japanese (ja)
Other versions
JP3203298B2 (en
Inventor
Masaji Sasaki
正次 佐々木
Masanori Komatsu
正典 小松
Masayuki Ide
雅之 井出
Takeshi Yamada
剛 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP16085995A priority Critical patent/JP3203298B2/en
Publication of JPH08193104A publication Critical patent/JPH08193104A/en
Application granted granted Critical
Publication of JP3203298B2 publication Critical patent/JP3203298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE: To produce a high-quality water-soluble sulfonated polymer through an integrated process by polymerizing a monomer in a solvent, subsequently sulfonating the resulting polymer dissolved in the solvent, and recovering the solvent. CONSTITUTION: The process comprises the steps of: (A) polymerizing a monomer in a halogenohydrocarbon solvent to obtain a solution of the resulting polymer, the solid(s) other than the polymer being optionally removed; (B) contacting the polymer solution with a sulfonating agent to sulfonate the polymer; (C) adding water to the solution of the sulfonated polymer and allowing the mixture to stand, either after neutralization of the solution or without neutralization, to separate the aqueous phase containing the sulfonated polymer or a salt thereof from the halogenohydrocarbon solvent phase; (D) adjusting the pH of the solvent phase to 4 to 10, before the solvent is recovered by distillation; and (E) feeding the recovered solvent to the step (A) for reuse.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリスチレンスルホン
酸やその塩などの水溶性スルホン化ポリマーを重合から
スルホン化まで一貫して製造する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for consistently producing a water-soluble sulfonated polymer such as polystyrene sulfonic acid or a salt thereof from polymerization to sulfonation.

【0002】[0002]

【従来の技術】ポリマーを重合する方法や重合したポリ
マーをスルホン化する方法は、多数知られている。例え
ば、ポリマーを重合する方法としては、ポリマーを溶媒
中で重合する方法(特開昭48−54189号、同53
−24382号、同54−38392号、同56−15
2814号等)又は無溶媒で熱重合する方法(特公昭4
9ー2340号、同49−2341号、特開昭48−1
2887号、同49−22494号、同54−1799
2号等)等があり、いずれも生成したポリマーをバルク
状態で取り出している。また、かかるポリマーをスルホ
ン化する方法としては、通常、ポリマーを溶媒中に溶解
しこれを所定のスルホン化剤でスルホン化した後、再度
回収した溶媒をスルホン化溶媒として使用する方法が採
られている(特開昭48−12895号、同50−11
2481号、同58−11506号、特開平2−294
305号)。従って、従来の方法では、ポリマーの製造
とポリマーのスルホン化を別個に行っていたため、効率
的な製造が不可能であり経済的にも不利益をもたらして
いた。
2. Description of the Related Art There are many known methods for polymerizing polymers and sulfonation of polymerized polymers. For example, as a method of polymerizing the polymer, a method of polymerizing the polymer in a solvent (Japanese Patent Laid-Open Nos. 48-54189 and 53-53).
-24382, 54-38392, 56-15
No. 2814) or a method of thermal polymerization without solvent (Japanese Patent Publication No.
9-2340, 49-2341, JP-A-48-1
2887, 49-22494, 54-1799.
No. 2 etc.) and the like, and the polymer produced in each case is taken out in a bulk state. Further, as a method of sulfonation of such a polymer, usually, a method of dissolving the polymer in a solvent, sulfonation it with a predetermined sulfonating agent, and then using the recovered solvent as a sulfonation solvent is adopted. (Japanese Patent Laid-Open Nos. 48-12895 and 50-11)
No. 2481, No. 58-11506, and JP-A-2-294.
No. 305). Therefore, in the conventional method, the production of the polymer and the sulfonation of the polymer are performed separately, which makes it impossible to produce the polymer efficiently, which is economically disadvantageous.

【0003】一方、スチレン等のモノマーから直接スル
ホン化スチレンオリゴマーを製造する方法も知られてい
る(特開昭48−12895号、同48−49745号
等)。しかし、この方法はスチレン等のモノマーを溶媒
中に仕込み、スルホン化と重合を同時進行させるため、
重量平均分子量1200〜5000のオリゴマーしか得
られないという問題点がある。さらに、ポリマーの製造
とスルホン化を同一の溶媒で行おうとすると、例えばト
ルエンはポリスチレンの重合には適する(特開昭53−
24382号)が溶媒自体がスルホン化されるためスル
ホン化溶媒として不適である。かかる事情から、ポリマ
ーの製造からスルホン化を同一溶媒で行い、かつ回収し
た溶媒を再度ポリマーの製造に使用するプロセスは、未
だ報告されていない。
On the other hand, a method for directly producing a sulfonated styrene oligomer from a monomer such as styrene is also known (Japanese Patent Laid-Open Nos. 48-12895 and 48-49745). However, in this method, a monomer such as styrene is charged in a solvent, and sulfonation and polymerization proceed simultaneously,
There is a problem that only an oligomer having a weight average molecular weight of 1200 to 5000 can be obtained. Further, if it is attempted to carry out the production of the polymer and the sulfonation with the same solvent, for example, toluene is suitable for the polymerization of polystyrene (JP-A-53-53).
No. 24382) is not suitable as a sulfonation solvent because the solvent itself is sulfonated. Under such circumstances, there has not yet been reported a process of carrying out sulfonation from the production of a polymer with the same solvent and using the recovered solvent again for the production of the polymer.

【0004】[0004]

【発明が解決しようとする課題】本発明は、溶媒中で重
合性単量体の重合を行った後、バルクとして溶媒から取
り出さずに溶媒中にポリマーを溶解したまま続けて溶媒
中の重合体のスルホン化を行うことができさらにその溶
媒を回収して、かつ品質の優れた水溶性スルホン化ポリ
マーを重合からスルホン化まで一貫して製造することが
できる方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a polymer in a solvent after the polymerizable monomer is polymerized in a solvent, and the polymer is continuously dissolved in the solvent without being taken out from the solvent as a bulk. It is an object of the present invention to provide a method capable of carrying out sulfonation of the above-mentioned compound, recovering the solvent thereof, and producing a water-soluble sulfonated polymer having excellent quality from polymerization to sulfonation consistently.

【0005】[0005]

【課題を解決するための手段】本発明は、モノマーの重
合によるポリマーの製造、該ポリマーのスルホン化、ス
ルホン化ポリマーの分離と溶媒と分離を特定の方法によ
り連続して行い、かつ分離した溶媒を特定の条件下で蒸
留して得た後、モノマーの重合工程に供給して再利用す
ると、上記課題を有効に解決できるとの知見によりなさ
れたものである。すなわち、本発明は、(A) 重合性モノ
マーを、ハロゲン化炭化水素溶媒中で重合してポリマー
を製造した後、固形分を除去し又は除去せずにポリマー
が溶解した溶液を得る工程、(B) 得られたポリマー溶液
にスルホン化剤を接触させて溶液中のポリマーをスルホ
ン化する工程、(C) 得られたスルホン化ポリマー溶液を
中和し、または中和せずに、水を加えて静置し、スルホ
ン化ポリマー又はその塩を水相に移行させ、該水相とハ
ロゲン化炭化水素溶媒相とを分離する工程、分離した溶
媒相のpHを4〜10に調整した後、蒸留してハロゲン
化炭化水素溶媒を回収する工程、及び(E) 回収した溶媒
を工程(A) に供給して再使用する工程、を採用すること
を特徴とする水溶性スルホン化ポリマーの一貫製造方法
を提供する。
The present invention is directed to the production of a polymer by the polymerization of monomers, the sulfonation of the polymer, the separation of the sulfonated polymer and the separation of the solvent and solvent in a specific manner, and the separated solvent. It was made based on the finding that the above problem can be effectively solved by distilling under a specific condition to obtain and then reusing it in the step of polymerizing a monomer. That is, the present invention, (A) a polymerizable monomer, after polymerizing in a halogenated hydrocarbon solvent to produce a polymer, the step of removing the solid content or obtaining a solution of the polymer without removal, ( B) a step of contacting a sulfonating agent with the obtained polymer solution to sulfonate the polymer in the solution, (C) neutralizing the obtained sulfonated polymer solution, or adding water without neutralizing Standing still, transferring the sulfonated polymer or its salt to the aqueous phase, separating the aqueous phase and the halogenated hydrocarbon solvent phase, after adjusting the pH of the separated solvent phase to 4 ~ 10, distillation To recover the halogenated hydrocarbon solvent, and (E) supply the recovered solvent to the step (A) and reuse it, which is an integrated method for producing a water-soluble sulfonated polymer. I will provide a.

【0006】本発明では、先ず工程(A) において、重合
性モノマーをハロゲン化炭化水素溶媒中で重合してポリ
マーを製造する。ここで、重合性モノマーとしては、ス
チレン、α−メチルスチレン、p−ヒドロキシスチレ
ン、ビニルトルエンなどの炭素数が8〜12、好ましく
は8〜10の芳香属ビニルモノマーの単独又はこれらの
組み合わせがあげられる。又、これらの芳香属ビニルモ
ノマーと、イソプレン、ブタジエン、アクリル酸誘導体
などとの組み合わせがあげられる。
In the present invention, first, in step (A), a polymerizable monomer is polymerized in a halogenated hydrocarbon solvent to produce a polymer. Here, examples of the polymerizable monomer include aromatic vinyl monomers having 8 to 12 carbon atoms, preferably 8 to 10 carbon atoms, such as styrene, α-methylstyrene, p-hydroxystyrene, and vinyltoluene, or a combination thereof. To be Also, combinations of these aromatic vinyl monomers with isoprene, butadiene, acrylic acid derivatives and the like can be mentioned.

【0007】ハロゲン化炭化水素溶媒としては、1,2−
ジクロルエタンなどのジクロルエタン類、クロロホル
ム、四塩化炭素、ジクロルメタン、テトラクロルエタ
ン、テトラクロルエチレンなどの一種又は二種以上の混
合物があげられる。これらのうち、ジクロルエタン類が
好ましい。本発明では、重合性モノマーとハロゲン化炭
化水素溶媒との使用割合を任意とすることができるが、
重合性モノマー/ハロゲン化炭化水素溶媒の重量比を1
/99〜80/20とするのがよく、より好ましくは5
/95〜40/60である。又、重合系中の重合性モノ
マーの濃度も任意とすることができるが、好ましくは1
〜80重量%、より好ましくは10〜60重量%となる
ようにするのがよい。本発明における重合性モノマーの
重合は、従来公知のアニオン重合、カチオン重合又はラ
ジカル重合により行うことができるが、カチオン重合に
より行うのがよい。この際、触媒として、ルイス酸を用
いるのが好ましく、例えば、二塩化スズ、四塩化スズ、
塩化アルミニウム、四塩化チタンなどのハロゲン化金
属、特に塩化金属が好ましいものとしてあげられる。触
媒の使用量は限定されないが、重合性モノマー100重
量部あたり0.01〜1重量部とするのがよい。触媒は、
重量系に予め添加しておいてもよく、重合の進行に応じ
て徐々に添加してもよい。また、ルイス酸を用いる場
合、上記ハロゲン化炭化水素溶媒中には、50〜100
0ppm 、好ましくは100〜400ppm の水を存在させ
るのが好ましい。
As the halogenated hydrocarbon solvent, 1,2-
Examples thereof include dichloroethanes such as dichloroethane, chloroform, carbon tetrachloride, dichloromethane, tetrachloroethane, tetrachloroethylene, and the like, or a mixture of two or more thereof. Of these, dichloroethanes are preferred. In the present invention, the use ratio of the polymerizable monomer and the halogenated hydrocarbon solvent can be arbitrary,
Weight ratio of polymerizable monomer / halogenated hydrocarbon solvent is 1
/ 99 to 80/20, and more preferably 5
/ 95 to 40/60. Further, the concentration of the polymerizable monomer in the polymerization system may be arbitrary, but preferably 1
It is preferable that the amount is -80% by weight, more preferably 10-60% by weight. The polymerization of the polymerizable monomer in the present invention can be carried out by conventionally known anionic polymerization, cationic polymerization or radical polymerization, but cationic polymerization is preferable. At this time, it is preferable to use a Lewis acid as the catalyst, for example, tin dichloride, tin tetrachloride,
Metal halides such as aluminum chloride and titanium tetrachloride, particularly metal chlorides are preferred. Although the amount of the catalyst used is not limited, it is preferably 0.01 to 1 part by weight per 100 parts by weight of the polymerizable monomer. The catalyst is
It may be added to the weight system in advance, or may be added gradually in accordance with the progress of polymerization. Moreover, when a Lewis acid is used, it is 50 to 100 in the halogenated hydrocarbon solvent.
It is preferred to have 0 ppm, preferably 100-400 ppm, of water present.

【0008】本発明では、反応器に、ハロゲン化炭化水
素溶媒、所定量の水及び重合触媒を仕込み、所定の温度
に昇温させた後、ここに、重合性モノマーを滴下して重
合を行うのが好ましい。重合温度は、30〜150℃と
するのがよく、好ましくは40〜150℃、より好まし
くは50〜150℃である。本発明では、重合性モノマ
ーの重合が終了し、ポリマーが生成した後、1〜5時間
程度熟成させるのが好ましい。このようにして、最終反
応率が95%以上、好ましくは98%以上となるように
するのがよい。又,ポリマーとしては、平均分子量が2
00〜50,000、好ましくは2,000〜30,000の
ものを製造するのがよい。尚、重合性モノマーの重合に
当たっては、上記条件のほか、特開平3−52902号
公報、特開平3−56509号公報、特開平3−565
10号公報及び特開昭53−24382号公報に記載の
条件を採用することもできる。これらの公報に記載の内
容は、本明細書の記載に含まれるものとする。
In the present invention, a reactor is charged with a halogenated hydrocarbon solvent, a predetermined amount of water and a polymerization catalyst, the temperature is raised to a predetermined temperature, and then a polymerizable monomer is added dropwise to carry out the polymerization. Is preferred. The polymerization temperature is preferably 30 to 150 ° C, preferably 40 to 150 ° C, more preferably 50 to 150 ° C. In the present invention, it is preferable to age the polymerized monomer for about 1 to 5 hours after the polymerization is completed and the polymer is produced. In this way, the final reaction rate is 95% or more, preferably 98% or more. The average molecular weight of the polymer is 2
It is preferable to produce the product having an amount of from 00 to 50000, preferably from 2000 to 30000. In addition to the above conditions, the polymerization of the polymerizable monomer is not limited to those described in JP-A-3-52902, JP-A-3-56509, and JP-A-3-565.
It is also possible to adopt the conditions described in JP-A No. 10 and JP-A No. 53-24382. The contents described in these publications are included in the description of the present specification.

【0009】本発明では、ポリマーが得られた後、水酸
化カルシウムなどのアルカリ剤を添加して重合触媒を不
溶性固形分に変えた後、濾過などにより系外へ除去する
のがよい。例えば、ポリマー100重量部あたりアルカ
リ剤を0.1〜2.0重量部添加し、0.5〜2.0時
間程度攪拌した後、常法により濾過するのがよい。この
際、パーライトやセライトなどの濾過助剤を使用するの
がよい。本発明では、このようにして得られたポリマー
溶液に、工程(B) において、スルホン化剤を接触させて
溶液中のポリマーをスルホン化する。該スルホン化は、
通常、重合反応器から取り出したポリマー溶液をスルホ
ン化装置に導入して行うのがよい。ポリマーのスルホン
化は、ポリマー溶液にスルホン化剤を接触させることが
できる任意の方法で行うことができるが、特開昭62−
174205号公報、特開昭63−172703号公
報、特開平4−264107号公報、特開平2−294
305号公報、特開平3−14803号公報及び特開平
3−66706号公報などに記載の方法で行うのがよ
い。これらの公報に記載の内容は、本明細書の記載に含
まれるものとする。
In the present invention, after the polymer is obtained, it is preferable to add an alkaline agent such as calcium hydroxide to change the polymerization catalyst into an insoluble solid content, and then remove it from the system by filtration or the like. For example, 0.1 to 2.0 parts by weight of the alkali agent is added to 100 parts by weight of the polymer, and the mixture may be stirred for about 0.5 to 2.0 hours and then filtered by a conventional method. At this time, it is preferable to use a filter aid such as perlite or celite. In the present invention, the polymer solution thus obtained is contacted with a sulfonating agent in the step (B) to sulfonate the polymer in the solution. The sulfonation is
Usually, it is advisable to introduce the polymer solution taken out from the polymerization reactor into a sulfonation apparatus. The sulfonation of the polymer can be carried out by any method capable of bringing a sulfonating agent into contact with the polymer solution.
174205, JP-A-63-172703, JP-A-4-264107, and JP-A-2-294.
The method described in JP-A No. 305, JP-A No. 3-14803, JP-A No. 3-66706 and the like is preferable. The contents described in these publications are included in the description of the present specification.

【0010】具体的には、スルホン化装置にポリマー溶
液を導入し、ここにスルホン化剤を加え、攪拌しなが
ら、温度10〜80℃(好ましくは25〜50℃)で1
〜60分間(好ましくは1〜20分間)反応させる。こ
の際、ポリマー溶液に、ハロゲン化炭化水素溶媒を加え
て、又は加えることなく、ポリマーの濃度5〜20重量
%の溶液に、ポリマーの構成モノマー単位当たりモル比
で0.5〜2.0モル量、好ましくは0.7〜1.5のスルホン
化剤を使用する。ここで、スルホン化剤としては、無水
硫酸(液体又は気体)、無水硫酸含有ガス、発煙硫酸、
クロルスルホン酸などを用いることができるが、無水硫
酸又は無水硫酸含有ガスを用いるのが好ましい。本発明
のスルホン化を行うに当たり、ベンゼンスルホン酸やア
ルキルベンゼンスルホン酸など種々のスルホン化助剤を
添加することもできる。このようなスルホン化助剤は、
特開昭61−250003号公報、特開昭50−112
480号公報や特開平3−59005号公報などに記載
されている。
Specifically, a polymer solution is introduced into a sulfonation apparatus, a sulfonating agent is added thereto, and the mixture is stirred at a temperature of 10 to 80 ° C. (preferably 25 to 50 ° C.) for 1 hour.
Allow to react for ~ 60 minutes (preferably 1-20 minutes). At this time, with or without addition of a halogenated hydrocarbon solvent to the polymer solution, a solution having a polymer concentration of 5 to 20% by weight was added in a molar ratio of 0.5 to 2.0 mol per a constituent monomer unit of the polymer. An amount of sulfonating agent, preferably 0.7-1.5, is used. Here, as the sulfonating agent, sulfuric anhydride (liquid or gas), sulfuric acid-containing gas, fuming sulfuric acid,
Although chlorosulfonic acid or the like can be used, it is preferable to use sulfuric acid anhydride or a gas containing sulfuric acid anhydride. In carrying out the sulfonation of the present invention, various sulfonation aids such as benzene sulfonic acid and alkylbenzene sulfonic acid can be added. Such sulfonation aids are
JP-A-61-25003, JP-A-50-112
No. 480, Japanese Patent Laid-Open No. 3-59005, and the like.

【0011】本発明では、次いで、工程(C) において、
得られたスルホン化ポリマー溶液を中和した後、水を加
えて静置するか、又は中和せずに水を加えて静置し、ス
ルホン化ポリマー又はその塩を水相に移行させ、該水相
とハロゲン化炭化水素溶媒相とを分離する。スルホン化
ポリマー溶液の中和は、所望とする塩を形成できるアル
カリ剤を用いて行うことができる。アルカリ剤として
は、水酸化ナトリウム、水酸化カリウムやアルカリ土類
金属化合物などがあげられ、これらは水溶液としてスル
ホン化ポリマー溶液に添加するのがよい。中和により、
スルホン化ポリマーの塩が形成する。中和は、例えば、
特開昭52−33993号公報、特開昭63−1894
05号公報、特開平2−240116号公報及び特開平
2−296804号公報などに記載の方法で行うことが
できる。具体的には、濃度5〜15%の水酸化ナトリウ
ム水溶液を添加し、1〜2時間程度攪拌して中和するの
がよい。
In the present invention, next, in the step (C),
After neutralizing the obtained sulfonated polymer solution, water is added and allowed to stand, or water is added without neutralization and allowed to stand to transfer the sulfonated polymer or a salt thereof to an aqueous phase, Separate the aqueous phase and the halogenated hydrocarbon solvent phase. Neutralization of the sulfonated polymer solution can be performed with an alkaline agent that can form the desired salt. Examples of the alkaline agent include sodium hydroxide, potassium hydroxide and alkaline earth metal compounds, which are preferably added as an aqueous solution to the sulfonated polymer solution. By neutralization,
A salt of the sulfonated polymer is formed. Neutralization, for example,
JP-A-52-33993, JP-A-63-1894
The method described in JP-A No. 05, JP-A-2-240116 and JP-A-2-296804 can be used. Specifically, it is preferable to add an aqueous solution of sodium hydroxide having a concentration of 5 to 15% and stir for about 1 to 2 hours to neutralize.

【0012】ハロゲン化炭化水素溶媒とスルホン化ポリ
マー又はその塩の分離は、特開昭63−189404号
公報、特開平2−258802号公報及び特願平5−8
7218号明細書に記載の方法により行うことができ
る。これらの公報又は明細書の記載内容は、本明細書の
記載に含まれるものとする。具体的には、中和したスル
ホン化ポリマー溶液又は中和していないスルホン化ポリ
マー溶液に水を加えて静置し、スルホン化ポリマー又は
その塩を水相に移行させる。ここで、移行後の水相中の
スルホン化ポリマー又はその塩の濃度が10〜30重量
%程度となるようにスルホン化ポリマー溶液に水を添加
するのがよい。静置は、スルホン化ポリマー又はその塩
が水相に移行する限り、任意の時間及び温度で行うこと
ができるが、20〜60℃で30分〜4時間、好ましく
は1〜2時間とするのがよい。ハロゲン化炭化水素溶媒
としてジクロルエタンを用い、スルホン化ポリマー又は
その塩が、スルホン化ポリスチレン又はその塩の場合、
下層にジクロルエタンが、上層にスルホン化ポリスチレ
ン又はその塩の水溶液相が形成される。本発明では、ス
ルホン化ポリスチレンの水溶液相を取り出した後、水酸
化ナトリウム、水酸化カリウムやアルカリ土類金属化合
物などアルカリ剤を添加して、スルホン化ポリスチレン
の塩として得ることもできる。
Separation of the halogenated hydrocarbon solvent from the sulfonated polymer or its salt is described in JP-A-63-189404, JP-A-2-258802 and Japanese Patent Application No. 5-8.
It can be carried out by the method described in the specification of No. 7218. The contents described in these publications or specifications are included in the description of the present specification. Specifically, water is added to the neutralized sulfonated polymer solution or the non-neutralized sulfonated polymer solution and the mixture is allowed to stand to transfer the sulfonated polymer or its salt to the aqueous phase. Here, it is preferable to add water to the sulfonated polymer solution so that the concentration of the sulfonated polymer or its salt in the aqueous phase after the transfer will be about 10 to 30% by weight. The standing may be performed at any time and temperature as long as the sulfonated polymer or a salt thereof is transferred to the aqueous phase, but is set to 20 to 60 ° C. for 30 minutes to 4 hours, preferably 1 to 2 hours. Is good. When dichloroethane is used as the halogenated hydrocarbon solvent and the sulfonated polymer or salt thereof is sulfonated polystyrene or salt thereof,
Dichloroethane is formed in the lower layer, and an aqueous phase of sulfonated polystyrene or its salt is formed in the upper layer. In the present invention, it is also possible to obtain a salt of sulfonated polystyrene by taking out an aqueous solution phase of sulfonated polystyrene and then adding an alkaline agent such as sodium hydroxide, potassium hydroxide or an alkaline earth metal compound.

【0013】本発明では、工程(D) において、分離した
溶媒相にアルカリ剤を添加してpHを4〜10、好まし
くは4〜8.0に調整した後、蒸留によりハロゲン化炭化
水素溶媒を回収する。ここで、アルカリ剤としては、水
酸化ナトリウム、水酸化カリウムやアルカリ土類金属化
合物などがあげられ、これらは水溶液として使用するの
が好ましい。又、本発明では、水分含量が10〜150
ppm のハロゲン化炭化水素溶媒を常圧蒸留や減圧蒸留な
どの蒸留又は/および精留塔による精留等により回収す
るのが好ましい。pHが4より低くなると溶媒を蒸留に
より回収する際、重合触媒や低スルホン化物等の酸性物
質が若干回収溶媒中に混入し、これを重合に再使用する
と一定の分子量の重合体が得られないという問題点が生
じる。一方、pHが10より高くなるとジクロエタン類
の分解が著しくなり好ましくない。本発明では、このよ
うにして回収したハロゲン化炭化水素溶媒を工程(A) の
モノマー重合工程に供給して、再度ハロゲン化炭化水素
溶媒として使用することができる。この際、回収するハ
ロゲン化炭化水素溶媒中の水分含量を重合時に存在させ
る水の量より少なく設定し、ハロゲン化炭化水素溶媒中
の水分含量が50〜1,000ppm となるように、適宜水
を添加するのがよい。一方、工程(C) において分離した
スルホン化ポリマー又はその塩の水溶液は、そのまま、
又は常法により濃縮して製品とすることができる。又、
フラッシングなどにより揮発分を除いて粉体とすること
もできる。
In the present invention, in the step (D), an alkaline agent is added to the separated solvent phase to adjust the pH to 4 to 10, preferably 4 to 8.0, and then the halogenated hydrocarbon solvent is distilled off. to recover. Here, examples of the alkaline agent include sodium hydroxide, potassium hydroxide, and alkaline earth metal compounds, and these are preferably used as an aqueous solution. Further, in the present invention, the water content is 10 to 150.
It is preferable to recover ppm halogenated hydrocarbon solvent by distillation such as atmospheric distillation or reduced pressure distillation and / or rectification by a rectification column. When the pH is lower than 4, when recovering the solvent by distillation, some acidic substances such as polymerization catalysts and low sulfonates are mixed in the recovered solvent, and if this is reused for polymerization, a polymer having a certain molecular weight cannot be obtained. The problem arises. On the other hand, when the pH is higher than 10, the decomposition of dichloroethanes is remarkable, which is not preferable. In the present invention, the halogenated hydrocarbon solvent thus recovered can be supplied to the monomer polymerization step of step (A) and used again as the halogenated hydrocarbon solvent. At this time, the water content in the halogenated hydrocarbon solvent to be recovered is set to be smaller than the amount of water present during the polymerization, and water is appropriately added so that the water content in the halogenated hydrocarbon solvent becomes 50 to 1,000 ppm. It is good to add. On the other hand, the aqueous solution of the sulfonated polymer or its salt separated in step (C) is
Alternatively, it can be concentrated into a product by a conventional method. or,
It is also possible to remove the volatile components by flashing or the like to obtain a powder.

【0014】[0014]

【発明の効果】本発明の方法によれば、溶媒中で重合性
単量体の重合を行った後、バルクとして溶媒から取り出
さずに溶媒中にポリマーを溶解したまま続けて溶媒中の
重合体のスルホン化を行うので、作業効率が高いといっ
た工業上大きな利点がある。又、本発明の方法によれ
ば、ハロゲン化炭化水素溶媒を有効に再利用するととも
に、品質が一定で純度の高い水溶性スルホン化ポリマー
を高収率で製造することができる。次に本発明を実施例
により説明する。
According to the method of the present invention, after the polymerizable monomer is polymerized in the solvent, the polymer in the solvent is continuously dissolved in the solvent without being taken out from the solvent as a bulk. Since sulfonation is carried out, there is a great industrial advantage that the work efficiency is high. Further, according to the method of the present invention, a halogenated hydrocarbon solvent can be effectively reused and a water-soluble sulfonated polymer having a constant quality and high purity can be produced in a high yield. Next, the present invention will be described with reference to examples.

【0015】[0015]

【実施例】【Example】

実施例1 (A)容量5リットルの四つ口フラスコに撹拌装置、温
度計、滴下漏斗、及びコンデンサを取り付けた。この反
応器に、1,2−ジクロルエタン(EDC)2Kgを仕
込み、さらに触媒として四塩化錫2g及び純水0.7g
を添加した。反応器内を撹拌しながらEDCの沸点まで
昇温し、滴下ロートを用いてスチレン2Kgを5時間か
けて滴下して重合を行った。さらに、四塩化錫4gを添
加し、さらに2時間撹拌し得られた重合液に2KgのE
DCを加え、さらに20gの水酸化カルシウムを加えて
1時間撹拌したのち、濾過することにより固形分を取り
除き、ポリスチレン溶液を得た。 (B)このポリスチレン溶液にEDCを8Kg加えて希
釈した。この原料溶液を無水硫酸とともにスルホン化反
応器に供給して、原料に対するスルホン化剤モル比1.
16、反応滞留時間10分、反応温度40℃の条件でス
ルホン化反応を行った。
Example 1 (A) A five-liter four-necked flask was equipped with a stirrer, a thermometer, a dropping funnel, and a condenser. This reactor was charged with 2 kg of 1,2-dichloroethane (EDC), and 2 g of tin tetrachloride and 0.7 g of pure water as a catalyst.
Was added. While stirring the inside of the reactor, the temperature was raised to the boiling point of EDC, and 2 Kg of styrene was added dropwise using a dropping funnel over 5 hours to carry out polymerization. Furthermore, 4 g of tin tetrachloride was added, and the mixture was further stirred for 2 hours.
After adding DC and further adding 20 g of calcium hydroxide and stirring for 1 hour, the solid content was removed by filtration to obtain a polystyrene solution. (B) 8 kg of EDC was added to this polystyrene solution for dilution. This raw material solution was supplied to a sulfonation reactor together with sulfuric anhydride, and the molar ratio of sulfonating agent to the raw material was 1.
16. The sulfonation reaction was carried out under the conditions of a reaction residence time of 10 minutes and a reaction temperature of 40 ° C.

【0016】(C)得られたスルホン化物にさらに水相
中のスルホン化物の濃度が20重量%になるように水を
加えて、スルホン化物を溶解し、分液漏斗に移して2時
間静置し、水相とハロゲン化炭化水素溶媒相に分離させ
た。 (D)次に、分離した下相であるハロゲン化炭化水素溶
媒相を抜き出し、5%NaOH水溶液1.7gを加えて
中和し、蒸留により40%、60%又は80%に濃縮し
たボトム液を得た。次にそれぞれに濃縮したボトム液を
さらに蒸留して蒸留EDCを生成した。 (E)得られた溶媒を反応溶媒として用い、上記と同様
の重合反応及びスルホン化反応を行い、分液漏斗の上相
部より取り出したスルホン化物を10%NaOH水溶液
で中和してポリスチレンスルホン酸Naを得た。溶媒回
収時の溶媒pH、スルホン化条件及び得られたポリスチ
レンスルホン酸Na(PSS−Na)の性状を表1に示
す(No1〜3)。また、工程(C)で分離した水相に含
まれるスルホン化物を10%NaOH水溶液で中和した
ときのポリスチレンスルホン酸Naの重量平均分子量は
13,200であった。
(C) Further, water was added to the obtained sulfonated product so that the concentration of the sulfonated product in the aqueous phase was 20% by weight to dissolve the sulfonated product, which was transferred to a separatory funnel and allowed to stand for 2 hours. Then, the aqueous phase and the halogenated hydrocarbon solvent phase were separated. (D) Next, the separated lower phase halogenated hydrocarbon solvent phase is extracted, neutralized by adding 1.7 g of 5% NaOH aqueous solution, and concentrated to 40%, 60% or 80% by distillation to obtain a bottom liquid. Got Next, the concentrated bottom liquid was further distilled to produce distilled EDC. (E) Using the obtained solvent as a reaction solvent, the same polymerization reaction and sulfonation reaction as described above are performed, and the sulfonated product taken out from the upper phase part of the separating funnel is neutralized with a 10% aqueous NaOH solution to give polystyrenesulfone. Acid Na was obtained. Table 1 shows the solvent pH at the time of solvent recovery, the sulfonation conditions, and the properties of the obtained polystyrene sulfonate Na (PSS-Na) (No. 1 to No. 3). The weight average molecular weight of Na polystyrene sulfonate was 13,200 when the sulfonated product contained in the aqueous phase separated in step (C) was neutralized with a 10% aqueous NaOH solution.

【0017】比較例1 実施例1において分離した下相を抜き出し、中和せずに
それぞれ60%、80%に濃縮したボトムの蒸留EDC
を用いた以外は、実施例と同様にしてポリスチレンスル
ホン酸Naを得た(No4及び5)。
COMPARATIVE EXAMPLE 1 The bottom phase separated in Example 1 was withdrawn and concentrated to 60% and 80% without neutralization, respectively.
Polystyrene sulfonate Na was obtained in the same manner as in the example except that was used (Nos. 4 and 5).

【0018】[0018]

【表1】 表−1 ポリスチレンスルホン酸
Naの性状 NO. 1 2 3 4* * 溶媒pH ボトムEDC 7.0 5.0 4.0 2.9 2.4 回収EDC 6.5 6.1 5.1 3.5 3.0 スルホン化条件 SO3 モル比 1.16 1.15 1.10 1.15 1.10 温度(℃) 40 40 41 40 41 反応滞留時間(分) 10 5 15 5 15 PSS−Na 重量平均分子量 13000 13300 12900 8500 7000 収率(%) 99.9 99.9 99.9 99.9 99.9 No.4* と No.5* は、比較例である。
[Table 1] Table-1 Properties of Na polystyrene sulfonate NO. 1 2 3 4 * 5 * Solvent pH Bottom EDC 7.0 5.0 4.0 2.9 2.4 Recovery EDC 6.5 6.1 5.1 3.5 3.0 Sulfonation conditions SO 3 molar ratio 1.16 1.15 1.10 1.15 1.10 Temperature (℃) 40 40 41 40 41 Reaction retention time (min) 10 5 15 5 15 PSS-Na weight average molecular weight 13000 13300 12900 8500 7000 Yield (%) 99.9 99.9 99.9 99.9 99.9 No. 4 * and No. 5 * are comparative examples.

【0019】なお、溶媒のpHは、溶媒と同量の純水を
加え十分に撹拌して酸成分を水相に抽出し、水相のpH
を測定して求めた値である。PSS−Naの分子量の測
定は次の方法により行った。標準物質として、標準ポリ
スチレンスルホン酸ナトリウムを用い、分離カラムとし
て東ソー(株)製TSK G3000SW(7.5mm
ID×30cm)とTSK G4000SW(7.5m
mID×30cm)を使用し、紫外線検出器(測定波長
238nm)を用いてGPC法により求めた。なお、試
料中にスチレンスルホン酸塩が検出された場合は、スチ
レンスルホン酸塩を除外して、重量平均分子量を求め
た。
The pH of the solvent is adjusted by adding pure water in the same amount as that of the solvent and stirring the mixture sufficiently to extract the acid component into the aqueous phase.
Is a value obtained by measuring. The molecular weight of PSS-Na was measured by the following method. Standard sodium standard polystyrene sulfonate was used as a standard substance, and TSK G3000SW (7.5 mm manufactured by Tosoh Corp.) as a separation column.
ID × 30cm) and TSK G4000SW (7.5m
mID × 30 cm) and an ultraviolet ray detector (measurement wavelength: 238 nm) was used for the GPC method. When styrene sulfonate was detected in the sample, the styrene sulfonate was excluded and the weight average molecular weight was determined.

【0020】実施例2 (A)実施例1と同様の反応器に、1,2−ジクロルエ
タン(EDC)2Kgを仕込み、さらに触媒として四塩
化錫4g及び純水0.7gを添加した。反応器内を撹拌
しながら65℃まで昇温し、温度が65℃になるように
コントロールしながら滴下ロートを用いてスチレン2K
gを5時間かけて滴下して重合を行った。さらに、4時
間撹拌し得られた重合液に2KgのEDCを加え、さら
に10gの水酸化カルシウムを加えて1時間撹拌したの
ち、濾過することにより固形分を取り除き、ポリスチレ
ン溶液を得た。 (B)このポリスチレン溶液にEDCを12Kg加えて
希釈した。この原料溶液を無水硫酸とともにスルホン化
反応器に供給して、原料に対するスルホン化剤モル比
1.10、反応滞留時間5分、反応温度45℃の条件で
スルホン化反応を行った。
Example 2 (A) 2 Kg of 1,2-dichloroethane (EDC) was charged in the same reactor as in Example 1, and 4 g of tin tetrachloride and 0.7 g of pure water were added as catalysts. The temperature in the reactor was raised to 65 ° C with stirring, and 2K of styrene was added using a dropping funnel while controlling the temperature to 65 ° C.
g was added dropwise over 5 hours to carry out polymerization. Furthermore, after stirring for 4 hours, 2 Kg of EDC was added to the obtained polymerization solution, 10 g of calcium hydroxide was further added, and the mixture was stirred for 1 hour, and then filtered to remove solids to obtain a polystyrene solution. (B) To this polystyrene solution, 12 kg of EDC was added and diluted. This raw material solution was supplied to a sulfonation reactor together with sulfuric anhydride, and the sulfonation reaction was performed under the conditions of a sulfonating agent molar ratio to the raw material of 1.10, a reaction residence time of 5 minutes, and a reaction temperature of 45 ° C.

【0021】(C)得られたスルホン化物を5%NaO
H水溶液で水相のpHが中性になるように中和し、分液
漏斗に移して1時間静置し、水相とハロゲン化炭化水素
溶媒相に分離させた。 (D)次に、分離した下相であるハロゲン化炭化水素溶
媒相を抜き出し、5%NaOH水溶液1.2gを加えて
中和し、蒸留により各々40%、60%、80%に濃縮
したボトム液を得た。次にそれぞれに濃縮したボトム液
をさらに蒸留して蒸留EDCを生成した。 (E)得られた溶媒を反応溶媒として用い、上記と同様
の重合反応及びスルホン化反応を行い、分液漏斗の上相
部より取り出したスルホン化物を10%NaOH水溶液
で中和してポリスチレンスルホン酸Naを得た。溶媒回
収時の溶媒pH、スルホン化条件及び得られたポリスチ
レンスルホン酸Na(PSS−Na)の性状を表2に示
す(No6〜8)。また、工程(C)で分離した水相に含
まれるスルホン化物を10%NaOH水溶液で中和した
ときのポリスチレンスルホン酸Naの重量平均分子量は
26,000であった。
(C) The obtained sulfonated product was added to 5% NaO.
The solution was neutralized with an aqueous solution of H so that the pH of the aqueous phase became neutral, transferred to a separatory funnel and allowed to stand for 1 hour to separate into an aqueous phase and a halogenated hydrocarbon solvent phase. (D) Next, the separated lower phase halogenated hydrocarbon solvent phase was extracted, neutralized by adding 1.2 g of 5% NaOH aqueous solution, and distilled to a bottom of 40%, 60% and 80% respectively. A liquid was obtained. Next, the concentrated bottom liquid was further distilled to produce distilled EDC. (E) Using the obtained solvent as a reaction solvent, the same polymerization reaction and sulfonation reaction as described above are performed, and the sulfonated product taken out from the upper phase part of the separating funnel is neutralized with a 10% aqueous NaOH solution to give polystyrenesulfone. Acid Na was obtained. Table 2 shows the solvent pH at the time of solvent recovery, the sulfonation conditions, and the properties of the obtained polystyrene sulfonate Na (PSS-Na) (No. 6 to 8). The weight average molecular weight of Na polystyrene sulfonate was 26,000 when the sulfonated product contained in the aqueous phase separated in step (C) was neutralized with a 10% aqueous NaOH solution.

【0022】比較例2 実施例2において分離した下相を抜き出し、中和せずに
それぞれ60%、80%に濃縮したボトムの蒸留EDC
を用いた以外は、実施例2と同様にしてポリスチレンス
ルホン酸Naを得た(No9及び10)。
Comparative Example 2 The bottom phase separated in Example 2 was withdrawn, and the bottom distilled EDC was concentrated to 60% and 80% without neutralization, respectively.
Polystyrene sulfonate Na was obtained in the same manner as in Example 2 except that was used (Nos. 9 and 10).

【0023】[0023]

【表2】 表−2 ポリスチレンスルホン酸
Naの性状 ───────────────────────────────────NO. 6 7 8 9* 10* 溶媒pH ボトムEDC 9.2 7.4 5.5 2.9 2.4 回収EDC 6.8 6.8 6.5 3.5 3.0 PSS−Na 重量平均分子量 26000 25600 25500 18200 14500 収率(%) 99.9 99.9 99.9 99.9 99.9 No.9*と No.10* は、比較例である。
[Table 2] Table-2 Properties of Na polystyrene sulfonate ─────────────────────────────────── NO. 6 7 8 9 * 10 * Solvent pH Bottom EDC 9.2 7.4 5.5 2.9 2.4 Recovery EDC 6.8 6.8 6.5 3.5 3.0 PSS-Na Weight average molecular weight 26000 25600 25500 18200 14500 Yield (%) 99.9 99.9 99.9 99.9 99.9 No. 9 * and No .10 * is a comparative example.

【0024】実施例3 (A)実施例1と同様の反応器にEDCを2kg仕込
み、更に、スチレンモノマー1.0kgを添加した。更
に開始剤として過酸化ベンゾイル(BPO)を40g添
加し直ちに溶媒の沸点まで昇温し10時間かけて重合を
行った。重合終了後、減圧蒸留により未反応モノマーを
取り除き、EDCを加えてポリスチレンの濃度が8%に
なるようにポリスチレン溶液を調製した。 (B)原料に対するスルホン化剤のモル比を1.10、
反応滞留時間を5分、反応温度35℃の条件でスルホン
化反応を行った後、反応物を撹拌翼の付いた撹拌槽に滞
留時間30分になるように連続的に供給し、スルホン化
物を得た。
Example 3 (A) The same reactor as in Example 1 was charged with 2 kg of EDC, and 1.0 kg of styrene monomer was further added. Further, 40 g of benzoyl peroxide (BPO) was added as an initiator, the temperature was immediately raised to the boiling point of the solvent, and polymerization was carried out for 10 hours. After completion of the polymerization, unreacted monomers were removed by distillation under reduced pressure, and EDC was added to prepare a polystyrene solution such that the polystyrene concentration was 8%. (B) the molar ratio of the sulfonating agent to the raw material is 1.10,
After the sulfonation reaction was carried out under the conditions of a reaction residence time of 5 minutes and a reaction temperature of 35 ° C., the reaction product was continuously fed to a stirring tank equipped with stirring blades for a residence time of 30 minutes to form a sulfonated product. Obtained.

【0025】(C)得られたスルホン化物にさらに水相
中のスルホン化物の濃度が20重量%になるように水を
加えて、スルホン化物を溶解し、分液漏斗に移して2時
間静置し、水相とハロゲン化炭化水素溶媒相に分離させ
た。 (D)次に、分離した下相であるハロゲン化炭化水素溶
媒相を抜き出し、5%NaOH水溶液0.6gを加えて
中和し、蒸留により各々40%、60%、80%に濃縮
したボトム液を得た。次にそれぞれに濃縮したボトム液
をさらに蒸留して蒸留EDCを生成した。 (E)得られた溶媒を反応溶媒として用い、上記と同様
の重合反応及びスルホン化反応を行い、分液漏斗の上相
部より取り出したスルホン化物を10%NaOH水溶液
で中和してポリスチレンスルホン酸Naを得た。溶媒回
収時の溶媒pH、スルホン化条件及び得られたポリスチ
レンスルホン酸Na(PSS−Na)の性状を表3に示
す(No11〜13)。また、工程(C)で分離した水相に含
まれるスルホン化物を10%NaOH水溶液で中和した
ときのポリスチレンスルホン酸Naの重量平均分子量は
28,000であった。
(C) Further, water was added to the obtained sulfonated product so that the concentration of the sulfonated product in the aqueous phase was 20% by weight to dissolve the sulfonated product, which was transferred to a separatory funnel and allowed to stand for 2 hours. Then, the aqueous phase and the halogenated hydrocarbon solvent phase were separated. (D) Next, the separated lower phase halogenated hydrocarbon solvent phase was extracted, neutralized by adding 0.6 g of a 5% NaOH aqueous solution, and distilled to a bottom concentration of 40%, 60%, and 80%, respectively. A liquid was obtained. Next, the concentrated bottom liquid was further distilled to produce distilled EDC. (E) Using the obtained solvent as a reaction solvent, the same polymerization reaction and sulfonation reaction as described above are performed, and the sulfonated product taken out from the upper phase part of the separating funnel is neutralized with a 10% aqueous NaOH solution to give polystyrenesulfone. Acid Na was obtained. Table 3 shows the solvent pH at the time of solvent recovery, the sulfonation conditions, and the properties of the obtained polystyrene sulfonate Na (PSS-Na) (Nos. 11 to 13). Further, the weight average molecular weight of Na polystyrene sulfonate was 28,000 when the sulfonated substance contained in the aqueous phase separated in step (C) was neutralized with 10% NaOH aqueous solution.

【0026】比較例3 実施例3において分離した下相を抜き出し、中和せずに
それぞれ60%、80%に濃縮したボトムの蒸留EDC
を用いた以外は、実施例3と同様にしてポリスチレンス
ルホン酸Naを得た(No14及び15)。
Comparative Example 3 Bottom distilled EDC was withdrawn by extracting the lower phase separated in Example 3 and concentrating it to 60% and 80% without neutralization, respectively.
Polystyrene sulfonate Na was obtained in the same manner as in Example 3 except that was used (Nos. 14 and 15).

【0027】[0027]

【表3】 表−3 ポリスチレンスルホン酸
Naの性状 ───────────────────────────────────NO. 11 12 13 14* 15* 溶媒pH ボトムEDC 7.0 5.0 4.0 2.8 2.3 回収EDC 6.6 6.1 5.0 3.4 2.9 PSS−Na 重量平均分子量 28000 27000 27000 19000 13000 収率(%) 99.8 99.8 99.9 99.9 99.9 No.14* と No.15* は、比較例である。
[Table 3] Table 3 Properties of Na polystyrene sulfonate ──────────────────────────────────── NO. 11 12 13 14 * 15 * Solvent pH Bottom EDC 7.0 5.0 4.0 2.8 2.3 Recovery EDC 6.6 6.1 5.0 3.4 2.9 PSS-Na Weight average molecular weight 28000 27000 27000 19000 13000 Yield (%) 99.8 99.8 99.9 99.9 99.9 No. 14 * and No .15 * is a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 剛 東京都墨田区本所1丁目3番7号 ライオ ン株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Tsuyoshi Yamada 1-3-7 Main Office, Sumida-ku, Tokyo Inside Lion Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 (A) 重合性モノマーをハロゲン化炭化水
素溶媒中で重合してポリマーを製造した後、固形分を除
去し又は除去せずにポリマーが溶解した溶液を得る工
程、(B) 得られたポリマー溶液にスルホン化剤を接触さ
せて溶液中のポリマーをスルホン化する工程、(C) 得ら
れたスルホン化ポリマー溶液を中和し、または中和せず
に、水を加えて静置し、スルホン化ポリマー又はその塩
を水相に移行させ、該水相とハロゲン化炭化水素溶媒相
とを分離する工程、(D) 分離した溶媒相のpHを4〜1
0に調整した後、蒸留してハロゲン化炭化水素溶媒を回
収する工程、及び(E) 回収した溶媒を工程(A) に供給し
て再使用する工程、を採用することを特徴とする水溶性
スルホン化ポリマーの一貫製造方法。
1. A process of (A) polymerizing a polymerizable monomer in a halogenated hydrocarbon solvent to produce a polymer, and then obtaining a solution in which the polymer is dissolved with or without removal of solid content, (B) A step of contacting a sulfonating agent with the obtained polymer solution to sulfonate the polymer in the solution; (C) neutralizing the obtained sulfonated polymer solution, or without neutralizing it, adding water to the solution, The step of transferring the sulfonated polymer or its salt to the aqueous phase and separating the aqueous phase and the halogenated hydrocarbon solvent phase, (D) the pH of the separated solvent phase is 4 to 1
After adjusting to 0, the step of recovering the halogenated hydrocarbon solvent by distillation, and the step of (E) supplying the recovered solvent to the step (A) for reuse are adopted. Integrated manufacturing method of sulfonated polymer.
【請求項2】 ハロゲン化炭化水素溶媒が、ジクロルエ
タンである請求項1記載の方法。
2. The method according to claim 1, wherein the halogenated hydrocarbon solvent is dichloroethane.
【請求項3】 重合性モノマーが芳香族ビニルモノマー
である請求項1又は2記載の方法。
3. The method according to claim 1, wherein the polymerizable monomer is an aromatic vinyl monomer.
【請求項4】 重合性モノマーがスチレンである請求項
3記載の方法。
4. The method according to claim 3, wherein the polymerizable monomer is styrene.
【請求項5】 工程(A) におけるモノマーの重合が、触
媒としてルイス酸を用いるカチオン重合であり、工程
(A) におけるハロゲン化炭化水素溶媒に存在する水が5
0〜1000ppm であり、かつ工程(D) で回収される同
溶媒に含有される水が、工程(A) で存在する水の量より
も少ないことを特徴とする請求項1記載の方法。
5. The polymerization of the monomer in step (A) is cationic polymerization using a Lewis acid as a catalyst,
Water present in the halogenated hydrocarbon solvent in (A) is 5
The method according to claim 1, wherein the amount of water contained in the solvent is 0 to 1000 ppm, and the amount of water contained in the solvent recovered in step (D) is smaller than the amount of water present in step (A).
JP16085995A 1994-11-14 1995-06-27 Integrated production method of water-soluble sulfonated polymer Expired - Fee Related JP3203298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16085995A JP3203298B2 (en) 1994-11-14 1995-06-27 Integrated production method of water-soluble sulfonated polymer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-278961 1994-11-14
JP27896194 1994-11-14
JP16085995A JP3203298B2 (en) 1994-11-14 1995-06-27 Integrated production method of water-soluble sulfonated polymer

Publications (2)

Publication Number Publication Date
JPH08193104A true JPH08193104A (en) 1996-07-30
JP3203298B2 JP3203298B2 (en) 2001-08-27

Family

ID=26487213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16085995A Expired - Fee Related JP3203298B2 (en) 1994-11-14 1995-06-27 Integrated production method of water-soluble sulfonated polymer

Country Status (1)

Country Link
JP (1) JP3203298B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163877A (en) * 1999-12-09 2001-06-19 Mitsui Chemicals Inc (thio)epoxy compound removed from high molecular material and its purifying method
WO2004081062A1 (en) * 2003-03-14 2004-09-23 Tonen Chemical Corporation Method for producing modified polyolefin solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163877A (en) * 1999-12-09 2001-06-19 Mitsui Chemicals Inc (thio)epoxy compound removed from high molecular material and its purifying method
WO2004081062A1 (en) * 2003-03-14 2004-09-23 Tonen Chemical Corporation Method for producing modified polyolefin solution

Also Published As

Publication number Publication date
JP3203298B2 (en) 2001-08-27

Similar Documents

Publication Publication Date Title
US5677390A (en) Process for brominating polystyrenic resins
US5686538A (en) Process for brominating polystyrenic resins
KR101473542B1 (en) Common solvent process for producing high molecular weight brominated rubber
US20090264599A1 (en) Terminating Bromination of Styrenic Polymer in a Bromination Reaction Mixture
JP3203298B2 (en) Integrated production method of water-soluble sulfonated polymer
JPS594410B2 (en) The actual situation
AU678732B2 (en) Coherent method for preparing water-soluble sulfonated polymer
JP2000256010A (en) Recovering method of lithium
JP2000063429A (en) Batch process for preparing water-soluble sulfonated polymer
EP0327255A2 (en) Process of preparing chloromethylated aromatic polymeric material
WO2004009520A1 (en) Method for producing chlorinated hydrocarbon having chlorinated tertiary carbon
JPS5899436A (en) Selective preparation of 2-hydroxynaphthalene-6- carboxylic acid
US3936508A (en) Process for the preparation of chloroprene
CA1240707A (en) Process for producing brominated acenaphthylene condensates
JP2002179728A (en) Method for producing isobutylene-based block copolymer
JP2001131222A (en) Method for production of isobutylene block copolymer
US3632642A (en) Production of arylsulfonyl chlorides
JPH0475220B2 (en)
JPH06263715A (en) Production of high-purity methanesulfonyl chloride
JPH0742334B2 (en) Method for producing water-soluble polystyrene sulfonic acid
US4967026A (en) Process for the production of chloromethyl phenethyl bromide
IL98580A (en) Preparation of 1,1-bis(chlorophenyl)-2,2,2-trichloroethanol
JPH0742335B2 (en) Method for producing alkaline earth metal salt of polystyrene sulfonate
JPH06298852A (en) Sulfonation of aromatic polymer
JPH01113338A (en) Production of hydroxybenzoic acid

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees