JPH08193101A - Continuous production of partly neutralized copolymer of monoethylenic dicarboxylic acid and monoethylenic monocarboxylic acid - Google Patents
Continuous production of partly neutralized copolymer of monoethylenic dicarboxylic acid and monoethylenic monocarboxylic acidInfo
- Publication number
- JPH08193101A JPH08193101A JP2092595A JP2092595A JPH08193101A JP H08193101 A JPH08193101 A JP H08193101A JP 2092595 A JP2092595 A JP 2092595A JP 2092595 A JP2092595 A JP 2092595A JP H08193101 A JPH08193101 A JP H08193101A
- Authority
- JP
- Japan
- Prior art keywords
- acid
- reactor
- monocarboxylic acid
- dicarboxylic acid
- unsaturated monocarboxylic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/02—Acids; Metal salts or ammonium salts thereof, e.g. maleic acid or itaconic acid
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polymerisation Methods In General (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、モノエチレン性不飽和
ジカルボン酸(以下、不飽和ジカルボン酸という。)と
モノエチレン性不飽和モノカルボン酸(以下、不飽和モ
ノカルボン酸という。)との部分的に中和された共重合
体を、効率的に且つ連続的に製造する方法を提供するこ
とを課題とする。本発明の方法により製造された共重合
体は、分子量分布が狭く、洗剤ビルダー用として好適で
ある。The present invention relates to a monoethylenically unsaturated dicarboxylic acid (hereinafter referred to as unsaturated dicarboxylic acid) and a monoethylenically unsaturated monocarboxylic acid (hereinafter referred to as unsaturated monocarboxylic acid). It is an object of the present invention to provide a method for efficiently and continuously producing a partially neutralized copolymer. The copolymer produced by the method of the present invention has a narrow molecular weight distribution and is suitable for a detergent builder.
【0002】[0002]
【従来の技術】不飽和ジカルボン酸と不飽和モノカルボ
ン酸との共重合体の製造に関しては従来より各種の方法
が提案されている。それらの多くは主に反応性の低い不
飽和ジカルボン酸の反応率を高め、最終生成物中の未反
応モノマーの量を低減することを目的としている。例え
ば、両カルボン酸を塊状重合により200〜400℃の
温度で連続的に重合させる方法があるが、この方法では
残存モノマーが多く、得られる共重合体の物性も不十分
である。また、両モノマーの20〜80%までが重合反
応中に中和される状態で重合する方法も提案されてお
り、残留モノマー量が少なく、物性上も好ましい共重合
体が得られているが、この方法は非連続的であって多大
の時間とエネルギーを要し実用上は好ましくない。2. Description of the Related Art Various methods have hitherto been proposed for producing a copolymer of an unsaturated dicarboxylic acid and an unsaturated monocarboxylic acid. Many of them are primarily aimed at increasing the reaction rate of less reactive unsaturated dicarboxylic acids and reducing the amount of unreacted monomer in the final product. For example, there is a method in which both carboxylic acids are continuously polymerized at a temperature of 200 to 400 ° C. by bulk polymerization, but this method has a large amount of residual monomers and the resulting copolymer has insufficient physical properties. Further, a method of polymerizing in a state where 20 to 80% of both monomers are neutralized during the polymerization reaction has been proposed, and a copolymer having a small amount of residual monomer and favorable physical properties is obtained. This method is discontinuous, requires a lot of time and energy, and is not preferable in practice.
【0003】更に、特開昭59−66407号公報に
は、複数の反応器中で連続的に共重合を行う技術が開示
されており、短時間で少ないエネルギー消費により、優
れた性能の共重合体が得られるとされている。その特徴
は前記のモノマーの中和ということの他に、第2反応器
以降に不飽和モノカルボン酸の一部を追加供給すること
であり、その実施例によれば第2反応器以降に分割供給
される不飽和モノカルボン酸の割合は23〜50%であ
る。しかし、このように追加モノマー量が多い場合、生
成する共重合体の分子量分布が広くなり、反応混合物の
粘度が上昇し、特に洗剤ビルダー用として好ましい共重
合体が得られない。また、上記技術では反応時間につい
ては、0.5〜8時間、好ましくは1〜5時間の滞留時
間で反応溶液を最終反応器から取り出すと記載されてい
るのみで、各反応器での反応時間等詳細は何ら説明され
ていない。Further, Japanese Patent Application Laid-Open No. 59-66407 discloses a technique of continuously copolymerizing in a plurality of reactors, which has an excellent performance of co-polymerization due to low energy consumption in a short time. It is said that a merger will be obtained. The feature is that, in addition to the above-mentioned neutralization of the monomer, a part of the unsaturated monocarboxylic acid is additionally supplied to the second reactor and thereafter, and according to the embodiment, it is divided into the second reactor and thereafter. The proportion of unsaturated monocarboxylic acid supplied is 23 to 50%. However, when the amount of the additional monomer is large as described above, the molecular weight distribution of the produced copolymer is widened, the viscosity of the reaction mixture is increased, and a copolymer which is particularly preferable for a detergent builder cannot be obtained. Further, in the above-mentioned technology, regarding the reaction time, it is only described that the reaction solution is taken out from the final reactor with a residence time of 0.5 to 8 hours, preferably 1 to 5 hours, and the reaction time in each reactor is described. Etc. No details are given.
【0004】[0004]
【発明が解決しようとする課題】本発明は上記問題点を
解決するものであり、不飽和ジカルボン酸と不飽和モノ
カルボン酸との部分中和された共重合体を、短時間で少
ないエネルギー消費、且つ、高い重合率で製造する方法
を提供することを課題とする。DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems by providing a partially neutralized copolymer of an unsaturated dicarboxylic acid and an unsaturated monocarboxylic acid in a short time with low energy consumption. It is an object of the present invention to provide a method for producing a high polymerization rate.
【0005】[0005]
【課題を解決するための手段】本発明のモノエチレン性
不飽和ジカルボン酸とモノエチレン性不飽和モノカルボ
ン酸との部分中和された共重合体の連続的製造方法は、
カルボキシル基の全量の55〜75モル%が中和された
モノエチレン性不飽和ジカルボン酸及びモノエチレン性
不飽和モノカルボン酸を用い、攪拌装置を有する第1の
反応器に、上記不飽和ジカルボン酸及び/又はその塩の
仕込み量の全量と、上記不飽和モノカルボン酸及び/又
はその塩の全仕込み量の80〜97重量%(不飽和モノ
カルボン酸換算)を供給し、ラジカル重合開始剤の存在
下反応させ、その後、未反応の上記不飽和ジカルボン酸
及び/又はその塩が残存する反応混合物を少なくとも一
つの管状反応器に連続的に移送し、該管状反応器のうち
の1以上の反応器の複数箇所及び/又は2以上の反応器
の1箇所から、上記不飽和モノカルボン酸及び/又はそ
の塩の仕込み量の残量を分割追加供給し、且つ分割追加
供給する上記不飽和モノカルボン酸及び/又はその塩の
滞留時間を10〜40分として反応させることを特徴と
する。The method for continuously producing a partially neutralized copolymer of a monoethylenically unsaturated dicarboxylic acid and a monoethylenically unsaturated monocarboxylic acid according to the present invention comprises:
The above unsaturated dicarboxylic acid was added to a first reactor having a stirring device, using monoethylenically unsaturated dicarboxylic acid and monoethylenically unsaturated monocarboxylic acid in which 55 to 75 mol% of all carboxyl groups were neutralized. And / or 80 to 97% by weight (in terms of unsaturated monocarboxylic acid) of the total charged amount of the unsaturated monocarboxylic acid and / or salt thereof is supplied to supply the radical polymerization initiator. The reaction mixture is allowed to react in the presence of the unreacted unsaturated dicarboxylic acid and / or salt thereof, and the reaction mixture is continuously transferred to at least one tubular reactor, and at least one reaction in the tubular reactor is carried out. From the plurality of locations in the reactor and / or one location in two or more reactors, the residual amount of the charged amount of the unsaturated monocarboxylic acid and / or its salt is separately and additionally supplied, and the above-mentioned satiety is additionally supplied. The residence time of monocarboxylic acids and / or salts thereof which comprises reacting a 10-40 min.
【0006】上記「不飽和ジカルボン酸」としては、マ
レイン酸、イタコン酸、メサコン酸、フマル酸、メチレ
ンマロン酸、シトラコン酸等が挙げられ、これらはその
まま又は中和されて塩の形で使用される。更に、上記不
飽和ジカルボン酸の無水物、例えば無水マレイン等も使
用でき、また、これら無水物を鹸化したものを使用して
もよい(以上、遊離酸、無水物及びそれらの塩又は鹸化
物をまとめて以下、不飽和ジカルボン酸系モノマーとい
う。)。Examples of the above-mentioned "unsaturated dicarboxylic acid" include maleic acid, itaconic acid, mesaconic acid, fumaric acid, methylenemalonic acid, citraconic acid, etc., which are used as they are or in the form of a salt after neutralization. It Further, anhydrides of the above unsaturated dicarboxylic acids, such as maleic anhydride, may also be used, and those obtained by saponifying these anhydrides may also be used (above, free acids, anhydrides and salts or saponified products thereof are Collectively, hereinafter referred to as unsaturated dicarboxylic acid-based monomer.).
【0007】また、上記「不飽和モノカルボン酸」とし
ては、特にアクリル酸及びメタクリル酸が好適である
が、その他ビニル酢酸、アリル酢酸、プロピリデン酢
酸、エチリデンプロピオン酸、ジメチルアクリル酸等も
使用でき、これらはそのまま又は中和されて塩の形で使
用される(以上、遊離酸及びその塩をまとめて以下、不
飽和モノカルボン酸系モノマーという。)。本発明は、
特に無水マレイン酸とアクリル酸との共重合に有用な製
造方法を提供するものである。As the above-mentioned "unsaturated monocarboxylic acid", acrylic acid and methacrylic acid are particularly preferable, but vinyl acetic acid, allyl acetic acid, propylidene acetic acid, ethylidene propionic acid, dimethyl acrylic acid and the like can be used. These are used in the form of a salt as they are or after being neutralized (hereinafter, the free acid and its salt are collectively referred to as an unsaturated monocarboxylic acid-based monomer). The present invention
In particular, the present invention provides a production method useful for the copolymerization of maleic anhydride and acrylic acid.
【0008】上記不飽和ジカルボン酸及び不飽和モノカ
ルボン酸は、その全カルボキシル基の55〜75%が塩
となるように中和又は不飽和ジカルボン酸の無水物の場
合は鹸化されて反応に供され、残部は遊離酸の形で使用
される。本発明では不飽和ジ又はモノカルボン酸のいず
れを中和或いは鹸化してもよいが、不飽和モノカルボン
酸に比べて反応性が乏しい不飽和ジカルボン酸或いはそ
の無水物を中和又は鹸化することにより、反応性の高い
反応種の割合を高め、重合率を向上させるとともに反応
速度を高めることが好ましい。中和又は鹸化は予め反応
系外で実施してもよいし、第1反応器中に中和剤等を供
給して実施してもよい。また、必要に応じて管状反応器
において不飽和モノカルボン酸系モノマーとともに中和
剤等を供給して中和又は鹸化させてもよい。The above unsaturated dicarboxylic acid and unsaturated monocarboxylic acid are neutralized or saponified in the case of an unsaturated dicarboxylic acid anhydride so that 55 to 75% of all the carboxyl groups thereof become salts, and used for the reaction. The rest is used in the free acid form. In the present invention, either an unsaturated dicarboxylic acid or a monocarboxylic acid may be neutralized or saponified, but an unsaturated dicarboxylic acid or an anhydride thereof, which is less reactive than an unsaturated monocarboxylic acid, may be neutralized or saponified. Therefore, it is preferable to increase the proportion of highly reactive reactive species, improve the polymerization rate, and increase the reaction rate. The neutralization or saponification may be performed outside the reaction system in advance, or may be performed by supplying a neutralizing agent or the like into the first reactor. Further, if necessary, a neutralizing agent or the like may be supplied together with the unsaturated monocarboxylic acid type monomer in the tubular reactor to neutralize or saponify.
【0009】不飽和ジカルボン酸及び不飽和モノカルボ
ン酸の塩としては、水酸化ナトリウム、水酸化カリウ
ム、水酸化リチウム等を中和剤等とするアルカリ金属
塩、トリメチルアミン、トリエチルアミン、ヒドロキシ
エチルアミン等を中和剤等とするアミン塩の他アンモニ
ウム塩などが使用できる。中和又は鹸化は前記のように
重合反応前或いは反応工程中のいずれにおいて実施して
もよいが、全反応を通じてその中和又は鹸化の率は55
〜75モル%の範囲でなければならない。この範囲を外
れる場合は、不飽和ジカルボン酸系モノマーの反応性が
低下してしまい、この低下の程度は中和又は鹸化率が5
5モル%未満において顕著である。The salts of unsaturated dicarboxylic acids and unsaturated monocarboxylic acids include alkali metal salts containing sodium hydroxide, potassium hydroxide, lithium hydroxide and the like as neutralizing agents, trimethylamine, triethylamine, hydroxyethylamine and the like. In addition to amine salts used as solvates, ammonium salts and the like can be used. The neutralization or saponification may be carried out either before the polymerization reaction or during the reaction step as described above, but the rate of neutralization or saponification is 55 during the whole reaction.
Must be in the range of ~ 75 mol%. If the amount is out of this range, the reactivity of the unsaturated dicarboxylic acid-based monomer will decrease, and the extent of this decrease will be the neutralization or saponification rate of 5%.
It is remarkable when it is less than 5 mol%.
【0010】また、不飽和ジカルボン酸系モノマーと不
飽和モノカルボン酸系モノマーとは、その全仕込み量
(カルボン酸塩については、カルボン酸塩に換算した
量、以下同じである。)の合計量を100重量部とした
場合に、不飽和ジカルボン酸系モノマーを15〜65重
量部、不飽和モノカルボン酸系モノマーを85〜35重
量部使用することが好ましい。不飽和ジカルボン酸系モ
ノマーが15重量部未満では、得られる共重合体に不飽
和ジカルボン酸を共重合することにより得られる特性を
付与し難くなり、65重量部を越える場合は反応性が低
下することがあるため好ましくない。The unsaturated dicarboxylic acid type monomer and the unsaturated monocarboxylic acid type monomer are the total amount of all charged amounts (for the carboxylate salt, the amount converted to the carboxylate salt, the same applies hereinafter). Is 100 parts by weight, it is preferable to use 15 to 65 parts by weight of the unsaturated dicarboxylic acid type monomer and 85 to 35 parts by weight of the unsaturated monocarboxylic acid type monomer. When the amount of the unsaturated dicarboxylic acid-based monomer is less than 15 parts by weight, it becomes difficult to impart the characteristics obtained by copolymerizing the unsaturated dicarboxylic acid to the obtained copolymer, and when it exceeds 65 parts by weight, the reactivity decreases. It is not preferable because it may occur.
【0011】上記「ラジカル重合開始剤」(以下、重合
開始剤という。)としては、水溶性の開始剤を使用で
き、例えば、過酸化水素、過酸化ジ硫酸ナトリウム、過
酸化ジ硫酸アンモニウム、アゾ−ビス−(2−アミノプ
ロパン)塩酸塩等、及びこれらを組み合わせたものなど
を使用できる。また、レドックス共開始剤、例えば、亜
硫酸ナトリウム、トリエタノールアミン、アスコルビン
酸及び重金属の塩を少量併用してもよい。重合開始剤
は、モノマー全量に対して0.1〜10重量部使用する
ことが好ましく、より好ましくは1〜5重量部である。
更に、水性媒質中でのラジカル重合では、チオグリコー
ル酸等の通常の調節剤、ホルムアルデヒド、アセトアル
デヒド及びメチレンビスアクリルアミド、ジビニルグリ
コール等の連鎖延長剤等を、モノマーの全量に対して
0.1〜5重量%程度使用して反応性を高めることもで
きる。As the above-mentioned "radical polymerization initiator" (hereinafter referred to as a polymerization initiator), a water-soluble initiator can be used, and examples thereof include hydrogen peroxide, sodium peroxydisulfate, ammonium peroxydisulfate, and azo- Bis- (2-aminopropane) hydrochloride and the like, and combinations thereof can be used. Redox coinitiators such as sodium sulfite, triethanolamine, ascorbic acid and salts of heavy metals may also be used in small amounts. The polymerization initiator is preferably used in an amount of 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight, based on the total amount of the monomers.
Further, in the radical polymerization in an aqueous medium, a usual regulator such as thioglycolic acid, a chain extender such as formaldehyde, acetaldehyde and methylenebisacrylamide, divinyl glycol, etc. are added in an amount of 0.1 to 5 with respect to the total amount of the monomers. It is also possible to increase the reactivity by using about wt%.
【0012】本発明の方法において使用する「攪拌装置
を有する第1の反応器」は、反応混合物を十分に攪拌で
きるものであれば特にその型式等は制限されないが、通
常の攪拌翼を備えた槽型反応器が好ましい。また、常圧
において比較的低温で反応させる場合は第1反応器は特
に耐圧容器でなくてもよいが、加圧水中で反応させる場
合はオートクレーブ等の耐圧容器を用いる必要がある。The "first reactor having a stirring device" used in the method of the present invention is not particularly limited in its type and the like as long as it can sufficiently stir the reaction mixture, but it is equipped with an ordinary stirring blade. A tank reactor is preferred. Further, when the reaction is carried out at a relatively low temperature under normal pressure, the first reactor does not have to be a pressure vessel in particular, but when the reaction is carried out in pressurized water, it is necessary to use a pressure vessel such as an autoclave.
【0013】また、前記「管状反応器」の具体例として
は、管式反応器、塔式反応器或いはスタティックミキサ
ー等、又はこれらを組み合わせたものがなどが挙げられ
る。不飽和モノカルボン酸系モノマーの仕込み量の残量
と、必要に応じて重合開始剤を管状反応器へ分割追加供
給する方法としては、これらを管状反応器の特定箇所か
らそのまま供給することもできるが、適宜の攪拌装置に
よって、供給すべき不飽和モノカルボン酸系モノマーと
重合開始剤とを、第1反応器或いは前段の管状反応器か
らの反応混合物に予め混合した後、次段の反応器に供給
すれば、迅速且つ十分に混合できるため好ましい。Specific examples of the "tubular reactor" include a tubular reactor, a tower reactor, a static mixer and the like, or a combination thereof. As a residual amount of the charged amount of the unsaturated monocarboxylic acid-based monomer and a method of additionally supplying the polymerization initiator to the tubular reactor in a divided manner, these may be directly supplied from a specific portion of the tubular reactor. However, the unsaturated monocarboxylic acid type monomer to be supplied and the polymerization initiator are premixed with the reaction mixture from the first reactor or the tubular reactor of the previous stage by an appropriate stirring device, and then the reactor of the next stage is used. Is preferable because it can be mixed rapidly and sufficiently.
【0014】更に、管状反応器としては、不飽和モノカ
ルボン酸系モノマー等の供給点が1箇所のみの反応器を
複数連接してもよいし、反応混合物の移送方向に供給点
が複数設けられたものを1基又は2基以上連接してもよ
い。本発明では、上記2種類の反応器を適宜組み合わせ
て使用することができ、いずれにしても追加供給する不
飽和モノカルボン酸系モノマーを2回以上に分割して供
給すればよい。Further, as the tubular reactor, a plurality of reactors having only one supply point of the unsaturated monocarboxylic acid type monomer may be connected, or a plurality of supply points may be provided in the transfer direction of the reaction mixture. One unit or two or more units may be connected together. In the present invention, the above-mentioned two types of reactors can be appropriately combined and used, and in any case, the unsaturated monocarboxylic acid-based monomer to be additionally supplied may be dividedly supplied at least twice.
【0015】上記追加供給の回数(段数という概念で表
現することもある。)が多いほど最終重合率は高くな
り、特に反応性の低い不飽和ジカルボン酸系モノマーの
割合が大きい場合には、同じ最終重合率を達成するため
には段数を多くする必要がある。しかし、重合率が99
%を越えた後はその上昇割合はかなり小さくなり、実用
上は5段程度でよく、10段以上としても装置、操作は
煩雑となり、重合率上昇の効果は小さくなる。The higher the number of times of the above-mentioned additional supply (which may be expressed by the concept of the number of stages), the higher the final polymerization rate becomes, and the same in the case where the proportion of unsaturated dicarboxylic acid monomer having a low reactivity is large. It is necessary to increase the number of stages to achieve the final polymerization rate. However, the polymerization rate is 99
After exceeding 0.1%, the rate of increase becomes considerably small, and practically it may be about 5 stages, and even if it is 10 stages or more, the apparatus and operation become complicated and the effect of increasing the polymerization rate becomes small.
【0016】本発明の方法では、不飽和ジカルボン酸系
モノマーはその仕込み量の全量が第1の反応器に供給さ
れ、不飽和モノカルボン酸系モノマーはその「全仕込み
量の80〜97重量%」が第1の反応器に供給され、重
合開始剤の存在下、水性媒質、通常水を媒質として共重
合される。反応温度は50〜150℃の範囲であればよ
く、通常80〜100℃程度である。また、第1反応器
での滞留時間は特に制限されず、通常、120〜300
分である。In the method of the present invention, the unsaturated dicarboxylic acid-based monomer is supplied to the first reactor in the entire amount thereof, and the unsaturated monocarboxylic acid-based monomer is contained in the amount of "80 to 97% by weight of the total amount. Is supplied to the first reactor and copolymerized in the presence of a polymerization initiator using an aqueous medium, usually water as a medium. The reaction temperature may be in the range of 50 to 150 ° C, and is usually about 80 to 100 ° C. Further, the residence time in the first reactor is not particularly limited and is usually 120 to 300.
Minutes.
【0017】上記不飽和モノカルボン酸系モノマーの第
1反応器への仕込み割合は重要であり、第1反応器への
供給量が全仕込み量の80重量%未満では、反応生成物
の分子量分布が広がり、粘度が高くなりすぎて操作が困
難となり、97重量%を越える場合は不飽和ジカルボン
酸の転化率が低下する。The proportion of the unsaturated monocarboxylic acid-based monomer charged into the first reactor is important. If the amount of the monomer fed into the first reactor is less than 80% by weight of the total amount charged, the molecular weight distribution of the reaction product will be small. And the viscosity becomes too high to make the operation difficult, and when it exceeds 97% by weight, the conversion rate of unsaturated dicarboxylic acid decreases.
【0018】また、管状反応器への各供給点からの不飽
和モノカルボン酸系モノマーの供給割合は特に制限され
ないが、例えば、各点へほぼ均等量供給する方法であれ
ばよい。更に、各供給点の滞留時間は「10〜40分」
である。尚、本発明において滞留時間とは各供給点間に
おける値をいい、適宜の攪拌装置の有無にはかかわらな
い。この滞留時間が10分未満では、前段で供給したモ
ノマーが十分に反応しないことがあり、40分を越える
場合は重合率がそれ以上はほとんど向上しない。The supply ratio of the unsaturated monocarboxylic acid type monomer from each supply point to the tubular reactor is not particularly limited, but, for example, a method of supplying an approximately equal amount to each point may be used. Furthermore, the residence time at each supply point is "10-40 minutes"
Is. In the present invention, the residence time means a value between each supply point and does not matter whether or not an appropriate stirring device is provided. If the residence time is less than 10 minutes, the monomers supplied in the preceding stage may not react sufficiently, and if the residence time exceeds 40 minutes, the polymerization rate is hardly improved further.
【0019】更に、重合開始剤は第1反応器に全量を供
給してもよいが、その一部を不飽和モノカルボン酸系モ
ノマーとともに後段の管状反応器へ供給してもよい。例
えば、第1反応器に全量の60〜90%を供給し、残量
を管状反応器中へ不飽和モノカルボン酸系モノマーの残
量とともに供給してもよく、この場合、管状反応器の各
供給点へのモノマーの供給量(比率)に応じて、重合開
始剤の残量を分割して供給することが好ましく、管状反
応器の1段目において残量の全量を供給した場合に比
べ、重合率を更に向上させることができる。Further, the polymerization initiator may be supplied to the first reactor in the total amount, or a part thereof may be supplied to the subsequent tubular reactor together with the unsaturated monocarboxylic acid type monomer. For example, 60 to 90% of the total amount may be supplied to the first reactor, and the residual amount may be supplied into the tubular reactor together with the residual amount of the unsaturated monocarboxylic acid-based monomer. It is preferable to divide and supply the remaining amount of the polymerization initiator according to the supply amount (ratio) of the monomer to the supply point, as compared with the case where the entire remaining amount is supplied in the first stage of the tubular reactor. The polymerization rate can be further improved.
【0020】[0020]
【作用】不飽和ジカルボン酸は反応性に乏しく、一方、
不飽和モノカルボン酸は非常に反応性に富んでいる。従
って、両者を共重合させるに際し、両モノマーの全仕込
み量を一つの反応器に供給し反応させても、不飽和ジカ
ルボン酸の相当量が未反応のまま反応混合物中に残存す
ることになってしまう。そこで、不飽和モノカルボン酸
を分散供給し、所謂熟成反応させる方法或いは複数の反
応器を使用し、反応性の高い不飽和モノカルボン酸の一
部を第2の反応器以降に分散供給して、不飽和ジカルボ
ン酸の重合率を高める方法が考えられている。しかし、
前者では反応に非常に長時間を要して実用的でなく、ま
た、後者では単に不飽和モノカルボン酸系モノマーを分
散供給するだけでは、不飽和ジカルボン酸の重合率をよ
り高め、優れた物性を有する共重合体を得ることはでき
ない。[Function] Unsaturated dicarboxylic acid has poor reactivity, while
Unsaturated monocarboxylic acids are very reactive. Therefore, in copolymerizing both, even if the total charged amount of both monomers is fed into one reactor and reacted, a considerable amount of unsaturated dicarboxylic acid remains unreacted in the reaction mixture. I will end up. Therefore, a method in which unsaturated monocarboxylic acid is dispersedly supplied and a so-called aging reaction is performed or a plurality of reactors are used, and a part of highly reactive unsaturated monocarboxylic acid is dispersedly supplied to the second reactor and thereafter. A method for increasing the polymerization rate of unsaturated dicarboxylic acid has been considered. But,
In the former case, the reaction takes a very long time, which is not practical, and in the latter case, by simply supplying the unsaturated monocarboxylic acid-based monomer in a dispersed manner, the polymerization rate of the unsaturated dicarboxylic acid is further increased, and excellent physical properties are obtained. It is not possible to obtain a copolymer having
【0021】本発明では、第1の反応器を攪拌可能な反
応器、好ましくは攪拌翼を備えた槽型反応器とし、それ
に続く反応器として、複数の管状反応器及び/又は不飽
和モノカルボン酸系モノマー等の供給点を複数設けた管
状反応器を用い、更に、分散供給される不飽和モノカル
ボン酸系モノマーの割合、及び管状反応器における各段
の滞留時間を特定することにより、短時間の反応で、重
合率が高く、分子量分布の狭い、特に洗剤ビルダー用と
して好適な共重合体を得るものである。反応器は上記の
組み合わせとすることが必要であり、例えば、全反応を
多段数の管状反応器で実施しようとしても、攪拌混合の
不足も含め、操作上難しい問題が多く、また、共重合体
が得られたとしても分子量分布が広く、粘度の高い、特
に洗剤ビルダー用として好ましくないものとなってしま
う。また、本発明において重合されるモノマーは、不飽
和ジカルボン酸系モノマーと不飽和モノカルボン酸系モ
ノマーであるが、これらと共重合可能なモノマー、例え
ば好ましいものとして(メタ)アクリルアミド、アクリ
ルアミドジメチルプロパンスルホン酸、ポリアルキレン
グリコール(メタ)アクリレート等の水溶性モノマーの
併用も本発明の実施態様の一つである。In the present invention, the first reactor is a stirrable reactor, preferably a tank reactor equipped with stirring blades, and as a subsequent reactor, a plurality of tubular reactors and / or unsaturated monocarboxylic acids are used. By using a tubular reactor provided with a plurality of supply points for the acid-based monomer and the like, and further by specifying the ratio of the unsaturated monocarboxylic acid-based monomer to be dispersed and supplied and the residence time of each stage in the tubular reactor, By the reaction over time, a copolymer having a high polymerization rate and a narrow molecular weight distribution, which is particularly suitable for a detergent builder, is obtained. The reactor must be a combination of the above. For example, even if an attempt is made to carry out the whole reaction in a tubular reactor having a multi-stage number, there are many operational problems including insufficient stirring and mixing, and the copolymer Even if it is obtained, it has a wide molecular weight distribution and a high viscosity, which is not preferable especially for a detergent builder. Further, the monomer to be polymerized in the present invention is an unsaturated dicarboxylic acid type monomer and an unsaturated monocarboxylic acid type monomer, and a monomer copolymerizable therewith, for example, (meth) acrylamide, acrylamide dimethyl propane sulfone is preferable. The combined use of water-soluble monomers such as acid and polyalkylene glycol (meth) acrylate is also one of the embodiments of the present invention.
【0022】[0022]
【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。以下の各実験において、各特性値は以下
の方法によって測定した。 中和率:アクリル酸及びマレイン酸の仕込み量に対す
る水酸化ナトリウムの仕込み量より算出した。 重合率:反応後の反応液中の残存モノマー量を、液体
クロマトグラフィにより測定し、算出した。 数平均及び重量平均重合度:反応により得られた共重
合体を、ゲルパーミエーションクロマトグラフィにより
測定した。EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. In each of the following experiments, each characteristic value was measured by the following method. Neutralization rate: Calculated from the charged amount of sodium hydroxide relative to the charged amount of acrylic acid and maleic acid. Polymerization rate: The amount of residual monomer in the reaction solution after the reaction was measured and calculated by liquid chromatography. Number average and weight average degree of polymerization: The copolymer obtained by the reaction was measured by gel permeation chromatography.
【0023】(1) 中和率の重合率に対する影響 実験例1及び比較実験例1〜3 内容積0.4リットルのCSTR反応器中へ、アクリル
酸2.2mol/kg、マレイン酸0.9mol/kg
及び過硫酸ナトリウム(以下、NPSと略称する。)
0.05mol/kgを10g/minの速度で供給
し、且つ、アクリル酸とマレイン酸の全カルボキシル基
に対して当量比で0.25、0.5、0.66及び0.
79の水酸化ナトリウムを添加し、水を媒質として、1
00℃、47分反応させて、アクリル酸、マレイン酸そ
れぞれ及び全重合率を測定した。実験条件及び結果を表
1に示す。(1) Effect of Neutralization Rate on Polymerization Rate Experimental Example 1 and Comparative Experimental Examples 1 to 3 Into a CSTR reactor having an internal volume of 0.4 liter, 2.2 mol / kg of acrylic acid and 0.9 mol of maleic acid. / Kg
And sodium persulfate (hereinafter abbreviated as NPS).
0.05 mol / kg was supplied at a rate of 10 g / min, and an equivalent ratio of 0.25, 0.5, 0.66, and 0.1 to all the carboxyl groups of acrylic acid and maleic acid.
79 sodium hydroxide was added, with water as medium, 1
The reaction was carried out at 00 ° C. for 47 minutes, and each of acrylic acid and maleic acid and the total polymerization rate were measured. Table 1 shows the experimental conditions and results.
【0024】[0024]
【表1】 [Table 1]
【0025】表1の結果によれば、中和率がいずれであ
ってもアクリル酸の重合率は94〜95%程度と高い
が、マレイン酸は中和率が25モル%では62.6%、
中和率が50モル%では76.7%、中和率が79モル
%では77.1%であるのに対して中和率が66モル%
では81.4%と高いことが分かる。尚、中和率66モ
ル%の場合の水素イオン濃度は5.7であるが、共重合
性は理論的には中和率ではなく水素イオン濃度に依存し
ており、モノマー種或いは組成が大幅に異なる場合等に
は最適な中和率はずれることになるが、有用な共重合体
を得るためのモノマー種及び組成の範囲であれば望まし
い中和率は55〜75モル%の範囲となる。According to the results shown in Table 1, the polymerization rate of acrylic acid is as high as about 94 to 95% at any neutralization rate, but maleic acid is 62.6% at a neutralization rate of 25 mol%. ,
The neutralization rate of 50 mol% is 76.7%, and the neutralization rate of 79 mol% is 77.1%, whereas the neutralization rate is 66 mol%.
It turns out that it is as high as 81.4%. Although the hydrogen ion concentration is 5.7 when the neutralization rate is 66 mol%, the copolymerizability theoretically depends on the hydrogen ion concentration, not the neutralization rate, and the monomer species or composition is significantly different. However, the optimum neutralization rate is in the range of 55 to 75 mol% within the range of monomer species and composition for obtaining a useful copolymer.
【0026】(2) CSTR反応器と複数のモノマー供給
点を有する管状反応器とを使用した共重合体の製造 実施例1 第1反応器として内容積2リットルのCSTR反応器、
第2反応器として内径2mmでスタティックミキサを備
えたパイプからなり、不飽和モノカルボン酸系モノマー
等の供給点を5箇所設けた管状反応器を用い、表2に示
すモノマー等の供給条件により、水を媒質として100
℃で共重合体を製造した。第1反応器及び第2反応器の
各供給点へのアクリル酸等の供給割合、並びに中和率、
モノマー等の供給速度、滞留時間、アクリル酸、無水マ
レイン酸の各段における重合率及び得られた共重合体の
重量平均重合度、数平均重合度を測定した。結果を反応
条件とともに表2に示す。(2) Production of Copolymer Using CSTR Reactor and Tubular Reactor Having Plural Monomer Feeding Points Example 1 CSTR reactor having an internal volume of 2 liters as the first reactor,
As the second reactor, a tubular reactor having an inner diameter of 2 mm and equipped with a static mixer and having five supply points of unsaturated monocarboxylic acid-based monomers and the like was used, and according to the supply conditions of the monomers and the like shown in Table 2, 100 with water as medium
The copolymer was prepared at ° C. A supply ratio of acrylic acid or the like to each supply point of the first reactor and the second reactor, and a neutralization ratio,
The feeding rate of monomers and the like, the residence time, the polymerization rate of acrylic acid and maleic anhydride in each stage, and the weight average polymerization degree and number average polymerization degree of the obtained copolymer were measured. The results are shown in Table 2 together with the reaction conditions.
【0027】実施例2 モノマー等の供給条件などの反応条件を表3に示すもの
に変えた他は実施例1と同様にして共重合体を製造し、
実施例1と同様に各モノマーの重合率及び重合度を測定
した。結果を反応条件とともに表3に示す。Example 2 A copolymer was produced in the same manner as in Example 1 except that the reaction conditions such as the supply conditions of monomers and the like were changed to those shown in Table 3.
The polymerization rate and degree of polymerization of each monomer were measured in the same manner as in Example 1. The results are shown in Table 3 together with the reaction conditions.
【0028】(3) 追加モノマー量及び段数の影響 実施例3及び比較例1 モノマー等の供給条件などの反応条件を表4に示すもの
に変えた他は実施例1と同様にして共重合体を製造し、
管状反応器において追加供給するモノマー量の影響を検
討した。実施例1と同様にして各モノマーの重合率及び
重合度を測定した。結果を反応条件とともに表4に示
す。尚、追加モノマー量が23%の場合が比較例1であ
る。(3) Effect of additional monomer amount and number of stages Example 3 and Comparative Example 1 A copolymer was prepared in the same manner as in Example 1 except that the reaction conditions such as the feeding conditions of the monomers were changed to those shown in Table 4. Manufacture
The effect of the amount of monomer additionally supplied in the tubular reactor was examined. The polymerization rate and degree of polymerization of each monomer were measured in the same manner as in Example 1. The results are shown in Table 4 together with the reaction conditions. Comparative Example 1 has an additional monomer content of 23%.
【0029】実施例4 モノマー等の供給条件などの反応条件を表5に示すもの
に変えた他は実施例1と同様にして共重合体を製造し、
管状反応器において追加供給するモノマー量及び追加供
給する段数を3段にした場合の影響を検討した。実施例
1と同様にして各モノマーの重合率及び重合度を測定し
た。結果を反応条件とともに表5に示す。Example 4 A copolymer was produced in the same manner as in Example 1 except that the reaction conditions such as the conditions for supplying monomers and the like were changed to those shown in Table 5.
The influence of the case where the amount of monomer additionally supplied and the number of stages of additional supply in the tubular reactor were three was examined. The polymerization rate and degree of polymerization of each monomer were measured in the same manner as in Example 1. The results are shown in Table 5 together with the reaction conditions.
【0030】実施例5及び比較例2 モノマー等の供給条件などの反応条件を表6に示すもの
に変えた他は実施例2と同様にして共重合体を製造し、
管状反応器において追加供給するモノマー量の影響を検
討した。実施例1と同様にして各モノマーの重合率及び
重合度を測定した。結果を反応条件とともに表6に示
す。尚、追加モノマー量が23%の場合が比較例2であ
る。Example 5 and Comparative Example 2 A copolymer was produced in the same manner as in Example 2 except that the reaction conditions such as the feeding conditions of the monomers were changed to those shown in Table 6.
The effect of the amount of monomer additionally supplied in the tubular reactor was examined. The polymerization rate and degree of polymerization of each monomer were measured in the same manner as in Example 1. The results are shown in Table 6 together with the reaction conditions. Comparative Example 2 has an additional monomer content of 23%.
【0031】実施例6 モノマー等の供給条件などの反応条件を表7に示すもの
に変えた他は実施例2と同様にして共重合体を製造し、
管状反応器において追加供給するモノマー量及び追加供
給する段数を3段にした場合の影響を検討した。実施例
1と同様にして各モノマーの重合率及び重合度を測定し
た。結果を反応条件とともに表7に示す。Example 6 A copolymer was produced in the same manner as in Example 2 except that the reaction conditions such as the conditions for supplying monomers and the like were changed to those shown in Table 7.
The influence of the case where the amount of monomer additionally supplied and the number of stages of additional supply in the tubular reactor were three was examined. The polymerization rate and degree of polymerization of each monomer were measured in the same manner as in Example 1. The results are shown in Table 7 together with the reaction conditions.
【0032】[0032]
【表2】 [Table 2]
【0033】[0033]
【表3】 [Table 3]
【0034】[0034]
【表4】 [Table 4]
【0035】[0035]
【表5】 [Table 5]
【0036】[0036]
【表6】 [Table 6]
【0037】[0037]
【表7】 [Table 7]
【0038】実施例1と実施例2ではアクリル酸と無水
マレイン酸との全仕込み量の比が、それぞれ75:25
及び64:36となっており、それに伴って管状反応器
での供給速度が異なっている以外はほとんど同じであ
り、また、実施例1、2ともに管状反応器へのアクリル
酸の仕込み割合は全仕込み量の10%である。In Examples 1 and 2, the ratio of the total amounts of acrylic acid and maleic anhydride charged was 75:25, respectively.
And 64:36, which is almost the same except that the feed rate in the tubular reactor is different accordingly, and in all of Examples 1 and 2, the proportion of acrylic acid charged into the tubular reactor is the same. It is 10% of the charged amount.
【0039】実施例1では、アクリル酸の重合率は第1
反応器で98.10%、最終的に99.94%、無水マ
レイン酸は第1反応器で91.76%、最終的に99.
73%であり、実施例2では、アクリル酸の重合率は第
1反応器で96.89%、最終的に99.91%、無水
マレイン酸は第1反応器で86.59%、最終的に9
8.66%となっており、無水マレイン酸の比率が低い
実施例1の方がいずれの重合率も高くなっている。ま
た、分子量分布は実施例1で2.28、実施例2で2.
18である。以上のように各実施例によれば、バッチ式
の熟成反応による場合に比べはるかに短時間で、反応性
の低い不飽和ジカルボン酸の重合率が非常に高く、且
つ、分子量分布の狭い共重合体を製造することができ
る。In Example 1, the degree of polymerization of acrylic acid was the first
98.10% in the reactor, finally 99.94%, maleic anhydride 91.76% in the first reactor, finally 99.94%.
73%, and in Example 2, the polymerization rate of acrylic acid was 96.89% in the first reactor, finally 99.91%, and maleic anhydride was 86.59% in the first reactor. To 9
It is 8.66%, and the polymerization rate is higher in Example 1 in which the ratio of maleic anhydride is lower. Further, the molecular weight distribution is 2.28 in Example 1 and 2. in Example 2.
Eighteen. As described above, according to each example, the polymerization rate of the unsaturated dicarboxylic acid having a low reactivity is very high in a much shorter time than in the case of the batch type aging reaction, and the copolymerization having a narrow molecular weight distribution is performed. Coalescence can be produced.
【0040】また、表4〜5の結果によれば、追加モノ
マー量を3〜20%の範囲で適宜変更した場合、いずれ
の反応例においても、反応性の高いアクリル酸ではその
重合率は実質的に100%であり、また、反応性の低い
無水マレイン酸では、追加モノマー量及び段数が多いほ
ど重合率が高くなる傾向にあるが、いずれにしても効率
よく共重合体が得られることが分かる。尚、比較例1に
おいては、アクリル酸及び無水マレイン酸の重合率は各
実施例に比べて遜色ないが、共重合体の分子量分布は
3.25と大きくなっており、洗剤ビルダー用として不
適であることが分かる。Further, according to the results of Tables 4 to 5, when the amount of the additional monomer is appropriately changed within the range of 3 to 20%, the polymerization rate of acrylic acid having high reactivity is substantially high in any reaction example. In addition, with maleic anhydride having a low reactivity, the polymerization rate tends to increase as the amount of additional monomer and the number of stages increase, but in any case, a copolymer can be efficiently obtained. I understand. In Comparative Example 1, the polymerization rates of acrylic acid and maleic anhydride are comparable to those of the Examples, but the copolymer has a large molecular weight distribution of 3.25, which is unsuitable as a detergent builder. I know there is.
【0041】また、表6〜7の結果によれば、上記表4
〜5の場合に比べアクリル酸に対する無水マレイン酸の
割合が高いため、アクリル酸、無水マレイン酸いずれも
重合率がやや低下している。しかし、最も重合率の低
い、追加モノマー量3%、追加反応段数3の場合でも、
アクリル酸及び無水マレイン酸の3段目の重合率はそれ
ぞれ99.95%及び96.33%となっており、十分
高い重合率であることが分かる。尚、比較例2において
も、アクリル酸及び無水マレイン酸の重合率は各実施例
に比べて遜色ないが、比較例1同様共重合体の分子量分
布は3.07と大きくなっている。Further, according to the results of Tables 6 to 7, the above Table 4
Since the ratio of maleic anhydride to acrylic acid is higher than that in the case of ~ 5, the polymerization rates of both acrylic acid and maleic anhydride are slightly lowered. However, even when the polymerization rate is lowest, the amount of additional monomer is 3%, and the number of additional reaction stages is 3,
The third-stage polymerization rates of acrylic acid and maleic anhydride are 99.95% and 96.33%, respectively, which shows that the polymerization rates are sufficiently high. In Comparative Example 2 as well, the polymerization rates of acrylic acid and maleic anhydride are comparable to those of the Examples, but like Comparative Example 1, the copolymer has a large molecular weight distribution of 3.07.
【0042】[0042]
【発明の効果】本発明の不飽和ジカルボン酸と不飽和モ
ノカルボン酸との部分中和された共重合体の製造方法に
よれば、従来のバッチ式の熟成反応方式に比べ短時間
で、元々反応性の低い不飽和ジカルボン酸系モノマーの
重合率を高くすることができ、しかも分子量分布の狭
い、特に洗剤ビルダー用として好適な共重合体が得られ
る。According to the method for producing a partially neutralized copolymer of an unsaturated dicarboxylic acid and an unsaturated monocarboxylic acid of the present invention, the time required is shorter than the conventional batch-type aging reaction method, and It is possible to obtain a copolymer which can increase the polymerization rate of an unsaturated dicarboxylic acid type monomer having low reactivity and has a narrow molecular weight distribution, which is particularly suitable for a detergent builder.
Claims (1)
%が中和されたモノエチレン性不飽和ジカルボン酸及び
モノエチレン性不飽和モノカルボン酸を用い、攪拌装置
を有する第1の反応器に、上記不飽和ジカルボン酸及び
/又はその塩の仕込み量の全量と、上記不飽和モノカル
ボン酸及び/又はその塩の全仕込み量の80〜97重量
%(不飽和モノカルボン酸換算)を供給し、ラジカル重
合開始剤の存在下反応させ、その後、未反応の上記不飽
和ジカルボン酸及び/又はその塩が残存する反応混合物
を少なくとも一つの管状反応器に連続的に移送し、該管
状反応器のうちの1以上の反応器の複数箇所及び/又は
2以上の反応器の1箇所から、上記不飽和モノカルボン
酸及び/又はその塩の仕込み量の残量を分割追加供給
し、且つ分割追加供給する上記不飽和モノカルボン酸及
び/又はその塩の滞留時間を10〜40分として反応さ
せることを特徴とするモノエチレン性不飽和ジカルボン
酸とモノエチレン性不飽和モノカルボン酸との部分中和
された共重合体の連続的製造方法。1. A first reactor having a stirrer, which uses monoethylenically unsaturated dicarboxylic acid and monoethylenically unsaturated monocarboxylic acid in which 55 to 75 mol% of the total amount of carboxyl groups is neutralized, The total amount of the unsaturated dicarboxylic acid and / or salt thereof charged and 80 to 97% by weight (in terms of unsaturated monocarboxylic acid) of the total amount of the unsaturated monocarboxylic acid and / or salt thereof are supplied, The reaction is carried out in the presence of a radical polymerization initiator, and then the reaction mixture in which the unreacted unsaturated dicarboxylic acid and / or salt thereof remains is continuously transferred to at least one tubular reactor, From a plurality of locations in one or more reactors and / or one location in two or more reactors, the residual amount of the charged amount of the unsaturated monocarboxylic acid and / or a salt thereof is separately and additionally supplied. Partially unsaturated of the monoethylenically unsaturated dicarboxylic acid and the monoethylenically unsaturated monocarboxylic acid, characterized in that the above unsaturated monocarboxylic acid and / or its salt are reacted at a residence time of 10 to 40 minutes. For continuous production of copolymers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02092595A JP3477883B2 (en) | 1995-01-13 | 1995-01-13 | Process for continuous production of partially neutralized copolymer of monoethylenically unsaturated dicarboxylic acid and monoethylenically unsaturated monocarboxylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02092595A JP3477883B2 (en) | 1995-01-13 | 1995-01-13 | Process for continuous production of partially neutralized copolymer of monoethylenically unsaturated dicarboxylic acid and monoethylenically unsaturated monocarboxylic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08193101A true JPH08193101A (en) | 1996-07-30 |
JP3477883B2 JP3477883B2 (en) | 2003-12-10 |
Family
ID=12040805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02092595A Expired - Fee Related JP3477883B2 (en) | 1995-01-13 | 1995-01-13 | Process for continuous production of partially neutralized copolymer of monoethylenically unsaturated dicarboxylic acid and monoethylenically unsaturated monocarboxylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3477883B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006199767A (en) * | 2005-01-19 | 2006-08-03 | Idemitsu Kosan Co Ltd | Method for producing radically polymerized polymer and microreactor |
-
1995
- 1995-01-13 JP JP02092595A patent/JP3477883B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006199767A (en) * | 2005-01-19 | 2006-08-03 | Idemitsu Kosan Co Ltd | Method for producing radically polymerized polymer and microreactor |
JP4603371B2 (en) * | 2005-01-19 | 2010-12-22 | 出光興産株式会社 | Radical polymer production method and fine chemical reactor |
Also Published As
Publication number | Publication date |
---|---|
JP3477883B2 (en) | 2003-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5966407A (en) | Continuous manufacture of copolymer from monoethylenically unsaturated mono- and dicarboxylic acid | |
JPH0641206A (en) | Method of performing high-temperature aqueous polymerizationof carboxylic acid monomer | |
CN101490119B (en) | Hydrophilic graft polymer | |
KR950032330A (en) | Copolymers based on ethylenically unsaturated dicarboxylic anhydrides, long chain olefins and fluoroolefins | |
JPS5966409A (en) | Manufacture of copolymer from monoethylenically unsaturate- dmono- and dicarboxylic acid | |
CN1086521A (en) | The polymer composition of chain combination | |
EP1489114A1 (en) | Process for producing water-soluble carboxylated polymer | |
JPS5884819A (en) | Preparation of crosslinked copolymer containing carboxyl group | |
US5629395A (en) | Process for producing cross-linked polymer containing carboxyl group | |
CN105294952B (en) | A kind of preparation method of polycarboxylate water-reducer | |
JP2720892B2 (en) | Solid phase modification of modified polyvinyl alcohol and polyvinyl alcohol by free radical grafting | |
JPH0314046B2 (en) | ||
JPH08193101A (en) | Continuous production of partly neutralized copolymer of monoethylenic dicarboxylic acid and monoethylenic monocarboxylic acid | |
JP2003002909A (en) | Method for continuous production of aqueous solution of polyacrylic acid salt | |
EP3548527B1 (en) | Solution polymerization in isopropanol and water | |
JP3843774B2 (en) | Continuous production method of water-soluble acrylic polymer | |
JPH11279210A (en) | Production of polyvinyl alcohol excellent in stability of viscosity at low temperature | |
JP4337594B2 (en) | Process for producing polycarboxylic acid macromonomer composition | |
JPH11246604A (en) | Production of water-soluble copolymer | |
EP0344353A1 (en) | Improved process for preparing interpolymers of ethylene, vinyl acetate, and reactive halogen-containing monomers | |
JPS6172662A (en) | Composition for cement | |
JP3033915B2 (en) | Method for producing polymer having thiol group | |
JPH04372605A (en) | Radical-curable polyvinyl alcohol derivative | |
CA1300801C (en) | Process for preparing interpolymers of ethylene, vinyl acetate, and reactive halogen-containing monomers | |
JPH10147620A (en) | Continuous production of copolymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |