JP2006199767A - Method for producing radically polymerized polymer and microreactor - Google Patents

Method for producing radically polymerized polymer and microreactor Download PDF

Info

Publication number
JP2006199767A
JP2006199767A JP2005011125A JP2005011125A JP2006199767A JP 2006199767 A JP2006199767 A JP 2006199767A JP 2005011125 A JP2005011125 A JP 2005011125A JP 2005011125 A JP2005011125 A JP 2005011125A JP 2006199767 A JP2006199767 A JP 2006199767A
Authority
JP
Japan
Prior art keywords
reaction
jacket
polymerization
radical
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005011125A
Other languages
Japanese (ja)
Other versions
JP4603371B2 (en
Inventor
Takeshi Iwasaki
猛 岩崎
Junichi Yoshida
潤一 吉田
Shinji Hasebe
伸治 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2005011125A priority Critical patent/JP4603371B2/en
Publication of JP2006199767A publication Critical patent/JP2006199767A/en
Application granted granted Critical
Publication of JP4603371B2 publication Critical patent/JP4603371B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently and smoothly producing a radically polymerized polymer of narrow molecular weight distribution in a short time by radical polymerization of a radically polymerizable monomer, and to provide a microreactor that is manufacturable easily. <P>SOLUTION: The method for producing the radically polymerized polymer comprises the following process: A radical polymerization initiator and a radically polymerizable monomer are introduced into reaction tubes each ≤2 mm in inner diameter with the sectional area enlarged stepwise in the reaction liquid flow direction and a polymerization reaction is conducted in a flow type in a homogeneous liquid state in the reaction tubes. The microreactor includes a jacket through which a temperature-controlling fluid can be made to flow and the plurality of reaction tubes arranged in parallel in the jacket each ≤2 mm in inner diameter with the sectional area enlarged stepwise in the reaction liquid flow direction. In this microreactor, by making the temperature-controlling fluid flow through the jacket, the reaction temperatures in the plurality of reaction tubes can be controlled. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ラジカル重合体の製造方法及び微細化学反応装置に関する。さらに詳しくは、本発明は、内径が2mm以下であって断面積が反応液流通方向に段階的に拡大している反応管中で、ラジカル重合性単量体の重合を流通形式により行うことにより、分子量分布の狭いラジカル重合体を短時間で効率よく円滑に製造する方法、及び容易に入手可能な部材を用いて、高度な加工技術を必要とせずに製作可能な微細化学反応装置に関するものである。   The present invention relates to a method for producing a radical polymer and a fine chemical reaction apparatus. More specifically, the present invention performs polymerization of a radical polymerizable monomer in a flow mode in a reaction tube having an inner diameter of 2 mm or less and a cross-sectional area gradually expanding in the flow direction of the reaction solution. , A method for efficiently and smoothly producing a radical polymer with a narrow molecular weight distribution in a short time, and a fine chemical reaction apparatus that can be manufactured without using advanced processing techniques using easily available members. is there.

最近、マイクロリアクターに対する関心が非常に高まってきている。このマイクロリアクターは、一般に内部構造が1μm〜1mm程度の微細なマイクロチャンネルの中で反応を行う装置を指し、化学産業に大きな変革をもたらす可能性を有することが期待されている。
上記マイクロリアクターは、有機合成面から、例えば、(1)微小量での合成が可能である、(2)単位体積(流量)当たりの表面積が大きい、(3)温度制御が極めて容易である、(4)界面での反応が効率よく起る、(5)時間、コスト、環境負荷の低減が図れる、(6)密封系での反応が可能であるので、毒性、危険性のある化合物が安全に合成できる、(7)小スケール、閉鎖系によるコンタミネーションの防御が可能である、(8)マイクロチャンネルに特有の層流の活用により、効率的な混合、生成物の分離、精製に適用可能である、などの特徴を有している。
Recently, interest in microreactors has increased greatly. This microreactor generally refers to a device that performs a reaction in a microchannel having an internal structure of about 1 μm to 1 mm, and is expected to have a great potential to change the chemical industry.
From the organic synthesis surface, the microreactor can, for example, (1) be synthesized in a minute amount, (2) have a large surface area per unit volume (flow rate), and (3) temperature control is extremely easy. (4) Efficient reaction at the interface, (5) Reduction of time, cost, and environmental load, (6) Reaction in a sealed system is possible, so toxic and dangerous compounds are safe (7) Contamination protection by small scale, closed system is possible. (8) Utilization of laminar flow peculiar to microchannel makes it applicable to efficient mixing, product separation and purification. It has the characteristics such as.

また、工業的応用面においては、潜在的に、(a)マイクロチャンネルの大きさを変えずに数を増やすことにより(ナンバーリングアップ)、生産量を増大させることが可能である(従来、実験室で得られた結果を工場に移管する場合に必要であった中間試製のためのステップが省略される。)ため、(b)低コストで生産を早期にスタートすることが可能となり、(c)実験結果を、そのまま素早く生産に移すことが可能となる。また、(d)工業生産のためのプラントが小さくてすむ、という利点も有している。
このようなマイクロリアクターを用いた化学反応の例としては、化学反応実施方法(例えば、特許文献1参照)、微細構造化反応システムを使用するアルドール類の製造(例えば、特許文献2参照)、静止型マイクロミキサー内でのニトロ化(例えば、特許文献3参照)、マイクロリアクターでのアリールホウ素及びアルキルホウ素化合物の製造法(例えば、特許文献4参照)などが開示されている。
In industrial applications, it is also possible to increase the production volume by (a) increasing the number without changing the size of the microchannel (numbering up) (conventional experiment). (This eliminates the intermediate trial steps required when transferring the results obtained in the laboratory to the factory.) (B) It is possible to start production early at low cost. ) It is possible to quickly transfer the experimental results to production. In addition, (d) there is an advantage that a plant for industrial production can be small.
Examples of the chemical reaction using such a microreactor include a method for performing a chemical reaction (for example, see Patent Document 1), production of aldols using a microstructured reaction system (for example, see Patent Document 2), stationary Nitration in a micro-mixer (for example, see Patent Document 3), a method for producing arylboron and alkylboron compounds in a microreactor (for example, see Patent Document 4), and the like are disclosed.

また、重合反応については、例えば直径1.27mmの流路内にて、層流条件下で、メタロセン触媒を用いた加圧系におけるエチレンの重合反応が報告されている(例えば、非特許文献1参照)。しかしながら、この反応はメタロセン触媒を用いる配位重合であり、本発明に係るラジカル重合とは根本的に異なる技術である。さらに、ラジカル重合性単量体と重合開始剤を、微細な流路を用いて混合するマイクロミキサーにより混合したのち、重合を行うことで、得られる重合体中の高分子量成分の生成が抑制され、管型重合反応器内の沈降物の形成が回避されるラジカル重合体の製造方法が開示されている(例えば、特許文献5参照)。しかしながら、この技術は、単量体と重合開始剤の混合を微細な空間内で行うもので、重合反応を行う反応器には、直径がcmオーダーの管型反応器が用いられている。
ラジカル重合は、極めて多くの単量体の重合が可能であり、多様な重合体の生産手段として、産業上広く用いられている重要な技術である。しかしながら、このラジカル重合においては、重合時に大きな反応熱が発生するため、反応方式がバッチ式であっても、連続式であっても、反応熱の除去のために、温和な反応条件でゆっくりと時間をかけて行われるのが常であり、生産効率が悪いという問題があった。また、これまでの重合方法では、反応熱のために、反応場における重合温度が不均一になりやすい上、連続式の場合には反応液は層流になりにくいため、部分的に滞留時間に差が生じ、その結果、得られる重合体は、種々の分子量をもつ重合体の混合物になりやすいという問題もあった。
As for the polymerization reaction, for example, an ethylene polymerization reaction in a pressurized system using a metallocene catalyst under a laminar flow condition in a flow channel having a diameter of 1.27 mm has been reported (for example, Non-Patent Document 1). reference). However, this reaction is a coordination polymerization using a metallocene catalyst, and is a radically different technique from the radical polymerization according to the present invention. Furthermore, the radical polymerizable monomer and the polymerization initiator are mixed by a micromixer that mixes them using a fine flow path, and then polymerization is performed to suppress the generation of high molecular weight components in the resulting polymer. A method for producing a radical polymer that avoids formation of a precipitate in a tubular polymerization reactor is disclosed (see, for example, Patent Document 5). However, in this technique, a monomer and a polymerization initiator are mixed in a fine space, and a tubular reactor having a diameter of the order of cm is used as a reactor for performing a polymerization reaction.
Radical polymerization is an important technique widely used in industry as a means for producing various polymers because it can polymerize an extremely large number of monomers. However, in this radical polymerization, large reaction heat is generated at the time of polymerization. Therefore, regardless of whether the reaction method is a batch type or a continuous type, the reaction heat is slowly removed under mild reaction conditions to remove the reaction heat. It is usually performed over time, and there is a problem that production efficiency is poor. In addition, in the conventional polymerization methods, the polymerization temperature in the reaction field tends to be non-uniform due to the heat of reaction, and in the case of a continuous type, the reaction solution is unlikely to become a laminar flow. There is also a problem that a difference occurs, and as a result, the obtained polymer tends to be a mixture of polymers having various molecular weights.

本発明者らは、ラジカル重合において、直径1、2mmの流路内にて、層流条件下で重合反応すると、高効率な温度制御ができ、分子量分布の狭い重合体が得られること、および流路の内径が小さいほど分子量分布が狭くなることを知見したが、流路の内径を小さくすることは、圧力損失の増大を招き、流路の閉塞等のリスクも生じるという問題がある。
また、微細化学反応装置(マイクロリアクター)の製作においては、一般に微細流路の作製にフォトリソグラフィー、エッチング、精密機械加工といった高度な加工技術が必要とされ、したがって、マイクロリアクターを用いた化学反応は、簡便に実施することが困難であった。
In the radical polymerization, the inventors of the present invention can perform high-efficiency temperature control and obtain a polymer with a narrow molecular weight distribution by performing a polymerization reaction under laminar flow conditions in a flow channel having a diameter of 1 mm and 2 mm, and It has been found that the smaller the inner diameter of the flow path, the narrower the molecular weight distribution. However, reducing the inner diameter of the flow path causes an increase in pressure loss and a risk of blockage of the flow path.
In the production of micro chemical reactors (microreactors), advanced processing techniques such as photolithography, etching, and precision machining are generally required for the production of microchannels. Therefore, chemical reactions using microreactors are not possible. It was difficult to carry out simply.

特表2001−521816号公報JP-T-2001-521816 特開2002−155007号公報JP 2002-155007 A 特表2003−506340号公報Special table 2003-506340 gazette 特開2003−128677号公報Japanese Patent Laid-Open No. 2003-128677 特表2002−512272号公報Japanese translation of PCT publication No. 2002-512272 「Anal.Chem.」、第74巻、第3112頁(2002年)“Anal. Chem.”, 74, 3112 (2002)

本発明は、このような状況下で、微細化学反応装置を用いたラジカル重合性単量体のラジカル重合において、分子量分布の狭いラジカル重合体を短時間で効率よく円滑に製造する方法、及び容易に入手可能な部材を用いて、高度な加工技術を必要とせずに製作可能な微細化学反応装置を提供することを目的とするものである。   Under such circumstances, the present invention provides a method for efficiently and smoothly producing a radical polymer having a narrow molecular weight distribution in a short time in radical polymerization of a radical polymerizable monomer using a fine chemical reactor, and an easy It is an object of the present invention to provide a fine chemical reaction apparatus that can be manufactured without using a high-level processing technique by using a member that can be obtained.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、リアクターとして、径がある値以下の微細反応管であって、断面積が反応液流通方向に段階的に拡大している反応管を用いることにより、熱交換の効率が極めて高く、温度制御が容易であると共に、流れが層流支配となり、滞留時間を厳密に制御することができるとともに、圧力損失の増大や流路の閉塞等のリスクを伴わずに、短時間で効率よく、所望の分子量の分布状態を有するラジカル重合体が得られること、及び温度制御流体を流通させることが可能なジャケット内に、複数の該微細反応管を並列に配置してなる装置が、微細化学反応装置としてその目的に適合し得ることを見出した。本発明はかかる知見に基づいて完成したものである。   As a result of intensive research to achieve the above object, the present inventors, as a reactor, are fine reaction tubes having a diameter equal to or less than a certain value, and the cross-sectional area is expanded stepwise in the reaction liquid flow direction. By using a reaction tube, the heat exchange efficiency is extremely high, temperature control is easy, the flow is dominated by laminar flow, the residence time can be strictly controlled, the pressure loss increases and the flow path In a jacket capable of obtaining a radical polymer having a distribution state of a desired molecular weight in a short time and without causing a risk of blockage of the water, and a jacket capable of circulating a temperature control fluid, It has been found that an apparatus in which fine reaction tubes are arranged in parallel can be adapted to its purpose as a fine chemical reaction apparatus. The present invention has been completed based on such findings.

すなわち、本発明は、
(1)ラジカル重合開始剤とラジカル重合性単量体とを、内径が2mm以下であって断面積が反応液流通方向に段階的に拡大している反応管に導入し、該反応管において均一液状状態で流通形式により重合反応を行うことを特徴とするラジカル重合体の製造方法、
(2)ラジカル重合開始剤とラジカル重合性単量体とを、反応管への導入前に混合し、該反応管に導入する上記(1)のラジカル重合体の製造方法、
(3)反応管の内径が1mm以下である上記(1)又は(2)のラジカル重合体の製造方法、
(4)温度制御流体を流通させることが可能なジャケットと、該ジャケット内に並列に配置された内径2mm以下であって断面積が反応液流通方向に段階的に拡大している複数の反応管を有し、前記ジャケットに温度制御流体を流通させることにより、該複数の反応管内における反応の温度を制御し得る微細化学反応装置、
(5)ジャケット部本体と反応管部分が着脱可能な構造を有する上記(4)の微細化学反応装置、
を提供するものである。
That is, the present invention
(1) A radical polymerization initiator and a radical polymerizable monomer are introduced into a reaction tube having an inner diameter of 2 mm or less and a cross-sectional area gradually expanding in the reaction solution flow direction. A method for producing a radical polymer, characterized in that a polymerization reaction is carried out in a liquid state by a flow mode;
(2) The method for producing a radical polymer according to (1) above, wherein the radical polymerization initiator and the radical polymerizable monomer are mixed before being introduced into the reaction tube and introduced into the reaction tube,
(3) The method for producing a radical polymer according to (1) or (2), wherein the inner diameter of the reaction tube is 1 mm or less,
(4) A jacket capable of circulating a temperature control fluid, and a plurality of reaction tubes which are arranged in parallel in the jacket and have an inner diameter of 2 mm or less and whose cross-sectional area gradually expands in the reaction liquid flowing direction. A fine chemical reaction apparatus capable of controlling the temperature of the reaction in the plurality of reaction tubes by circulating a temperature control fluid through the jacket,
(5) The fine chemical reaction device according to (4) above, wherein the jacket body and the reaction tube portion are detachable.
Is to provide.

本発明によれば、断面積が反応液流通方向に段階的に拡大している内径が2mm以下の微細反応管を用いて、ラジカル重合性単量体の重合を流通形式により行うので、反応量が大きく重合発熱が大きい反応初期に反応管の内径が小さいため熱交換の効率が極めて高く、精度のよい温度制御が容易であり、反応量が減少してゆく反応中期以降は反応管の断面積が段階的に拡大しているので、圧力損失の増大や流路の閉塞等のリスクを伴うことなく、分子量分布の狭いラジカル重合体を効率よく製造することができる。
また、本発明によれば、容易に入手可能な部材を用いて、高度な加工技術を必要とせずに製作可能な微細化学反応装置を提供することができる。
According to the present invention, the polymerization of the radical polymerizable monomer is carried out in a flow mode using a fine reaction tube having an inner diameter of 2 mm or less whose cross-sectional area gradually increases in the flow direction of the reaction solution. Since the inner diameter of the reaction tube is small at the beginning of the reaction with a large polymerization exotherm, the efficiency of heat exchange is extremely high, accurate temperature control is easy, and the cross-sectional area of the reaction tube is reduced after the middle of the reaction when the reaction volume decreases. Therefore, a radical polymer with a narrow molecular weight distribution can be efficiently produced without accompanying risks such as an increase in pressure loss and blockage of the flow path.
Further, according to the present invention, it is possible to provide a fine chemical reaction apparatus that can be manufactured using a member that can be easily obtained without requiring an advanced processing technique.

本発明のラジカル重合体の製造方法においては、リアクターとして、内径が2mm以下の微細反応管、好ましくは1mm以下、より好ましくは10〜500μmであって、その断面積が反応液流通方向に段階的に拡大しているマイクロリアクターが用いられる。このリアクターの長さについては特に制限はないが、通常0.01〜100m、好ましくは0.05〜50m、より好ましくは0.1〜10mの範囲である。また、反応管の断面積が反応液流通方向に段階的に拡大するとは、少なくとも断面積のより小さな始まり部分と断面積のより大きな終わり部分を有し、かつその途中において前の部分よりも小さな断面積となることがない反応管であることをいう。   In the method for producing a radical polymer of the present invention, a reactor is a fine reaction tube having an inner diameter of 2 mm or less, preferably 1 mm or less, more preferably 10 to 500 μm, and its cross-sectional area is stepwise in the reaction solution flow direction. A microreactor that is expanded to Although there is no restriction | limiting in particular about the length of this reactor, Usually, 0.01-100m, Preferably it is 0.05-50m, More preferably, it is the range of 0.1-10m. In addition, the fact that the cross-sectional area of the reaction tube gradually increases in the reaction liquid flow direction has at least a smaller starting portion of the cross-sectional area and a larger end portion of the cross-sectional area, and is smaller in the middle than the previous portion. A reaction tube that does not have a cross-sectional area.

本発明においては、前記微細反応管に、ラジカル重合開始剤とラジカル重合性単量体とを導入し、該反応管内において均一液状状態で流通形式により重合反応を行う。
原料のラジカル重合性単量体としては、ラジカル重合可能な単量体であればよく、特に制限されず、様々な単量体を用いることができる。このラジカル重合可能な単量体としては、例えばエチレン、プロピレン、イソブチレンなどのオレフィン類;アクリル酸、メタクリ酸などの不飽和モノカルボン酸類;マレイン酸、フマル酸、無水マレイン酸、イタコン酸などの不飽和ポリカルボン酸類及びその酸無水物類;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、アクリル酸ドデシル、アクリル酸2−ヒドロキシエチル、メタクリ酸メチル、メタクリ酸エチル、メタクリ酸ブチル、メタクリ酸2−エチルヘキシル、メタクリ酸ドデシル、メタクリ酸2−ヒドロキシエチルなどの(メタ)アクリル酸エステル類;アクリル酸ジメチルアミノエチル、メタクリ酸ジメチルアミノエチル、アクリル酸ジメチルアミノエチル塩酸塩、メタクリ酸ジメチルアミノエチル塩酸塩、アクリル酸ジメチルアミノエチルp−トルエンスルホン酸塩、メタクリル酸ジメチルアミノエチルp−トルエンスルホン酸塩などの(メタ)アクリル酸ジアルキルアミノアルキル及びその付加塩;アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、N,N−ジメチルアクリルアミド、アクリルアミド−2−メチルプロパンスルホン酸及びそのナトリウム塩などのアクリルアミド系単量体;スチレン、α−メチルスチレン、p−スチレンスルホン酸及びそのナトリウム塩、カリウム塩などのスチレン系単量体;その他アリルアミン及びその付加塩、酢酸ビニル、アクリロニトリル、メタクリロニトリル、N−ビニルピロリドン、さらにはフッ化ビニル、フッ化ビニリデン、テトラフルオロエチレンなどの含フッ素単量体等の油溶性又は水溶性の単量体を挙げることができる。これらの単量体は一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
In the present invention, a radical polymerization initiator and a radical polymerizable monomer are introduced into the fine reaction tube, and a polymerization reaction is carried out in a uniform liquid state in the reaction tube in a flow mode.
The raw material radical polymerizable monomer is not particularly limited as long as it is a radical polymerizable monomer, and various monomers can be used. Examples of the monomer capable of radical polymerization include olefins such as ethylene, propylene, and isobutylene; unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid; and unsaturated monomers such as maleic acid, fumaric acid, maleic anhydride, and itaconic acid. Saturated polycarboxylic acids and acid anhydrides; methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, 2-hydroxyethyl acrylate, methyl methacrylate, ethyl methacrylate, methacrylic acid (Meth) acrylic acid esters such as butyl, 2-ethylhexyl methacrylate, dodecyl methacrylate, 2-hydroxyethyl methacrylate; dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate hydrochloride, methacrylic acid The Dialkylaminoalkyl (meth) acrylates and addition salts thereof such as tilaminoethyl hydrochloride, dimethylaminoethyl acrylate p-toluenesulfonate, dimethylaminoethyl methacrylate p-toluenesulfonate; acrylamide, methacrylamide, N Acrylamide monomers such as methylolacrylamide, N, N-dimethylacrylamide, acrylamide-2-methylpropanesulfonic acid and its sodium salt; styrene, α-methylstyrene, p-styrenesulfonic acid and its sodium salt, potassium salt Styrenic monomers such as allylamine and addition salts thereof, vinyl acetate, acrylonitrile, methacrylonitrile, N-vinylpyrrolidone, further vinyl fluoride, vinylidene fluoride, tetrafluoroethylene And oil-soluble or water-soluble monomers such as fluorine-containing monomers. These monomers may be used individually by 1 type, and may be used in combination of 2 or more type.

本発明においては、微細反応管内において均一液状状態で重合反応を行うために、所望により重合溶媒を用いることができる。この重合溶媒は使用するラジカル重合性単量体の種類に応じて、水性溶媒や各種の有機溶媒の中から適宜選択して用いられる。水性溶媒としては、水、又は水及びそれと混和性のある有機溶剤(ギ酸、酢酸、プロピオン酸などの有機酸類、酢酸メチル、酢酸エチルなどのエステル類;アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトンなどのケトン類;メタノール、エタノール、プロパノールなどのアルコール類;ジメチルスルホキシド、ジメチルホルムアミドなど)との混合物などを挙げることができる。
一方、有機溶媒としては、前記の水との混和性有機溶剤;その他のエステル類、ケトン類、アルコール類;ジエチルエーテル、テトラヒドロフランなどのエーテル類;ヘキサン、シクロヘキサン、ヘプタン、オクタンなどの脂肪族・脂環式炭化水素類;ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類;塩化メチレン、ジクロロエタン、クロロホルム、四塩化炭素、クロロベンゼン、ジクロロベンゼンなどの塩素化炭化水素類等を挙げることができる。これらの有機溶剤は一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
In the present invention, a polymerization solvent can be used as desired in order to carry out the polymerization reaction in a uniform liquid state in the fine reaction tube. This polymerization solvent is appropriately selected from aqueous solvents and various organic solvents according to the type of radical polymerizable monomer used. As an aqueous solvent, water or water and an organic solvent miscible with it (organic acids such as formic acid, acetic acid and propionic acid, esters such as methyl acetate and ethyl acetate; acetone, methyl ethyl ketone, diethyl ketone and methyl isobutyl ketone) Ketones; alcohols such as methanol, ethanol and propanol; dimethyl sulfoxide, dimethylformamide and the like).
On the other hand, examples of the organic solvent include water-miscible organic solvents; other esters, ketones, alcohols; ethers such as diethyl ether and tetrahydrofuran; aliphatics and fats such as hexane, cyclohexane, heptane, and octane. Cyclic hydrocarbons; aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; chlorinated hydrocarbons such as methylene chloride, dichloroethane, chloroform, carbon tetrachloride, chlorobenzene and dichlorobenzene. These organic solvents may be used individually by 1 type, and may be used in combination of 2 or more types.

ラジカル重合開始剤としては、特に制限はなく、従来ラジカル重合において使用されている公知のラジカル重合開始剤の中から、原料のラジカル重合性単量体や重合溶媒の種類などに応じて適宣選択して用いることができる。このようなラジカル重合開始剤としては、例えば有機過酸化物、アゾ化合物、ジスルフィド化合物、レドックス系開始剤、過硫酸塩などが挙げられる。一般的には、重合溶媒が水性媒体である場合には、水溶性有機過酸化物、水溶性アゾ化合物、レドックス系開始剤、過硫酸塩などが好ましく用いられ、重合溶媒が有機溶媒である場合には、油溶性有機過酸化物及び油溶性アゾ化合物などが好ましく用いられる。
上記水溶性有機過酸化物の例としては、t−ブチルヒドロペルオキシド、クメンヒドロペルオキシド、ジイソプロピルベンゼンヒドロペルオキシド、p−メンタンヒドロペルオキシド、2,5−ジメチルヘキサン−2,5−ジヒドロペルオキシド、1,1,3,3−テトラメチルヒドロペルオキシドなどが挙げられる。また、水溶性アゾ化合物の例としては、2,2’−ジアミジニル−2,2’−アゾプロパン・一塩酸塩、2,2’−ジアミジニル−2,2’−アゾブタン・一塩酸塩、2,2’−ジアミジニル−2,2’−アゾペンタン・一塩酸塩、2,2’−アゾビス(2−メチル−4−ジエチルアミノ)ブチロニトリル・塩酸塩などが挙げられる。
The radical polymerization initiator is not particularly limited and is appropriately selected from known radical polymerization initiators conventionally used in radical polymerization according to the type of the radical polymerizable monomer or polymerization solvent used as a raw material. Can be used. Examples of such radical polymerization initiators include organic peroxides, azo compounds, disulfide compounds, redox initiators, persulfates, and the like. In general, when the polymerization solvent is an aqueous medium, water-soluble organic peroxides, water-soluble azo compounds, redox initiators, persulfates, and the like are preferably used, and the polymerization solvent is an organic solvent. For this, oil-soluble organic peroxides and oil-soluble azo compounds are preferably used.
Examples of the water-soluble organic peroxide include t-butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, p-menthane hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 1,1 , 3,3-tetramethyl hydroperoxide and the like. Examples of water-soluble azo compounds include 2,2′-diamidinyl-2,2′-azopropane monohydrochloride, 2,2′-diamidinyl-2,2′-azobutane monohydrochloride, 2,2 Examples include '-diamidinyl-2,2'-azopentane monohydrochloride and 2,2'-azobis (2-methyl-4-diethylamino) butyronitrile hydrochloride.

レドックス系開始剤としては、例えば過酸化水素と還元剤との組合わせなどを挙げることができる。この場合、還元剤としては、二価の鉄イオンや銅イオン、亜鉛イオン、コバルトイオン、バナジウムイオンなどの金属イオン、アスコルビン酸、還元糖などが用いられる。過硫酸塩としては、例えば過硫酸アンモニウム、過硫酸カリウムなどが挙げられる。
これらの水溶性ラジカル重合開始剤は一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
一方、油溶性有機過酸化物の例としては、ジベンゾイルペルオキシド、ジ−3,5,5−トリメチルヘキサノイルペルオキシド、ジラウロイルペルオキシドなどのジアシルペルオキシド類、ジイソプロピルペルオキシジカーボネート、ジ−sec−ブチルペルオキシジカーボネート、ジ−2−エチルヘキシルペルオキシジカーボネートなどのペルオキシジカーボネート類;t−ブチルペルオキシピバレート、t−ブチルペルオキシネオデカノエートなどのペルオキシエステル類;あるいはアセチルシクロヘキシルスルホニルペルオキシド、ジサクシニックアシッドペルオキシドなどが挙げられる。また、油溶性アゾ化合物の例としては、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−2−メチルブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)などが挙げられる。これらの油溶性ラジカル重合開始剤は一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
Examples of redox initiators include a combination of hydrogen peroxide and a reducing agent. In this case, as the reducing agent, divalent iron ions, copper ions, zinc ions, cobalt ions, vanadium ions and other metal ions, ascorbic acid, reducing sugars and the like are used. Examples of the persulfate include ammonium persulfate and potassium persulfate.
One of these water-soluble radical polymerization initiators may be used alone, or two or more thereof may be used in combination.
On the other hand, examples of oil-soluble organic peroxides include diacyl peroxides such as dibenzoyl peroxide, di-3,5,5-trimethylhexanoyl peroxide, and dilauroyl peroxide, diisopropyl peroxydicarbonate, and di-sec-butylperoxy. Peroxydicarbonates such as dicarbonate and di-2-ethylhexylperoxydicarbonate; peroxyesters such as t-butylperoxypivalate and t-butylperoxyneodecanoate; or acetylcyclohexylsulfonyl peroxide and disuccinic acid peroxide Is mentioned. Examples of oil-soluble azo compounds include 2,2′-azobisisobutyronitrile, 2,2′-azobis-2-methylbutyronitrile, 2,2′-azobis (2,4-dimethylvalero). Nitrile) and the like. These oil-soluble radical polymerization initiators may be used alone or in combination of two or more.

本発明においては、前記ラジカル重合開始剤の使用量は、用いる原料のラジカル重合性単量体やラジカル重合開始剤の種類、得られる重合体の所望分子量などに応じて適宜選定されるが、通常ラジカル重合性単量体100質量部に対し、0.0001〜0.5質量部、好ましくは0.001〜0.1質量部の範囲で選定される。
本発明においては、必要に応じ連鎖移動剤を用いることができる。該連鎖移動剤としては、重合反応を阻害せず、生成する重合体の分子量を調節し得るものであればよく、特に制限はないが、メルカプタン類やα−メチルスチレン二量体などが好ましく用いられる。ここで、メルカプタン類としては、例えば、1−ブタンチオール、2−ブタンチオール、1−オクタンチオール、1−ドデカンチオール、2−メチル−2−ヘプタンチオール、2−メチル−2−ウンデカンチオール、2−メチル−2−プロパンチオール、メルカプト酢酸とそのエステル、3−メルカプトプロピオン酸とそのエステル、2−メルカプトエタノールとそのエステルなどが挙げられる。これらの連鎖移動剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
In the present invention, the amount of the radical polymerization initiator used is appropriately selected according to the kind of the radical polymerizable monomer and radical polymerization initiator used as the raw material used, the desired molecular weight of the polymer to be obtained, etc. It is selected in the range of 0.0001 to 0.5 parts by mass, preferably 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the radical polymerizable monomer.
In the present invention, a chain transfer agent can be used as necessary. The chain transfer agent is not particularly limited as long as it does not inhibit the polymerization reaction and can adjust the molecular weight of the polymer to be produced. Mercaptans, α-methylstyrene dimer, etc. are preferably used. It is done. Here, as mercaptans, for example, 1-butanethiol, 2-butanethiol, 1-octanethiol, 1-dodecanethiol, 2-methyl-2-heptanethiol, 2-methyl-2-undecanethiol, 2- Examples thereof include methyl-2-propanethiol, mercaptoacetic acid and its ester, 3-mercaptopropionic acid and its ester, 2-mercaptoethanol and its ester. These chain transfer agents may be used individually by 1 type, and may be used in combination of 2 or more type.

本発明は、内径が2mm以下であって、その断面積が反応液流通方向に段階的に拡大している微細反応管を均一な一つの反応帯域としたラジカル重合を行うことを特徴とする。すなわち、反応量が大きく重合発熱が大きい反応初期は反応管の内径が小さいため、熱交換の効率が極めて高く、温度制御が容易であり、また、重合時の発熱反応に伴うホットスポット(局所加熱)ができにくく、全反応帯域の温度を均一に保持することができるので、分子量分布の狭いラジカル重合体を得ることができる。また、重合体量が増えて、反応液の粘度が大きい反応中期以降は反応管の断面積が段階的に拡大しているので、圧力損失の増大や流路の閉塞等のリスクを伴うことがない。
なお、ラジカル重合開始剤とラジカル重合性単量体の微細反応管への導入様式としては、ラジカル重合開始剤とラジカル重合性単量体とを、微細反応管への導入直前に混合し、該微細反応管に導入するのが好ましい。原料液として、ラジカル重合開始剤、ラジカル重合性単量体及び必要に応じて用いられる重合媒体や連鎖移動剤を、予め均質に混合して微細反応管に導入することもできるが、原料液中の単量体の一部が重合反応を起こして、重合体が生成することがあり、その結果、分子量分布においてブロードなピークが生ずることがある。
The present invention is characterized in that radical polymerization is performed using a fine reaction tube having an inner diameter of 2 mm or less and a cross-sectional area gradually expanding in the reaction solution flow direction as one uniform reaction zone. In other words, the reaction tube has a large reaction amount and a large polymerization exotherm, and the inner diameter of the reaction tube is small. Therefore, the efficiency of heat exchange is extremely high and temperature control is easy. ) And the temperature of the entire reaction zone can be kept uniform, so that a radical polymer having a narrow molecular weight distribution can be obtained. In addition, the cross-sectional area of the reaction tube gradually increases after the middle of the reaction when the amount of polymer increases and the viscosity of the reaction solution is large, which may involve risks such as increased pressure loss and blockage of the flow path. Absent.
As a mode of introduction of the radical polymerization initiator and the radical polymerizable monomer into the fine reaction tube, the radical polymerization initiator and the radical polymerizable monomer are mixed immediately before introduction into the fine reaction tube, It is preferable to introduce into a fine reaction tube. As a raw material liquid, a radical polymerization initiator, a radical polymerizable monomer, and a polymerization medium and a chain transfer agent used as necessary can be mixed in advance and introduced into a fine reaction tube. A part of the monomer may undergo a polymerization reaction to form a polymer, and as a result, a broad peak may occur in the molecular weight distribution.

このような本発明の方法を実施するための反応装置として、例えば図1に示す反応装置を用いることができる。反応装置10は、ジャケット1a内に入口2からフィードされた原料液を8本の流路に分岐させる分岐管3を収める第1反応器ユニット4aと、各ジャケット(1b,1c,1d)内に、内径が2mm以下で反応液流通方向に順次内径の大きい微細反応管(5b,5c,5d)を各8本並列に設置した構造の第2〜第4反応器ユニット(4b,4c,4d)と、ジャケット1e内に、流路を1本に束ねるとともに、冷却により重合を停止させ出口6に至る収束管7を収める第5反応器ユニット4eと、各反応管等を接続する8×4個のユニオンからなる並列化マイクロリアクターである。
そして、ラジカル重合開始剤、ラジカル重合性単量体及び必要に応じて用いられる重合媒体や連鎖移動剤は入口2から導入され、8本の流路に分岐されて、微細反応管5b,5c,5d内を通って重合反応を行い、重合液が収束されて出口6から排出される。一方、各ジャケット内を流れる温度制御流体(以下、熱媒体と称すことがある。)の温度は、ジャケット1b,1c,1dでは重合反応を行える高温に一定に制御され、ジャケット1a,1eでは、重合反応が生起しない/あるいは重合反応を停止させる低温に制御される。
As a reaction apparatus for carrying out such a method of the present invention, for example, the reaction apparatus shown in FIG. 1 can be used. The reactor 10 includes a first reactor unit 4a that houses a branch pipe 3 that branches the raw material liquid fed from the inlet 2 into the jacket 1a into eight channels, and each jacket (1b, 1c, 1d). The second to fourth reactor units (4b, 4c, 4d) having a structure in which eight fine reaction tubes (5b, 5c, 5d) having an inner diameter of 2 mm or less and sequentially increasing in the reaction solution flow direction are installed in parallel. In the jacket 1e, the flow path is bundled into one, and the fifth reactor unit 4e that accommodates the converging pipe 7 that stops polymerization by cooling and reaches the outlet 6 is connected to each reaction tube and the like 8 × 4 pieces It is a parallel microreactor consisting of unions.
Then, a radical polymerization initiator, a radical polymerizable monomer, and a polymerization medium and a chain transfer agent used as necessary are introduced from the inlet 2 and branched into eight flow paths, and the fine reaction tubes 5b, 5c, The polymerization reaction is performed through 5d, and the polymerization solution is converged and discharged from the outlet 6. On the other hand, the temperature of a temperature control fluid (hereinafter also referred to as a heat medium) flowing in each jacket is controlled to a high temperature at which the jackets 1b, 1c, and 1d can perform a polymerization reaction, and in the jackets 1a and 1e, It is controlled to a low temperature at which the polymerization reaction does not occur / or the polymerization reaction is stopped.

本発明はまた、温度制御流体を流通させることが可能なジャケットと、該ジャケット内に並列に配置された内径が2mm以下であって、その断面積が反応液流通方向に段階的に拡大している複数の微細反応管を有し、前記ジャケットに温度制御流体を流通させることにより、複数の微細反応管内における反応の温度を制御し得る微細化学反応装置を提供する。
このような微細化学反応装置としては、前記図1に示すような構造を有する反応装置を例示することができる。該微細化学反応装置は、フォトリソグラフィー、エッチング、精密機械加工といった高度な加工技術を要することなく、市販品として入手可能な内径2mm以下の円管を用いて容易に製作することができる。円管の材質としては、例えば各種の金属や合金、ガラス、プラスチックなどが用いられる。
また、本発明の微細化学反応装置におけるジャケットは、前記図1に示すように微細反応管の長さ方向に沿って複数に分割され、かつ分割されたそれぞれのジャケットに温度制御流体を独立して流通させることが可能な構造を有していてもよい。
さらに、本発明の微細化学反応装置においては、ジャケット本体と微細反応管部分が着脱可能な構造を有することが好ましい。これにより、微細反応管内部で詰まりなどを生じた際や、微細反応管の内径を変更する際に、微細反応管の交換が可能となる。
なお、本発明の微細化学反応装置において、微細反応管の管形状、配置、本数等は、本発明の効果を奏することができるものであれば特に制限されない。ジャケットの形状等も同様である。
The present invention also provides a jacket capable of circulating a temperature control fluid and an inner diameter arranged in parallel in the jacket of 2 mm or less, and its cross-sectional area is expanded stepwise in the reaction solution flow direction. There is provided a fine chemical reaction apparatus that has a plurality of fine reaction tubes and that can control the temperature of the reaction in the plurality of fine reaction tubes by circulating a temperature control fluid through the jacket.
An example of such a fine chemical reaction apparatus is a reaction apparatus having a structure as shown in FIG. The fine chemical reaction apparatus can be easily manufactured using a circular tube having an inner diameter of 2 mm or less, which is available as a commercial product, without requiring advanced processing techniques such as photolithography, etching, and precision machining. As the material of the circular tube, for example, various metals, alloys, glass, plastics, and the like are used.
Further, as shown in FIG. 1, the jacket in the fine chemical reaction apparatus of the present invention is divided into a plurality along the length direction of the fine reaction tube, and the temperature control fluid is independently supplied to each of the divided jackets. You may have the structure which can be distribute | circulated.
Furthermore, in the fine chemical reaction apparatus of the present invention, it is preferable to have a structure in which the jacket body and the fine reaction tube part can be attached and detached. This makes it possible to replace the fine reaction tube when clogging occurs inside the fine reaction tube or when the inner diameter of the fine reaction tube is changed.
In the fine chemical reaction apparatus of the present invention, the tube shape, arrangement, number, etc. of the fine reaction tubes are not particularly limited as long as the effects of the present invention can be obtained. The shape of the jacket is the same.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
比較例1
トルエン100ミリリットルに対して、2,2‘−アゾビスイソブチロニトリル1.15gを溶解し、ラジカル重合開始剤溶液を調製した。トルエンは、脱水グレードをアルゴンで30分以上バブリングしたものを用いた。アクリル酸ブチルは、1モル/リットル水酸化ナトリウム水溶液で3回、蒸留水で3回洗浄後、硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ過した後にアルゴンバブリングを30分以上行ったものを用いた。ラジカル重合開始剤溶液、アクリル酸ブチルをそれぞれ別々のシリンジポンプにアルゴン雰囲気下で充填し、それらをユニオンティーによって1:1の体積比で合流させたのちに、内径が1.76mmのステンレス製反応管に導入するようにした。反応管は、長さ1.3mで、始めの0.8mを恒温槽に浸して恒温槽の温度を100℃とし、残りの0.5mを氷浴に浸し、管の出口にメスシリンダーを置いて重合溶液を回収した。
シリンジポンプによりラジカル重合開始剤溶液とアクリル酸ブチルそれぞれを等量になるように反応管内に導入し、反応部での滞留時間が2分となる流速で反応液を流通させ、2.5分間で2.5mLの重合溶液を回収した。回収溶液から溶媒、および未反応のアクリル酸ブチルを留去し、アクリル酸ブチル重合体を含む0.82gの固形物を得た。得られた固形分の質量を、流通させたアクリル酸ブチルの質量(比重0.894g/mLで計算)と重合開始剤の質量の合計で割った数値を収率として算出したところ、74%であった。
数平均分子量(Mn)と分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)測定にて決定した。Shodex製GPCガラム LF−804を2本直列に配置し、40℃、展開溶媒にテトラヒドロフランを用いて、RI検出器にて市販のメタクリル酸メチル重合体を標準サンプルとしてキャリブレーションを行い、試料を測定、分析した。また、シリンジポンプの出口に圧力計を設置し、反応時の圧力(反応系の圧力損失)を測定した。結果を第1表に示す。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
Comparative Example 1
1.15 g of 2,2′-azobisisobutyronitrile was dissolved in 100 ml of toluene to prepare a radical polymerization initiator solution. Toluene used was a dehydrated grade bubbled with argon for 30 minutes or more. The butyl acrylate used was washed with 1 mol / liter sodium hydroxide aqueous solution three times and with distilled water three times, dried over sodium sulfate, filtered through sodium sulfate, and then subjected to argon bubbling for 30 minutes or more. A radical polymerization initiator solution and butyl acrylate were filled in separate syringe pumps in an argon atmosphere, and combined with a union tee at a volume ratio of 1: 1, and then a stainless steel reaction with an inner diameter of 1.76 mm. It was introduced into the tube. The reaction tube has a length of 1.3m, the first 0.8m is immersed in a thermostatic bath to bring the temperature of the thermostatic bath to 100 ° C, the remaining 0.5m is immersed in an ice bath, and a graduated cylinder is placed at the outlet of the tube. The polymerization solution was recovered.
The radical polymerization initiator solution and butyl acrylate are introduced into the reaction tube by syringe pumps in equal amounts, and the reaction solution is circulated at a flow rate of 2 minutes in the reaction part. 2.5 mL of the polymerization solution was recovered. The solvent and unreacted butyl acrylate were distilled off from the recovered solution to obtain 0.82 g of a solid containing a butyl acrylate polymer. When the mass obtained was divided by the sum of the mass of the butyl acrylate circulated (calculated with a specific gravity of 0.894 g / mL) and the mass of the polymerization initiator as a yield, it was 74%. there were.
Number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) were determined by gel permeation chromatography (GPC) measurement. Two GPC galam LF-804 made by Shodex are placed in series, calibration is performed using a commercially available methyl methacrylate polymer as a standard sample with an RI detector using tetrahydrofuran as a developing solvent at 40 ° C, and the sample is measured. ,analyzed. Moreover, the pressure gauge was installed in the exit of the syringe pump, and the pressure at the time of reaction (pressure loss of a reaction system) was measured. The results are shown in Table 1.

比較例2
比較例1において、反応部での滞留時間が3分となる流速で反応液を流通させ、4分間で2.6ミリリットルの重合溶液を回収した以外は、比較例1と同様に実施した。アクリル酸ブチル重合体を含む0.94gの固形物を得た。結果を第1表に示す。
Comparative Example 2
In Comparative Example 1, the same procedure as in Comparative Example 1 was conducted, except that the reaction solution was passed at a flow rate such that the residence time in the reaction part was 3 minutes, and 2.6 ml of the polymerization solution was recovered in 4 minutes. 0.94 g of a solid containing a butyl acrylate polymer was obtained. The results are shown in Table 1.

比較例3
比較例1において、内径が1.0mm、長さ3.0mのステンレス製反応管を用い、始めの2.5mを恒温槽に浸して恒温槽の温度を100℃とし、残りの0.5mを氷浴に浸し、反応部での滞留時間が2分となる流速で反応液を流通させ、5分間で4.9ミリリットルの重合溶液を回収した以外は、比較例1と同様に実施した。アクリル酸ブチル重合体を含む1.58gの固形物を得た。結果を第1表に示す。
Comparative Example 3
In Comparative Example 1, a stainless steel reaction tube having an inner diameter of 1.0 mm and a length of 3.0 m was used, the first 2.5 m was immersed in a thermostatic bath, the temperature of the thermostatic bath was set to 100 ° C., and the remaining 0.5 m was It was carried out in the same manner as in Comparative Example 1 except that the reaction solution was circulated at a flow rate such that the residence time in the reaction part was 2 minutes by dipping in an ice bath and 4.9 ml of the polymerization solution was recovered in 5 minutes. 1.58 g of a solid containing a butyl acrylate polymer was obtained. The results are shown in Table 1.

比較例4
比較例3において、反応部での滞留時間が3分となる流速で反応液を流通させ、8分間で5.2ミリリットルの重合溶液を回収した以外は、比較例3と同様に実施した。アクリル酸ブチル重合体を含む1.87gの固形物を得た。結果を第1表に示す。
Comparative Example 4
In Comparative Example 3, the same procedure was performed as in Comparative Example 3, except that the reaction solution was circulated at a flow rate such that the residence time in the reaction part was 3 minutes, and 5.2 ml of the polymerization solution was recovered in 8 minutes. 1.87 g of a solid containing a butyl acrylate polymer was obtained. The results are shown in Table 1.

比較例5
比較例1において、内径が0.5mm、長さ10.5mのステンレス製反応管を用い、始めの10mを恒温槽に浸して恒温槽の温度を100℃とし、残りの0.5mを氷浴に浸し、反応部での滞留時間が2分となる流速で反応液を流通させ、5分間で4.9ミリリットルの重合溶液を回収した以外は、比較例1と同様に実施した。アクリル酸ブチル重合体を含む1.81gの固形物を得た。結果を第1表に示す。
Comparative Example 5
In Comparative Example 1, a stainless steel reaction tube having an inner diameter of 0.5 mm and a length of 10.5 m was used, the first 10 m was immersed in a thermostatic bath, the temperature of the thermostatic bath was set to 100 ° C., and the remaining 0.5 m was ice bathed Was carried out in the same manner as Comparative Example 1 except that the reaction solution was circulated at a flow rate such that the residence time in the reaction part was 2 minutes, and 4.9 ml of the polymerization solution was recovered in 5 minutes. 1.81 g of a solid containing a butyl acrylate polymer was obtained. The results are shown in Table 1.

比較例6
比較例5において、反応部での滞留時間が3分となる流速で反応液を流通させ、8分間で5.2ミリリットルの重合溶液を回収した以外は、比較例5と同様に実施した。アクリル酸ブチル重合体を含む2.11gの固形物を得た。結果を第1表に示す。
Comparative Example 6
In Comparative Example 5, the same procedure was performed as in Comparative Example 5, except that the reaction solution was circulated at a flow rate such that the residence time in the reaction part was 3 minutes, and 5.2 ml of the polymerization solution was recovered in 8 minutes. 2.11 g of a solid containing butyl acrylate polymer was obtained. The results are shown in Table 1.

比較例7
比較例1において、内径が0.25mm、長さ10.5mのステンレス製反応管を用い、始めの10mを恒温槽に浸して恒温槽の温度を100℃とし、残りの0.5mを氷浴に浸し、反応部での滞留時間が2分となる流速で反応液を流通させ、8分間で2.0ミリリットルの重合溶液を回収した以外は、比較例1と同様に実施した。アクリル酸ブチル重合体を含む0.70gの固形物を得た。結果を第1表に示す。
Comparative Example 7
In Comparative Example 1, a stainless steel reaction tube having an inner diameter of 0.25 mm and a length of 10.5 m was used, the first 10 m was immersed in a thermostatic bath, the temperature of the thermostatic bath was set to 100 ° C., and the remaining 0.5 m was ice bathed Was carried out in the same manner as Comparative Example 1 except that the reaction solution was circulated at a flow rate such that the residence time in the reaction part was 2 minutes, and 2.0 ml of the polymerization solution was recovered in 8 minutes. 0.70 g of a solid containing a butyl acrylate polymer was obtained. The results are shown in Table 1.

比較例8
比較例7において、反応部での滞留時間が3分となる流速で反応液を流通させ、13分間で2.1ミリリットルの重合溶液を回収した以外は、比較例7と同様に実施した。アクリル酸ブチル重合体を含む0.78gの固形物を得た。結果を第1表に示す。
Comparative Example 8
In Comparative Example 7, the same procedure was performed as in Comparative Example 7, except that the reaction solution was circulated at a flow rate such that the residence time in the reaction part was 3 minutes, and 2.1 ml of the polymerization solution was recovered in 13 minutes. 0.78 g of a solid containing a butyl acrylate polymer was obtained. The results are shown in Table 1.

実施例1
比較例1において、内径0.25mm、長さ2mのステンレス製反応管、内径0.5mm、長さ2mのステンレス製反応管、内径1.0mm、長さ2.5mのステンレス製反応管を2個のユニオンによって順番に直列に接続し、内径0.25mm側からの6mを恒温槽に浸して恒温槽の温度を100℃とし、残りの内径1.0mm反応管の0.5mを氷浴に浸し、反応部での滞留時間が2分となる流速で反応液を流通させ、2分間で2.1ミリリットルの重合溶液を回収した以外は、比較例1と同様に実施した。アクリル酸ブチル重合体を含む0.69gの固形物を得た。結果を第1表に示す。
Example 1
In Comparative Example 1, two stainless steel reaction tubes having an inner diameter of 0.25 mm and a length of 2 m, stainless steel reaction tubes having an inner diameter of 0.5 mm and a length of 2 m, and stainless steel reaction tubes having an inner diameter of 1.0 mm and a length of 2.5 m are provided. Connected in series by a single union, 6m from the inner diameter of 0.25mm side is immersed in the thermostatic bath to set the temperature of the thermostatic bath to 100 ° C, and the remaining 0.5m of the inner diameter 1.0mm reaction tube is placed in an ice bath. It was carried out in the same manner as in Comparative Example 1 except that the reaction solution was circulated at a flow rate at which the residence time in the reaction part was 2 minutes, and 2.1 ml of the polymerization solution was recovered in 2 minutes. 0.69 g of a solid containing a butyl acrylate polymer was obtained. The results are shown in Table 1.

実施例2
実施例1において、反応部での滞留時間が3分となる流速で反応液を流通させ、3分間で2.1ミリリットルの重合溶液を回収した以外は、実施例1と同様に実施した。アクリル酸ブチル重合体を含む0.81gの固形物を得た。結果を第1表に示す。
Example 2
In Example 1, it carried out similarly to Example 1 except having distribute | circulated the reaction liquid at the flow rate used as the residence time in a reaction part for 3 minutes, and collect | recovered 2.1 milliliters of polymerization solutions in 3 minutes. 0.81 g of a solid containing a butyl acrylate polymer was obtained. The results are shown in Table 1.

実施例3
図1に示されるような、流路を8本並列化した反応器ユニットを用いて、ラジカル重合を実施した。反応器ユニットは、温度制御流体を流通させることが可能な5つのジャケットを、反応管等を接続する8×4個のユニオンによって連結してある。第1ジャケットでは1本の流路を8本に分岐させ、第2ジャケットから第4ジャケットでの反応管内においてラジカル重合を行う。第2ジャケットの反応管は内径0.25mm、長さ2m、第3ジャケットの反応管は内径0.5mm、長さ2m、第4ジャケットの反応管は内径1.0mm、長さ2mであり、実施例1,2の反応管の構成と同一である。最後のジャケットにおいて流路を1本に束ねるとともに、冷却により重合を停止させる。
比較例1と同様に調製した重合開始剤のトルエン溶液とアクリル酸ブチルをユニオンティーで1:1の体積比で合流させた後、上述の流路並列化反応器ユニットに導入し、重合を実施した。第1ジャケットは25℃、第2〜第4ジャケットは100℃、第5ジャケットは0℃の温度制御流体を流した。反応部(第2〜第4ジャケット)での滞留時間が2分になる流速で流通させ、出口につないだチューブから30秒で4.0mLの反応液を採取した。
回収溶液から溶媒、および未反応のアクリル酸ブチルを留去し、アクリル酸ブチル重合体を含む1.42gの固形物を得た。得られた固形分の質量を、流通させたアクリル酸ブチルの質量(比重0.894g/mLで計算)と重合開始剤の質量の合計で割った数値を収率として算出したところ、78%であった。比較例1と同様に分子量、分子量分布を測定した。結果を第1表に示す。
Example 3
Radical polymerization was carried out using a reactor unit in which eight flow paths were arranged in parallel as shown in FIG. In the reactor unit, five jackets capable of circulating a temperature control fluid are connected by 8 × 4 unions connecting reaction tubes and the like. In the first jacket, one flow path is branched into eight, and radical polymerization is performed in the reaction tube from the second jacket to the fourth jacket. The reaction tube of the second jacket has an inner diameter of 0.25 mm and a length of 2 m, the reaction tube of the third jacket has an inner diameter of 0.5 mm and a length of 2 m, and the reaction tube of the fourth jacket has an inner diameter of 1.0 mm and a length of 2 m. The configuration of the reaction tube in Examples 1 and 2 is the same. In the last jacket, the flow paths are bundled into one and the polymerization is stopped by cooling.
A toluene solution of a polymerization initiator prepared in the same manner as in Comparative Example 1 and butyl acrylate were combined with a union tee at a volume ratio of 1: 1, and then introduced into the above-described flow path paralleled reactor unit to perform polymerization. did. The first jacket was supplied with a temperature control fluid of 25 ° C, the second to fourth jackets were 100 ° C, and the fifth jacket was 0 ° C. The reaction part (second to fourth jacket) was allowed to flow at a flow rate of 2 minutes, and 4.0 mL of the reaction solution was collected from the tube connected to the outlet in 30 seconds.
The solvent and unreacted butyl acrylate were distilled off from the recovered solution to obtain 1.42 g of a solid containing a butyl acrylate polymer. The value obtained by dividing the mass of the obtained solid content by the sum of the mass of butyl acrylate circulated (calculated by a specific gravity of 0.894 g / mL) and the mass of the polymerization initiator was calculated as 78%. there were. Similar to Comparative Example 1, molecular weight and molecular weight distribution were measured. The results are shown in Table 1.

実施例4
実施例3において、反応部での滞留時間が3分となる流速で反応液を流通させ、1分間で5.4ミリリットルの重合溶液を回収した以外は、実施例3と同様に実施した。アクリル酸ブチル重合体を含む2.06gの固形物を得た。結果を第1表に示す。
Example 4
In Example 3, the same procedure as in Example 3 was performed except that the reaction solution was circulated at a flow rate such that the residence time in the reaction part was 3 minutes, and 5.4 ml of the polymerization solution was recovered in 1 minute. 2.06 g of a solid containing a butyl acrylate polymer was obtained. The results are shown in Table 1.

Figure 2006199767
Figure 2006199767

第1表から明らかなように、反応管の内径を小さくするほど分子量分布の小さい重合体を得ることができるが、圧力損失は増大し、異物の混入等による閉塞のリスクも高まると考えられる。これに対して実施例1,2では、圧力損失の増大を抑えたまま、分子量分布の小さい重合体を得ることができていることが明らかである。
また、流路を8本並列化して反応管の体積を実施例1,2の8倍に拡大した実施例3,4は、実施例1,2と同等の収率、分子量、分子量分布が得られており、反応成績を変化させることなく、生産性の向上が可能であることを示している。
As is apparent from Table 1, a polymer having a smaller molecular weight distribution can be obtained as the inner diameter of the reaction tube is reduced. However, it is considered that the pressure loss increases and the risk of clogging due to contamination by foreign substances increases. On the other hand, in Examples 1 and 2, it is apparent that a polymer having a small molecular weight distribution can be obtained while suppressing an increase in pressure loss.
Further, in Examples 3 and 4, in which eight flow paths are arranged in parallel and the volume of the reaction tube is expanded to eight times that of Examples 1 and 2, yields, molecular weights, and molecular weight distributions equivalent to those in Examples 1 and 2 are obtained. This indicates that productivity can be improved without changing the reaction results.

本発明のラジカル重合体の製造方法によれば、内径が2mm以下であって断面積が反応液流通方向に段階的に拡大している微細反応管を用い、ラジカル重合性単量体の重合を流通形式により行い、かつ重合温度を所定の温度に精密に制御することにより、分子量分布の狭いラジカル重合体を短時間で効率よく製造することができる。
また、本発明によれば、容易に入手可能な部材を用いて、高度な加工技術を必要とせずに製作可能な微細化学反応装置を提供することができる。
According to the method for producing a radical polymer of the present invention, polymerization of a radical polymerizable monomer is carried out using a fine reaction tube having an inner diameter of 2 mm or less and a cross-sectional area gradually expanding in the reaction liquid flow direction. A radical polymer having a narrow molecular weight distribution can be efficiently produced in a short time by carrying out the flow system and precisely controlling the polymerization temperature to a predetermined temperature.
Further, according to the present invention, it is possible to provide a fine chemical reaction apparatus that can be manufactured using a member that can be easily obtained without requiring an advanced processing technique.

本発明の方法を実施するための反応装置の一例の概略断面図である。It is a schematic sectional drawing of an example of the reaction apparatus for enforcing the method of this invention.

符号の説明Explanation of symbols

1a、1b、1c、1d、1e ジャケット
2 原料液の入口
3 原料液の分岐管
4a、4b、4c、4d、4e 反応器ユニット
5b、5c、5d 微細反応管
6 重合液の出口
7 重合液の収束管
10 反応装置

1a, 1b, 1c, 1d, 1e Jacket 2 Inlet for raw material liquid 3 Branch pipe for raw material liquid 4a, 4b, 4c, 4d, 4e Reactor unit 5b, 5c, 5d Fine reaction tube 6 Outlet for polymerization liquid 7 Converging tube 10 Reactor

Claims (5)

ラジカル重合開始剤とラジカル重合性単量体とを、内径が2mm以下であって断面積が反応液流通方向に段階的に拡大している反応管に導入し、該反応管において均一液状状態で流通形式により重合反応を行うことを特徴とするラジカル重合体の製造方法。   A radical polymerization initiator and a radical polymerizable monomer are introduced into a reaction tube having an inner diameter of 2 mm or less and a cross-sectional area gradually expanding in the direction of flow of the reaction solution. A method for producing a radical polymer, wherein a polymerization reaction is carried out in a flow form. ラジカル重合開始剤とラジカル重合性単量体とを、反応管への導入前に混合し、該反応管に導入する請求項1記載のラジカル重合体の製造方法。   The method for producing a radical polymer according to claim 1, wherein the radical polymerization initiator and the radical polymerizable monomer are mixed before being introduced into the reaction tube and introduced into the reaction tube. 反応管の内径が1mm以下である請求項1又は2記載のラジカル重合体の製造方法。   The method for producing a radical polymer according to claim 1 or 2, wherein the inner diameter of the reaction tube is 1 mm or less. 温度制御流体を流通させることが可能なジャケットと、該ジャケット内に並列に配置された内径2mm以下であって断面積が反応液流通方向に段階的に拡大している複数の反応管を有し、前記ジャケットに温度制御流体を流通させることにより、該複数の反応管内における反応の温度を制御し得る微細化学反応装置。   A jacket capable of circulating a temperature control fluid, and a plurality of reaction tubes which are arranged in parallel in the jacket and have an inner diameter of 2 mm or less and whose cross-sectional area gradually expands in the reaction liquid flowing direction A fine chemical reaction apparatus capable of controlling the temperature of the reaction in the plurality of reaction tubes by circulating a temperature control fluid through the jacket. ジャケット部本体と反応管部分が着脱可能な構造を有する請求項4記載の微細化学反応装置。

The fine chemical reaction device according to claim 4, wherein the jacket main body and the reaction tube portion are detachable.

JP2005011125A 2005-01-19 2005-01-19 Radical polymer production method and fine chemical reactor Expired - Fee Related JP4603371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005011125A JP4603371B2 (en) 2005-01-19 2005-01-19 Radical polymer production method and fine chemical reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005011125A JP4603371B2 (en) 2005-01-19 2005-01-19 Radical polymer production method and fine chemical reactor

Publications (2)

Publication Number Publication Date
JP2006199767A true JP2006199767A (en) 2006-08-03
JP4603371B2 JP4603371B2 (en) 2010-12-22

Family

ID=36958064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005011125A Expired - Fee Related JP4603371B2 (en) 2005-01-19 2005-01-19 Radical polymer production method and fine chemical reactor

Country Status (1)

Country Link
JP (1) JP4603371B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215359A (en) * 2008-03-07 2009-09-24 Mitsubishi Rayon Co Ltd Method for producing polymer
JP2011012106A (en) * 2009-06-30 2011-01-20 Dic Corp Method for producing radically polymerized polymer
JP2011519990A (en) * 2008-05-02 2011-07-14 ビーエーエスエフ ソシエタス・ヨーロピア Method and apparatus for continuously producing polymers by radical polymerization
EP2570180A1 (en) 2011-09-15 2013-03-20 Bayer MaterialScience AG Method for a continuous radical polymerization using microreactors
JP2015127425A (en) * 2007-08-21 2015-07-09 国立大学法人京都大学 METHOD FOR PRODUCING POLYMER HAVING Mw/Mn OF 1.25 OR LOWER
JP2016013543A (en) * 2014-06-12 2016-01-28 横浜理化株式会社 Microreactor module
WO2016031752A1 (en) * 2014-08-29 2016-03-03 国立研究開発法人海洋研究開発機構 Radical polymerization method and polymerization reaction apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193101A (en) * 1995-01-13 1996-07-30 Toagosei Co Ltd Continuous production of partly neutralized copolymer of monoethylenic dicarboxylic acid and monoethylenic monocarboxylic acid
JP2002512272A (en) * 1998-04-17 2002-04-23 シーメンス・アクシヴァ・ゲーエムベーハー・ウント・コンパニー・カーゲー Method and apparatus for continuous production of polymer
WO2005010055A1 (en) * 2003-07-25 2005-02-03 Idemitsu Kosan Co., Ltd. Process for producing radical polymer and microapparatus for chemical reaction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193101A (en) * 1995-01-13 1996-07-30 Toagosei Co Ltd Continuous production of partly neutralized copolymer of monoethylenic dicarboxylic acid and monoethylenic monocarboxylic acid
JP2002512272A (en) * 1998-04-17 2002-04-23 シーメンス・アクシヴァ・ゲーエムベーハー・ウント・コンパニー・カーゲー Method and apparatus for continuous production of polymer
WO2005010055A1 (en) * 2003-07-25 2005-02-03 Idemitsu Kosan Co., Ltd. Process for producing radical polymer and microapparatus for chemical reaction

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127425A (en) * 2007-08-21 2015-07-09 国立大学法人京都大学 METHOD FOR PRODUCING POLYMER HAVING Mw/Mn OF 1.25 OR LOWER
JP2009215359A (en) * 2008-03-07 2009-09-24 Mitsubishi Rayon Co Ltd Method for producing polymer
JP2011519990A (en) * 2008-05-02 2011-07-14 ビーエーエスエフ ソシエタス・ヨーロピア Method and apparatus for continuously producing polymers by radical polymerization
JP2011012106A (en) * 2009-06-30 2011-01-20 Dic Corp Method for producing radically polymerized polymer
EP2570180A1 (en) 2011-09-15 2013-03-20 Bayer MaterialScience AG Method for a continuous radical polymerization using microreactors
JP2016013543A (en) * 2014-06-12 2016-01-28 横浜理化株式会社 Microreactor module
WO2016031752A1 (en) * 2014-08-29 2016-03-03 国立研究開発法人海洋研究開発機構 Radical polymerization method and polymerization reaction apparatus
JPWO2016031752A1 (en) * 2014-08-29 2017-06-15 国立研究開発法人海洋研究開発機構 Radical polymerization method and polymerization reactor
US10442873B2 (en) 2014-08-29 2019-10-15 Japan Agency For Marine-Earth Science And Technology Radical polymerization method and polymerization reaction apparatus

Also Published As

Publication number Publication date
JP4603371B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
JP4603371B2 (en) Radical polymer production method and fine chemical reactor
Zaquen et al. Polymer synthesis in continuous flow reactors
US7465771B2 (en) Process for producing radical polymer and microapparatus for chemical reaction
Junkers et al. Continuous photoflow synthesis of precision polymers
JP5693598B2 (en) Method for producing aqueous polyacrylic acid solution
Parida et al. Coil flow inversion as a route to control polymerization in microreactors
TWI504615B (en) Manufacturing device and manufacturing method of methacrylic polymer
EP3164422A1 (en) Synthesis of an acrylic polymer in flow reactor
Baeten et al. RAFT multiblock reactor telescoping: from monomers to tetrablock copolymers in a continuous multistage reactor cascade
US20150057419A1 (en) Free radical and controlled radical polymerization processes using azide radical initiators
US20180304227A1 (en) Synthesis of organic peroxydes using an oscillatory flow mixing reactor
Wang et al. Continuous flow photo-RAFT and light-PISA
Li et al. A surfactant-free emulsion RAFT polymerization of methyl methacrylate in a continuous tubular reactor
CN109651539B (en) Micro-reaction system for producing polyvinyl chloride and polyvinyl chloride production method based on micro-reaction system
TW202019975A (en) Manufacturing method of polymer
Railian et al. Photo-induced copper-mediated acrylate polymerization in continuous-flow reactors
JPH11240904A (en) Continuous production of polymer
JP2012107163A (en) Method for producing radical copolymer, and continuous microreactor used therefor
JP5541481B2 (en) Method for producing radical polymer
JP2008001771A (en) Method for producing polymer by cationic polymerization
Okubo et al. Precise control of polymer particle properties using droplets in the microchannel
JP5199589B2 (en) Continuous production method of water-soluble polymer
Parida et al. Atom transfer radical polymerization in continuous microflow: effect of process parameters
EP3187513B1 (en) Radical polymerization method and polymerization reaction apparatus
JP2008214373A (en) Apparatus for producing water-soluble polymer and method for continuously producing water-soluble polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees