JPH08191172A - Light-emitting element having minute optical element and minute optical element - Google Patents

Light-emitting element having minute optical element and minute optical element

Info

Publication number
JPH08191172A
JPH08191172A JP329095A JP329095A JPH08191172A JP H08191172 A JPH08191172 A JP H08191172A JP 329095 A JP329095 A JP 329095A JP 329095 A JP329095 A JP 329095A JP H08191172 A JPH08191172 A JP H08191172A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
optical element
light
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP329095A
Other languages
Japanese (ja)
Inventor
Toshimichi Nasukawa
利通 名須川
Kazuhiro Umeki
和博 梅木
Masanori Satou
昌仙 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Optical Industries Co Ltd
Original Assignee
Ricoh Optical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Optical Industries Co Ltd filed Critical Ricoh Optical Industries Co Ltd
Priority to JP329095A priority Critical patent/JPH08191172A/en
Publication of JPH08191172A publication Critical patent/JPH08191172A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PURPOSE: To increase the freedom of selection of the material for a minute optical element, by fixing a minute optical element having one or two light- condensing refracting surface on the light emitting end surface of a light- emitting element, to the optical axis in the state of alignment to the optical axis. CONSTITUTION: A light-emitting element 100 is fixed on a heat sink 101 for heat dissipation, by soldering the N-side electrode part of the light emitting element 100. A minute optical element 107 is made to abut against the light- emitting edge 100' of the light emitting-element 100. In this state, the light- emitting element 100 is turned on. The minute optical element 107 is displaced along the light-emitting edge 100'. Optical axis alignment is performed with 'an automatic optical axis adjusting machine'. By simultaneous three-point spot irradiation of laser, the minute optical element 107 is fixed to the light- emitting element 100 with a metallized film 106. The minute optical element 107 is constituted of material excellent in environmental protection, and fixed to the light-emitting element 100 in the state of optical axis alignment. Thereby 'a light-emitting element having a minute optical element' can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、発光素子から放射さ
れる発散性の光を有効に集光させる光学機能を持つ微小
光学素子を発光素子に一体化してなる、微小光学素子付
き発光素子および微小光学素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting element with a micro optical element, which is formed by integrating a micro optical element having an optical function for effectively converging divergent light emitted from the light emitting element into a light emitting element. It relates to a micro optical element.

【0002】[0002]

【従来の技術】LDやLED等の発光素子は、光ファイ
バーによる光信号伝達における信号源として利用され、
また光走査装置における光源として使用されている。
2. Description of the Related Art Light emitting devices such as LDs and LEDs are used as signal sources in optical signal transmission through optical fibers,
It is also used as a light source in an optical scanning device.

【0003】これら発光素子から放射される光は一般に
発散性であり、例えば、光ファイバーの端面にカップリ
ングさせたり、光走査用の光束とするためには、上記発
散性の光束を集光光束や平行光束に変換する必要があ
る。これは、基本的には、光学レンズを用いて行えば良
いが、例えば光ファイバーの端面に光を集光させるため
のカップリングレンズとして通常の光学レンズは大きす
ぎる。
The light emitted from these light emitting elements is generally divergent. For example, in order to couple it to the end face of an optical fiber or to make it a light beam for optical scanning, the divergent light beam is a condensed light beam or a condensed light beam. It is necessary to convert to parallel light flux. This can be basically done by using an optical lens, but an ordinary optical lens is too large as a coupling lens for condensing light on the end face of an optical fiber, for example.

【0004】このような問題に鑑み、集光機能を持つ微
小な光学素子を発光素子と一体に形成した「微小光学素
子付き発光素子」が意図されている。
In view of such a problem, a "light emitting element with a micro optical element" in which a micro optical element having a light collecting function is integrally formed with a light emitting element is intended.

【0005】微小光学素子を発光素子と一体化する方法
としては、「発光素子の発光端面部上にフォトレジスト
膜を形成し、このフォトレジスト膜にフォトリソグラフ
ィ−法により微小光学素子に対応するパタ−ンを形成
し、形成されたパターンを熱処理して凸曲面に変形さ
せ、この凸曲面をそのまま屈折面とする」方法、あるい
は、「発光素子の発光端面部上に別の材料層を形成し、
その上にさらにフォトレジスト膜を形成し、このフォト
レジスト膜に上記と同様の方法で凸曲面を形成し、この
凸曲面の形状をエッチングにより上記別の材料の層に彫
り写して屈折面とする」方法が提案されている。
As a method of integrating a micro optical element with a light emitting element, "a photoresist film is formed on a light emitting end face portion of the light emitting element, and a pattern corresponding to the micro optical element is formed on the photoresist film by photolithography. Form a pattern and heat the formed pattern to transform it into a convex curved surface, and use this convex curved surface as it is as a refracting surface, or by forming another material layer on the light emitting end face of the light emitting element. ,
A photoresist film is further formed thereon, a convex curved surface is formed on this photoresist film by the same method as described above, and the shape of the convex curved surface is engraved on the layer of another material by etching to form a refracting surface. A method has been proposed.

【0006】しかし上記2方法のうち前者は、フォトレ
ジスト材料自体でレンズ(微小光学素子)を構成してい
るため耐環境性に劣り、フォトレジストにより形成可能
な凸曲面の大きさ(径)や形状が限られる等の問題の
他、レジスト材料は着色しているものが多いため、発光
素子の使用波長が制限されるという問題を有する。
However, the former of the above two methods is inferior in environmental resistance because the lens (micro-optical element) is composed of the photoresist material itself, and the size (diameter) of the convex curved surface that can be formed by the photoresist and In addition to the problem that the shape is limited, since many resist materials are colored, there is a problem that the usable wavelength of the light emitting element is limited.

【0007】また、後者の方法は、発光端面部上に別の
材料層を形成するのに時間や手間が掛かる他、形成され
た屈折面と発光素子の光軸との軸合わせのバラツキが大
きいという問題がある。
Further, in the latter method, it takes time and labor to form another material layer on the light emitting end face portion, and there is a large variation in the alignment between the formed refracting surface and the optical axis of the light emitting element. There is a problem.

【0008】また、従来、発光素子からの発散性の光を
光ファイバー端面にカップリングする方法として、発光
素子から出射された光を、1個または2個のボ−ルレン
ズ、もしくは非球面ガラスプレスレンズを用いて光ファ
イバ−端面に集光することが行われているが、これら光
学素子相互の光軸合わせに時間がかかる、コストが高
い、スペ−スが大きい等の問題があった。
Further, conventionally, as a method of coupling the divergent light from the light emitting element to the end face of the optical fiber, the light emitted from the light emitting element is provided with one or two ball lenses or an aspherical glass press lens. However, there are problems that it takes time to align the optical axes of these optical elements, the cost is high, and the space is large.

【0009】[0009]

【発明が解決しようとする課題】この発明は上述した事
情に鑑みてなされたものであって、新規な微小光学素子
付き発光素子の提供を目的とする(請求項1〜9)。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to provide a novel light emitting device with a micro optical element (claims 1 to 9).

【0010】この発明の別の目的は、上記微小光学素子
付き発光素子に用いる微小光学素子の提供に在る(請求
項10)。
Another object of the present invention is to provide a micro optical element used for the light emitting element with the micro optical element (claim 10).

【0011】[0011]

【課題を解決するための手段】この発明の「微小光学素
子付き発光素子」は、発光素子の発光端面部に微小光学
素子を、発光素子に対して光軸合わせした状態で、取り
付けて構成される(請求項1)。
The "light-emitting element with a micro-optical element" of the present invention is constructed by attaching a micro-optical element to the light-emitting end face of the light-emitting element in a state where the optical axis is aligned with the light-emitting element. (Claim 1).

【0012】「発光素子」は、LD(半導体レーザー)
やLED(発光ダイオード)等の、「端面発光型発光素
子」であり、使用波長等に対する制限は特にない。「発
光端面部」は発光素子において「光が放射される部分を
含む端面」である。
The "light emitting element" is an LD (semiconductor laser)
It is an “edge emitting type light emitting element” such as a light emitting diode (LED) or an LED (light emitting diode), and there is no particular limitation on the wavelength used. The “light emitting end surface portion” is an “end surface including a portion from which light is emitted” in the light emitting element.

【0013】「微小光学素子」は、発光素子から放射さ
れる発散性の光束に正のパワーを作用させる(発散性を
弱める場合、平行光束化する場合、集光性光束にする場
合を含む)もので、「集光性の屈折面」を1〜2面有す
る。
The "micro-optical element" applies a positive power to the divergent light beam emitted from the light emitting element (including a case where the divergence is weakened, a case where the light beam is made into a parallel light beam, and a case where the light beam is made into a converging light beam) It has one or two "condensing refraction surfaces".

【0014】微小光学素子は「発光素子の光軸に光軸合
わせした状態」で取付けられるが、これは、微小光学素
子の光軸を、発光素子の光軸、即ち「発光素子から放射
される発散性の光束の強度分布における最大強度軸」に
合致させた状態である。
The micro optical element is attached in a state "aligned with the optical axis of the light emitting element". This is because the optical axis of the micro optical element is the optical axis of the light emitting element, that is, "the light is emitted from the light emitting element. This is a state in which the maximum intensity axis in the intensity distribution of the divergent light flux is matched.

【0015】上記微小光学素子における一方の面は発光
素子からの光が入射する入射面で、他方の面は射出面で
ある。これら2面は「何れも集光性の屈折面」でも良い
し、メニスカスレンズ形状のように「一方の面が発散性
の屈折面で、他方の面が集光性の屈折面」でもよく、
「一方の面が集光性の屈折面で他方の面が平面」であっ
てもよい。
One surface of the micro optical element is an incident surface on which light from the light emitting element is incident, and the other surface is an exit surface. These two surfaces may be “condensing refracting surfaces”, or “one surface is a diverging refracting surface and the other surface is a converging refracting surface” like a meniscus lens shape.
“One surface may be a refracting surface having a light-collecting property and the other surface may be a flat surface”.

【0016】この最後の場合において「微小光学素子の
発光素子側の面が平面で、射出側の面が集光性の屈折面
である」ようにすることができる(請求項2)。
In the last case, the surface of the micro optical element on the light emitting element side is a flat surface, and the surface on the emission side is a condensing refracting surface (claim 2).

【0017】屈折面の形状は球面に限らず、非球面、放
物面等を利用できる。
The shape of the refracting surface is not limited to a spherical surface, and an aspherical surface, a parabolic surface or the like can be used.

【0018】発光素子の光軸に光軸合わせされた状態で
取り付けられる微小光学素子の「取付け状態」として
は、「微小光学素子の入射面と発光素子の発光端面部と
が直接接する」ようにしてもよいし(請求項3)、「微
小光学素子の入射面と発光素子の発光端面部とを僅かに
離す」ようにしてもよい(請求項4)。
The "mounting state" of the micro optical element which is mounted in a state where the optical axis of the light emitting element is aligned with the optical axis of the light emitting element is that "the incident surface of the micro optical element is in direct contact with the light emitting end face of the light emitting element". Alternatively, it may be configured such that “the incident surface of the minute optical element and the light emitting end face portion of the light emitting element are slightly separated from each other” (claim 4).

【0019】発光端面部と入射面とが「直接接する」状
態は、発光素子の発光端面部の光学軸上の点に微小光学
素子の光軸上の面が接触する状態である。「僅かに離
し」た状態は、光軸を合わせながら、発光素子の発光端
面部と微小光学素子の入射面とをアライメントすること
を意味し、アライメント量は光学設計で理論的に決まる
決まる物理的な量であり、数μmから数百μmまで光学
設計により決定される。
The state in which the light emitting end face portion and the incident surface are "in direct contact" is a state in which a point on the optical axis of the micro optical element is in contact with a point on the optical axis of the light emitting end face portion of the light emitting element. The "slightly separated" state means that the light emitting end face of the light emitting element and the incident surface of the micro optical element are aligned while aligning the optical axes, and the alignment amount is a physical determination theoretically determined by optical design. And is determined by optical design from several μm to several hundred μm.

【0020】微小光学素子は、その「光線有効径外」
に、「入射面高さ以上の高さの凸部」を光学的距離決め
用に有することができる(請求項5)。この場合の「入
射面高さ」は、入射面が平面の場合には「その平面の位
置」、入射面が凹面の場合には「その周辺の基準平面部
の位置」であり、入射面が凸面の場合には「その周辺部
の基準平面部から屈折面頂点までの高さ」で、所謂「レ
ンズ高さ」である。「光学的距離」とは、上記「僅かに
離した」状態のアライメント量のことで、光軸上におけ
る入射面位置と発光素子の発光面の距離である。
The minute optical element has the "outside effective diameter of light beam".
In addition, a "convex portion having a height equal to or higher than the incident surface height" can be provided for determining the optical distance (claim 5). The "incident surface height" in this case is "the position of the plane" when the incident surface is a flat surface, and "the position of the reference plane portion around it" when the incident surface is a concave surface. In the case of a convex surface, it is the “height from the reference plane portion of the peripheral portion to the apex of the refracting surface”, which is the so-called “lens height”. The "optical distance" is the alignment amount in the "slightly separated" state, and is the distance between the incident surface position on the optical axis and the light emitting surface of the light emitting element.

【0021】微小光学素子は、発光素子の発光端面部か
ら所定距離(上記アライメント量)の位置(設計上の位
置)に取り付けられねばならないが、「取付け(接
合)」は必ずしも発光端面部に対して行う必要は無く、
「発光素子の発光端面部を基準として、発光端面部もし
くは発光素子を保持するヒ−トシンクに固定」するよう
に取付けを行うことができる(請求項6)。
The micro-optical element must be attached at a position (designed position) at a predetermined distance (above alignment amount) from the light emitting end face portion of the light emitting element. You don't have to
It can be attached so as to be "fixed to the light emitting end surface portion or the heat sink holding the light emitting element with reference to the light emitting end surface portion of the light emitting element" (claim 6).

【0022】「ヒ−トシンク」は、発光素子がそれ自体
で発生する熱により劣化するのを防ぐための基板で、一
般に窒化アルミニウム、ダイヤモンド、Si等で構成さ
れている。発光素子本体は「およそ100×300×3
00μmの直方体」形状であってヒ−トシンクに接合さ
れており、発光素子で生ずる熱はヒ−トシンクを介して
放散される。
The "heat sink" is a substrate for preventing the light emitting element from being deteriorated by the heat generated by itself, and is generally made of aluminum nitride, diamond, Si or the like. The main body of the light emitting element is "approximately 100 x 300 x 3
It has a “00 μm rectangular parallelepiped” shape and is joined to a heat sink, and heat generated in the light emitting element is dissipated through the heat sink.

【0023】通常、ヒ−トシンクの端面と発光素子の端
面は、高精度で位置決めされてはいない。従って、微小
光学素子と発光素子の位置決めに際しては、上記のよう
に、あくまでも「発光素子の発光端面部を基準」とする
必要がある。
Normally, the end face of the heat sink and the end face of the light emitting element are not accurately positioned. Therefore, when positioning the microscopic optical element and the light emitting element, it is necessary to use the "light emitting end surface portion of the light emitting element as a reference" as described above.

【0024】上位請求項1または2または3または4ま
たは5または6記載の微小光学素子付き発光素子におい
て「微小光学素子の光線有効径外の部分に、発光素子と
の接合用のメタライズ膜を形成」する」ことができる
(請求項7)。
In the light-emitting element with a micro-optical element according to the above-mentioned claim 1, 2 or 3 or 4 or 5 or 6, "a metallized film for bonding with the light-emitting element is formed in a portion outside the effective light beam diameter of the micro-optical element. It is possible to "do" (Claim 7).

【0025】「メタライズ膜」は、物理的および/また
は化学的な加工方法(メタライズ加工)により形成され
る金属膜であり、蒸着膜、スパッタ膜、鍍金層等あるい
はこれらの組み合わせで構成される。
The "metallized film" is a metal film formed by a physical and / or chemical processing method (metallized processing), and is composed of a vapor deposition film, a sputtered film, a plating layer or the like or a combination thereof.

【0026】このメタライズ膜の厚さを、「微小光学素
子と発光素子の光軸方向の距離(前記光学的距離・アラ
イメント量)を調整する厚さ」に形成することができる
(請求項8)。
The thickness of the metallized film can be formed to be "a thickness for adjusting the distance (the optical distance / alignment amount) between the minute optical element and the light emitting element in the optical axis direction". .

【0027】上記請求項6記載の微小光学素子付き発光
素子において「発光素子側の面に光学的距離決め用に予
め厚さを制御した金属層を接合された微小光学素子」を
用いることができる(請求項9)。
In the light emitting element with a micro optical element according to claim 6, "a micro optical element in which a metal layer whose thickness is controlled in advance for determining an optical distance is bonded to a surface on the light emitting element side" can be used. (Claim 9).

【0028】微小光学素子の材料としてガラスは好適で
あるが、この場合、上記請求項7,8記載の発明のよう
にメタライズ膜を形成する以外に「金属層を接合」する
ことができる。この場合の金属層の接合は、所謂「マロ
リ−法」によるガラスと金属の接着である。
Although glass is preferable as a material for the micro-optical element, in this case, "metal layer bonding" can be performed in addition to forming the metallized film as in the inventions described in claims 7 and 8. The joining of the metal layers in this case is adhesion of glass and metal by the so-called "Mallory method".

【0029】マロリ−法はガラスと金属を接着させる方
法で、ガラスと金属を重ね合わせた状態で、ガラスの軟
化点より低く、金属の融点よりも低い温度において、両
者の接触部に比較的高い直流電圧を、金属側をプラスに
して短時間印加する方法である。
The Mallory method is a method of adhering glass and metal, and in a state where glass and metal are superposed, at a temperature lower than the softening point of the glass and lower than the melting point of the metal, the contact area between them is relatively high. This is a method of applying a DC voltage for a short time with the metal side being positive.

【0030】金属層の材料は、接合部の面精度が良く、
ガラス材料と熱膨張率が略同じか近いものが好適である
が、金属層の厚みを薄膜程度あるいはフォイル状態とす
れば熱膨張率がガラス材料と少々異なっていても良い。
The material of the metal layer has good surface accuracy at the joint,
It is preferable that the glass material has a coefficient of thermal expansion substantially the same as or close to that of the glass material, but the coefficient of thermal expansion may be slightly different from that of the glass material if the thickness of the metal layer is a thin film or in a foil state.

【0031】上記の如く、請求項2ないし9記載の微小
光学素子付き発光素子は、発光素子に取り付けられる微
小光学素子に形態上もしくは構造上の特徴がある。
As described above, in the light emitting element with the micro optical element according to the second to ninth aspects, the micro optical element attached to the light emitting element is characterized in form or structure.

【0032】請求項10記載の「微小光学素子」は、発
光素子に光軸合わせした状態で取り付けられる微小発光
素子であって、請求項2または3または4または5また
は6または7または8または9記載の微小光学素子付き
発光素子に用いられるものである。
The "micro optical element" described in claim 10 is a micro light emitting element which is attached to the light emitting element in a state where its optical axis is aligned with the light emitting element, and the micro optical element according to claim 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 It is used for the light emitting element with the micro optical element described.

【0033】[0033]

【作用】上記のように、この発明の「微小光学素子付き
発光素子」は、発光素子と別体に構成した微小光学素子
を発光素子に取り付けるので、微小光学素子の材料に対
する選択の自由度が大きい。
As described above, in the "light emitting element with micro optical element" of the present invention, the micro optical element formed separately from the light emitting element is attached to the light emitting element, so that the degree of freedom in selecting the material of the micro optical element is high. large.

【0034】また、微小光学素子の材料に対し、凸、凹
球面や非球面形状の屈折面形状の加工が可能であり、発
光素子の発光の「ニアフィ−ルドパタ−ン」に応じて屈
折面形状を設定出来、屈折面加工の自由度も大きい。
Further, it is possible to process a convex surface, a concave spherical surface, or an aspherical refraction surface shape on the material of the micro optical element, and the refraction surface shape can be processed according to the "near field pattern" of the light emission of the light emitting element. Can be set, and the degree of freedom in refracting surface processing is great.

【0035】一般に、LD等の発光素子はヒ−トシンク
上に発光素子を接合して構成されるが、ヒ−トシンク端
面と発光素子端面とは必ずしも一致せず、実際の製品で
は両者の端面位置に±10μmも「バラツキ」がある。
In general, a light emitting element such as an LD is constructed by joining a light emitting element on a heat sink, but the end surface of the heat sink and the end surface of the light emitting element do not necessarily coincide with each other. There is “variation” of ± 10 μm.

【0036】この発明では、微小光学素子を発光素子に
取り付けるに際し、ヒートシンクの端面ではなく発光素
子自体の発光端面部を基準として位置合わせを行う。
In the present invention, when the micro optical element is attached to the light emitting element, the light emitting element itself is positioned not on the end surface of the heat sink but on the light emitting end surface of the light emitting element itself.

【0037】[0037]

【実施例】以下、具体的な実施例を説明する。EXAMPLES Specific examples will be described below.

【0038】図1はこの発明の「微小光学素子付き発光
素子」の1実施例を説明するための図である。
FIG. 1 is a diagram for explaining one embodiment of the "light emitting element with a micro optical element" of the present invention.

【0039】図1(a)は、微小光学素子を取り付けら
れる発光素子側の1例である「LD発光素子」を示し
た。符号100で示す「発光素子」は、この例において
「LD発光素子デバイス」である。
FIG. 1A shows an "LD light emitting element" which is an example of a light emitting element side to which a micro optical element can be attached. The “light emitting element” indicated by reference numeral 100 is the “LD light emitting element device” in this example.

【0040】発光素子100は、放熱のためヒートシン
ク101上に、発光素子100のn側電極部をソルダリ
ングすることにより固定されている。ヒートシンク10
1は窒化アルミニウムやSi、あるいはダイヤモンド等
で構成される。
The light emitting element 100 is fixed on the heat sink 101 by soldering the n-side electrode portion of the light emitting element 100 for heat dissipation. Heat sink 10
1 is composed of aluminum nitride, Si, diamond, or the like.

【0041】発光素子100の発光端面部100’とヒ
−トシンク101の側端面101’とは、図1(a)に
示す如く「概略同じ面」であるが、この発明におけるよ
うに、精密に光軸を合わせるのに十分な精度で面合わせ
されている訳ではない。
The light emitting end surface portion 100 'of the light emitting element 100 and the side end surface 101' of the heat sink 101 are "generally the same surface" as shown in FIG. 1 (a). The faces are not aligned with sufficient accuracy to align the optical axes.

【0042】図1(b)は(a)における発光素子10
0の近傍の部分を簡略化して示している。この図におい
ては、発光素子100の発光端面部100’とヒ−トシ
ンク101の側端面101’を同一面に描いてあるが、
実際のものではこれらの面の間に食違いがあるのが普通
である。
FIG. 1B shows the light emitting device 10 in FIG.
The part near 0 is shown in a simplified manner. In this figure, the light emitting end face portion 100 'of the light emitting element 100 and the side end face 101' of the heat sink 101 are drawn on the same plane.
In reality, there is usually a discrepancy between these faces.

【0043】図1(b)において、符号103は発光端
面部100’側端部である発光部を示し、光はこの発光
部103から、発散性の光束102として放射される。
符号104は放射される光束102の中心軸、即ち発光
素子100の光軸を示す。
In FIG. 1B, reference numeral 103 indicates a light emitting portion which is an end portion on the side of the light emitting end surface portion 100 ′, and light is emitted from this light emitting portion 103 as a divergent light flux 102.
Reference numeral 104 indicates the central axis of the emitted light beam 102, that is, the optical axis of the light emitting element 100.

【0044】図1(c)は、発光素子100の発光端面
部100’に微小光学素子107を、発光素子100に
光軸合わせして取り付けた状態を示している。
FIG. 1C shows a state in which the minute optical element 107 is attached to the light emitting end surface portion 100 ′ of the light emitting element 100 so that the optical axis is aligned with the light emitting element 100.

【0045】微小光学素子107は、発光素子100側
に向いた入射面107’と射出面107’’とを「集光
性の屈折面」として有し、発光素子100に面する側に
は、発光素子100の発光端面部100’と微小光学素
子107との間の光学的距離を決めるための凸部が形成
されている(請求項5)。
The micro optical element 107 has an entrance surface 107 ′ and an exit surface 107 ″ facing the light emitting element 100 side as “condensing refraction surfaces”, and on the side facing the light emitting element 100, A convex portion is formed to determine the optical distance between the light emitting end surface portion 100 ′ of the light emitting element 100 and the micro optical element 107 (claim 5).

【0046】微小光学素子107にはまた、光線有効径
以外の部分に接合用のメタライズ膜106が形成されて
いる(請求項7)。微小光学素子107の入射面10
7’と発光素子100の発光端面部100’の(光軸上
の)距離は光学設計に基づいて決定され、その設計上の
距離を実現できるように、微小光学素子107の凸部
(リブ)の高さが決定されるのである(請求項5)。こ
の場合には、メタライズ膜106は極めて薄く形成され
る。
The micro-optical element 107 is also provided with a metallizing film 106 for bonding in a portion other than the effective diameter of the light beam (claim 7). Incident surface 10 of micro optical element 107
The distance (on the optical axis) between 7 ′ and the light emitting end face portion 100 ′ of the light emitting element 100 is determined based on the optical design, and the convex portion (rib) of the micro optical element 107 is configured so that the designed distance can be realized. The height is determined (Claim 5). In this case, the metallized film 106 is formed extremely thin.

【0047】あるいは、上記設計上の距離を上記凸部の
高さとメタライズ膜の厚さとで実現できるように、メタ
ライズ膜106の厚さを調整設定することもできる(請
求項8)。
Alternatively, the thickness of the metallized film 106 can be adjusted and set so that the designed distance can be realized by the height of the convex portion and the thickness of the metallized film (claim 8).

【0048】図1(c)は、微小光学素子107を発光
素子100の発光端面部100’に当接した状態で発光
素子100を点灯し、微小光学素子107を発光端面部
100’に沿って変位させ「自動光軸調整機」によって
光軸合わせを行い、光軸合わせされた状態で、レ−ザ−
による同時3点スポット照射で、メタライズ膜106に
より発光素子100に微小光学素子107を取り付けた
状態を示している。
In FIG. 1C, the light emitting element 100 is turned on with the micro optical element 107 in contact with the light emitting end surface portion 100 'of the light emitting element 100, and the micro optical element 107 is moved along the light emitting end surface portion 100'. Displace and align the optical axis with the "automatic optical axis adjuster", and then laser with the optical axis aligned.
3 shows a state in which the minute optical element 107 is attached to the light emitting element 100 by the metallized film 106 by simultaneous three-point spot irradiation.

【0049】微小光学素子107を耐環境性に優れた材
料で構成し、上記の如くして光軸合わせした状態で発光
素子100に取り付ければ、耐環境性に優れ、微小光学
素子との密着性に優れ、光軸合わせ精度も高い「微小光
学素子付き発光素子」を実現できる。
If the minute optical element 107 is made of a material having excellent environment resistance and is attached to the light emitting element 100 in a state where the optical axis is aligned as described above, the environment resistance is excellent and the adhesion to the minute optical element is good. It is possible to realize a "light emitting element with a micro optical element" which is excellent in optical axis alignment accuracy.

【0050】なお、図1に即して説明した実施例の「微
小光学素子付き発光素子」は、図1(c)に示すように
「光通信用の(カップリング機能を持つ)光源」であ
る。発光素子(LD)100から放射されたレ−ザ−光
は、微小光学素子107によって集光され、シングルモ
−ド光フアイバ−108のコア109(コア径:10μ
m)に集光される。
The "light emitting element with a micro optical element" of the embodiment described with reference to FIG. 1 is a "light source for optical communication (having a coupling function)" as shown in FIG. 1 (c). is there. The laser light emitted from the light emitting element (LD) 100 is condensed by the minute optical element 107, and the core 109 (core diameter: 10 μm) of the single mode optical fiber 108 is collected.
m).

【0051】図1に示した実施例は、図1(c)に示す
ように、微小光学素子107の入射面107’と発光素
子100の発光端面部100’との間は「僅かに離れ」
ており(請求項4)、上に説明したように、微小光学素
子107の光線有効径外に設ける凸部の高さとメタライ
ズ膜106の高さとの和が、入射面107’と発光端面
部100’との間の「光学設計に基づく距離(アライメ
ント量)」になるように加工を行っている。
In the embodiment shown in FIG. 1, as shown in FIG. 1 (c), the entrance surface 107 'of the micro optical element 107 and the light emitting end surface portion 100' of the light emitting element 100 are "slightly separated".
As described above, the sum of the height of the convex portion provided outside the effective beam diameter of the micro optical element 107 and the height of the metallized film 106 is the incident surface 107 ′ and the light emitting end surface portion 100. Processing is performed so that it becomes a "distance (alignment amount) based on the optical design" between "and".

【0052】当然のことだが、光学素子107の入射面
は「球面」である必要はなく、非球面形状でもよいし平
面形状でも良く、凹面形状でもよい。
As a matter of course, the incident surface of the optical element 107 does not have to be a "spherical surface", and may have an aspherical shape, a flat shape, or a concave shape.

【0053】図2〜図5に変形例を示す。Modifications are shown in FIGS.

【0054】図2は請求項3記載の発明の1実施例を略
示している。微小光学素子207は、入射面207’、
射出面207’’とも集光性の屈折面であるが、入射面
207’の頂部は発光素子100の発光端面部100’
に直接的に接している。
FIG. 2 schematically shows an embodiment of the invention described in claim 3. The micro optical element 207 has an incident surface 207 ′,
Although the exit surface 207 ″ is also a refraction surface having a light collecting property, the top of the entrance surface 207 ′ is the light emitting end surface portion 100 ′ of the light emitting element 100.
Is in direct contact with.

【0055】この場合には、微小光学素子207の光線
有効径外に設ける凸部207aの高さを、入射面20
7’の高さに等しく形成し、極く薄いメタライズ膜で発
光端面部100’に接合するか(請求項5)、あるい
は、上記凸部207aの高さとメタライズ膜の厚さの和
が入射面207’の頂部と同じ高さになるように加工し
て接合を行えば良い(請求項8)。
In this case, the height of the convex portion 207a provided outside the effective ray diameter of the micro optical element 207 is set to the incident surface 20.
7'and formed to be equal to the height of 7 ', and bonded to the light emitting end surface portion 100' with an extremely thin metallized film (claim 5), or the sum of the height of the convex portion 207a and the thickness of the metallized film is the incident surface. It suffices to perform processing so that the height is the same as that of the top portion of 207 'and then perform the joining (claim 8).

【0056】図1および図2に即して説明した例では、
微小光学素子の光線有効径外に設ける凸部もしくは凸部
とメタライズ膜とにより「アライメント量」の設定を行
っているが、上記例では、何れにせよメタライズ膜は
「比較的に薄い」厚さである。
In the example described with reference to FIGS. 1 and 2,
Although the "alignment amount" is set by the convex portion or the convex portion provided outside the effective beam diameter of the micro optical element and the metallized film, in the above example, the metallized film has a "relatively thin" thickness in any case. Is.

【0057】上記凸部は当然に、微小光学素子と同一材
料である。微小光学素子の材料によっては、上記「凸
部」の加工においてコストや加工時間等で制限を受ける
場合も有りうる。
Naturally, the convex portion is made of the same material as the micro optical element. Depending on the material of the micro-optical element, there may be a case where the processing of the above-mentioned "projection" is limited by cost, processing time, or the like.

【0058】このような場合には、図3に示す実施例の
ように、微小光学素子307の有効光線径外に形成する
メタライズ膜308の厚さを積極的に厚くし、必要な光
学的距離(アライメント量)を確保することが出来る
(請求項8)。
In such a case, as in the embodiment shown in FIG. 3, the thickness of the metallized film 308 formed outside the effective light beam diameter of the micro optical element 307 is positively increased to obtain the required optical distance. (Alignment amount) can be secured (claim 8).

【0059】上記アライメント量がさらに大きくなり、
凸部やメタライズ膜での確保が困難になるような場合に
は、図4に示す実施例のように、微小光学素子407の
入射面407’と発光素子100の発光端面部100’
との距離に応じて、光学的距離決め用に予め厚さを制御
した金属層408を微小光学素子407に接合して距離
決めを行っても良い。
The alignment amount is further increased,
When it is difficult to secure the convex portion or the metallized film, as in the embodiment shown in FIG. 4, the incident surface 407 ′ of the micro optical element 407 and the light emitting end surface portion 100 ′ of the light emitting element 100 are formed.
The distance may be determined by joining the metal layer 408 whose thickness is controlled in advance for determining the optical distance to the micro optical element 407 in accordance with the distance between and.

【0060】金属層408の接合は前述の「マロリー
法」により行われるが、マロリー法は、接着操作が簡単
で、熱サイクルに耐える低温用の気密接着が可能であ
り、ガラスが固体のまま接着出来るので歪みがなく、光
学的性質が失われない等の利点がある。また短時間での
処理が可能で、大きな圧力が不要であり、コスト的にも
有利である。
The metal layer 408 is bonded by the above-mentioned "Mallory method". The Mallory method is simple in the bonding operation and can be hermetically bonded at a low temperature to endure a heat cycle, and the glass is bonded as a solid state. Since it is possible, there are advantages such as no distortion and loss of optical properties. Further, the treatment can be performed in a short time, large pressure is not required, and it is advantageous in cost.

【0061】図5は請求項6記載の発明の1実施例を説
明するための図である。
FIG. 5 is a view for explaining one embodiment of the invention described in claim 6.

【0062】図1の実施例では、微小光学素子107は
発光素子100の発光端面部100’に直接に接合する
ことにより取り付けられているが、この実施例では、接
合自体はヒートシンク101の側端面に対して行われ
る。
In the embodiment of FIG. 1, the micro-optical element 107 is attached by directly bonding it to the light emitting end surface portion 100 'of the light emitting element 100. In this embodiment, the bonding itself is the side end surface of the heat sink 101. Done against.

【0063】即ち、微小光学素子1107は、発光素子
100の発光端面部100’より大きい面積を有する。
That is, the micro optical element 1107 has a larger area than the light emitting end surface portion 100 ′ of the light emitting element 100.

【0064】図5(b)に示すように、微小光学素子1
107は、入射面1107’が平面で、射出面110
7’’は屈折面であるが、入射面1107’の有効光線
径外には、発光端面部100’に当接して、発光端面部
100’と入射面1107’との間の距離(アライメン
ト量)を確保するための凸部1106が形成されてお
り、この凸部1106が発光端面部と当接することによ
り(図5(a)参照)、発光素子100の発光端面部1
00’を基準とした位置決めがなされる。
As shown in FIG. 5B, the micro optical element 1
107, the entrance surface 1107 ′ is a flat surface, and the exit surface 110
Reference numeral 7 ″ is a refracting surface, but outside the effective ray diameter of the entrance surface 1107 ′, it comes into contact with the light emitting end surface portion 100 ′ and the distance (alignment amount) between the light emitting end surface portion 100 ′ and the entrance surface 1107 ′. ) Is formed to secure the light emitting end face portion 1106 of the light emitting element 100 by contacting the light emitting end face portion with the convex portion 1106 (see FIG. 5A).
Positioning is performed with reference to 00 '.

【0065】図5(b)に示すように、凸部1106の
外側の平面状の部分には、接合用のメタライズ膜110
5が形成され、図5(a)に示すように、このメタライ
ズ膜1105をヒ−トシンク101の側端面101’に
接合することにより微小光学素子1107の取付けを行
っている。
As shown in FIG. 5B, the metallized film 110 for bonding is formed on the planar portion outside the convex portion 1106.
5 is formed, and as shown in FIG. 5A, the metallized film 1105 is attached to the side end surface 101 ′ of the heat sink 101 to attach the micro optical element 1107.

【0066】以下、具体例を説明する。A specific example will be described below.

【0067】図6(a)に示すような、微小光学素子を
作製した。
A micro optical element as shown in FIG. 6A was manufactured.

【0068】微小光学素子707は、図6(a)の右図
に示すように、射出面側に、屈折面707’’が形成さ
れている。
As shown in the right diagram of FIG. 6A, the micro optical element 707 has a refracting surface 707 ″ formed on the exit surface side.

【0069】微小光学素子707の入射面側は図6
(a)の左図に示すようになっている。即ち、入射面7
07’は「平面」であり、入射面707’の光線有効径
外には、入射面707’の中心(光軸部分)を中心とし
て直径:0.1mmφの部分に、円筒形状の凸部706
が、高さ:0.1mm、外径:0.2mmφ(幅:50
μm)に形成されている。
The incident surface side of the micro optical element 707 is shown in FIG.
It is as shown in the left figure of (a). That is, the incident surface 7
Reference numeral 07 'is a "plane", and outside the effective light diameter of the incident surface 707', a cylindrical convex portion 706 is formed in a portion having a diameter of 0.1 mmφ about the center of the incident surface 707 '(optical axis portion).
However, height: 0.1 mm, outer diameter: 0.2 mmφ (width: 50
μm).

【0070】この凸部706の外側は、入射面707’
を基準にして50μmの高さの平面であり、厚さ:約4
0μmの接合用のメタライズ膜(Au/Ni/Cr膜)
705が施してある。
The outside of the convex portion 706 is an incident surface 707 '.
Is a flat surface with a height of 50 μm, and the thickness is about 4
0 μm metallization film for bonding (Au / Ni / Cr film)
705 is applied.

【0071】この微小光学素子707を図6(b)に示
す如き配置で、LD発光素子デバイスである発光素子7
00に取り付けた。取付けは、上記メタライズ膜705
により行っているが、図6(c)に示すように、主とし
てヒートシンク701の側端面701’に対して行って
いる(図の破線によるハッチ部分が接合部である)。
The minute optical element 707 is arranged as shown in FIG. 6B, and the light emitting element 7 which is an LD light emitting element device is arranged.
It was attached to 00. The metallized film 705 described above is attached.
However, as shown in FIG. 6C, it is mainly performed on the side end surface 701 ′ of the heat sink 701 (the hatched portion indicated by the broken line in the figure is the joining portion).

【0072】図6(b)に示すように、幅:50μmの
円筒状の位置決め用の凸部706が発光端面部701’
に当接して発光素子700と微小光学素子707との位
置決めに利用されている。当然ながら、接合の際には発
光素子700を発光(点灯)させて微小光学素子707
の光軸を発光素子700の光軸704に合致させる光軸
合わせを行っている。
As shown in FIG. 6 (b), a cylindrical positioning projection 706 having a width of 50 μm is provided as a light emitting end face 701 '.
Is used for positioning the light emitting element 700 and the micro optical element 707. As a matter of course, at the time of bonding, the light emitting element 700 is caused to emit light (light up) and the micro optical element 707 is used.
The optical axis is aligned with the optical axis 704 of the light emitting element 700.

【0073】具体例1 図6における微小光学素子707を以下の条件で作製し
た。 素子材料:SF60(波長1.3nmにおける屈折率:
1.76767)、材料板(平行平板)厚さ:0.5m
mを用いた。
Concrete Example 1 The micro optical element 707 in FIG. 6 was manufactured under the following conditions. Element material: SF60 (refractive index at wavelength 1.3 nm:
1.7676), material plate (parallel plate) thickness: 0.5 m
m was used.

【0074】入射面707’は平面であるが、屈折面で
ある射出面707’’は、周知の非球面式: Z=(1/R)h2/{1+√[1−(K+1)(1/
R)22]}+A・h4+B・h6+C・h8 R:光軸上の曲率半径 h:光軸からの距離 K:円錐定数 A,B,C:高次の非球面定数 Z:レンズ頂点からの距離 において、 R=−0.252mm K=−0.6583874 A=−0.7529392 B,C=0 とした形状である。微小光学素子707の発光素子側の
NAは、0.6である。
[0074] 'While a plan, a refractive surface exit surface 707' incident surface 707 'is well known aspheric expression: Z = (1 / R) h 2 / {1 + √ [1- (K + 1) ( 1 /
R) 2 h 2 ]} + A · h 4 + B · h 6 + C · h 8 R: radius of curvature on optical axis h: distance from optical axis K: conical constant A, B, C: high-order aspherical constant Z: Distance from lens apex R = −0.252 mm K = −0.6583874 A = −0.7539292 B, C = 0 The NA of the micro-optical element 707 on the light emitting element side is 0.6.

【0075】図6(b)に示す取付け状態において、発
光端面部700’から入射面707’までの距離を0.
1mmとした。また、射出面707’’から光軸704
上で2.2972mm離れた位置(光束が集光する位
置)に図示されないシングルモ−ドファイバ−の端面を
配備した。
In the mounted state shown in FIG. 6B, the distance from the light emitting end surface portion 700 'to the incident surface 707' is set to 0.
It was set to 1 mm. Also, from the exit surface 707 ″ to the optical axis 704
An end face of a single mode fiber (not shown) was arranged at a position (above the position where the light beam is condensed) separated by 2.2972 mm.

【0076】このようにして、全長約7mmのシングル
モ−ドカップラ−用の小型・軽量の「微小光学素子付き
発光素子」を製作出来た。
In this way, a small-sized and light-weight "light-emitting element with a small optical element" for a single mode coupler having a total length of about 7 mm could be manufactured.

【0077】この発光素子の光利用効率(発光素子から
出た光が光ファイバ−に入射する効率)は、従来のカッ
プラ−と同様に約57%であった(効率は、第1面側の
NA値によってほぼ決まる)。
The light utilization efficiency of this light emitting element (the efficiency with which the light emitted from the light emitting element enters the optical fiber) was about 57% as in the case of the conventional coupler (the efficiency is on the first surface side). Almost determined by NA value).

【0078】具体例2 図6(a)に示す構成において、微小光学素子707の
入射面707’を平面とし、その光線有効径外の直径:
0.1mmφの部分に、円筒状の位置決め用の凸部70
6を、高さ:0.05mm、外径:0.2mmφ(幅:
50μm)に形状し、その外側は入射面707’を基準
にして10μmの高さの平面とし、厚さ:約5μmの接
合用のメタライズ膜(Au/Ni/Cr膜)を施した。
Concrete Example 2 In the configuration shown in FIG. 6A, the incident surface 707 'of the micro optical element 707 is a flat surface, and the diameter outside the effective diameter of the light beam is:
A cylindrical positioning convex portion 70 is provided on the 0.1 mmφ portion.
6, height: 0.05 mm, outer diameter: 0.2 mmφ (width:
50 μm), and the outside thereof was a flat surface having a height of 10 μm with reference to the incident surface 707 ′, and a metallizing film (Au / Ni / Cr film) for bonding having a thickness of about 5 μm was applied.

【0079】図6(b)に示す発光素子700への接合
状態で、幅:50μmの円筒状の凸部706が発光端面
部700’に接し、メタライズ膜で接合された。勿論、
接合の際には発光素子を発光(点灯)させて光学素子と
微小光学素子との光軸合わせを行っている。
In the bonded state to the light emitting device 700 shown in FIG. 6B, a cylindrical convex portion 706 having a width of 50 μm was in contact with the light emitting end face portion 700 ′ and bonded with a metallized film. Of course,
At the time of bonding, the light emitting element is caused to emit light (lighted) to align the optical axes of the optical element and the minute optical element.

【0080】微小光学素子707を以下の条件で作製し
た。 素子材料:SF60(波長1.3nmにおける屈折率:
1.76767)、材料板厚さ:0.3mmである。
The micro optical element 707 was manufactured under the following conditions. Element material: SF60 (refractive index at wavelength 1.3 nm:
1.76767), material plate thickness: 0.3 mm.

【0081】屈折面707’’は非球面形状で、前記非
球面の式において、 R=−0.177mm K=−0.7445704 A=−0.3542086×101 B,C=0 とした形状である。発光素子側のNAは、0.6であ
る。
The refracting surface 707 ″ has an aspherical shape, and in the above aspherical surface expression, R = −0.177 mm K = −0.7445704 A = −0.3542086 × 10 1 B, C = 0 Is. The NA on the light emitting element side is 0.6.

【0082】図6(b)に示す取付け状態において、発
光端面部700’から入射面707’までの距離を0.
05mmとした。また、射出面707’’から光軸70
4上で1.6183mm離れた位置(光束が集光する位
置)に図示されないシングルモ−ドファイバ−の端面を
配備した。
In the attached state shown in FIG. 6B, the distance from the light emitting end face portion 700 'to the incident surface 707' is set to 0.
It was set to 05 mm. Also, from the exit surface 707 ″ to the optical axis 70
An end face of a single mode fiber (not shown) was placed at a position separated by 1.6183 mm (the position where the light beam is condensed) on No. 4 above.

【0083】このようにして、全長約6mmのシングル
モ−ドカップラ−用の小型・軽量の「微小光学素子付き
発光素子」を製作出来た。
In this way, a small-sized and light-weight "light emitting device with a micro optical element" for a single mode coupler having a total length of about 6 mm could be manufactured.

【0084】この発光素子の光利用効率(発光素子から
出た光が光ファイバ−に入射する効率)は、従来のカッ
プラ−と同様に約70%であった。
The light utilization efficiency of this light emitting device (the efficiency with which the light emitted from the light emitting device is incident on the optical fiber) was about 70% as in the case of the conventional coupler.

【0085】具体例3 図6(a)に示す構成において、微小光学素子707の
入射面707’を平面とし、その光線有効径外の直径:
0.1mmφの部分に、円筒状の位置決め用の凸部70
6を、高さ:0.05mm、外径:0.2mmφ(幅:
50μm)に形状し、その外側は入射面707’を基準
にして10μmの高さの平面とし、厚さ:約5μmの接
合用のメタライズ膜(Au/Ni/Cr膜)を施した。
Concrete Example 3 In the configuration shown in FIG. 6A, the incident surface 707 'of the micro optical element 707 is a flat surface, and the diameter outside the effective diameter of the light beam is:
A cylindrical positioning convex portion 70 is provided on the 0.1 mmφ portion.
6, height: 0.05 mm, outer diameter: 0.2 mmφ (width:
50 μm), and the outside thereof was a flat surface having a height of 10 μm with reference to the incident surface 707 ′, and a metallizing film (Au / Ni / Cr film) for bonding having a thickness of about 5 μm was applied.

【0086】図6(b)に示す発光素子700への接合
状態で、幅:50μmの円筒状の凸部706が発光端面
部700’に接し、メタライズ膜で接合された。勿論、
接合の際には発光素子を発光(点灯)させて光学素子と
微小光学素子との光軸合わせを行っている。
In the bonded state to the light emitting device 700 shown in FIG. 6B, a cylindrical convex portion 706 having a width of 50 μm was in contact with the light emitting end face portion 700 ′ and bonded with a metallized film. Of course,
At the time of bonding, the light emitting element is caused to emit light (lighted) to align the optical axes of the optical element and the minute optical element.

【0087】微小光学素子707を以下の条件で作製し
た。 素子材料:SFS01(波長1.3nmにおける屈折
率:1.87439)、材料板厚さ:0.5mmであ
る。
The micro optical element 707 was manufactured under the following conditions. Element material: SFS01 (refractive index at wavelength 1.3 nm: 1.87439), material plate thickness: 0.5 mm.

【0088】屈折面707’’は非球面形状で、前記非
球面の式において、 R=−0.257mm K=−0.1357071×10 A=−0.5103901×10 B,C=0 とした形状である。発光素子側のNAは、0.4であ
る。
The refracting surface 707 ″ has an aspherical shape, and in the above aspherical surface formula, R = −0.257 mm K = −0.1357071 × 10 1 A = −0.5103901 × 10 1 B, C = 0 It is the shape. NA on the light emitting element side is 0.4.

【0089】図6(b)に示す取付け状態において、発
光端面部700’から入射面707’までの距離を0.
05mmとした。また、射出面707’’から光軸70
4上で1.4670mm離れた位置(光束が集光する位
置)に図示されないシングルモ−ドファイバ−の端面を
配備した。
In the attached state shown in FIG. 6B, the distance from the light emitting end face portion 700 'to the incident surface 707' is set to 0.
It was set to 05 mm. Also, from the exit surface 707 ″ to the optical axis 70
An end face of a single mode fiber (not shown) was placed at a position separated by 1.4670 mm (the position where the light beam is condensed) on No. 4 above.

【0090】このようにして、全長約6mmのシングル
モ−ドカップラ−用の小型・軽量の「微小光学素子付き
発光素子」を製作出来た。この発光素子の光利用効率
(発光素子から出た光が光ファイバ−に入射する効率)
は、従来のカップラ−と同様に約55%であった。
In this way, a small-sized and light-weight "light emitting element with a micro optical element" for a single mode coupler having a total length of about 6 mm could be manufactured. Light utilization efficiency of this light emitting element (efficiency of light emitted from the light emitting element entering the optical fiber)
Was about 55% like the conventional coupler.

【0091】なお、上記屈折面の作製は、素材平行平板
の上にフォトレジスト層形成し、このフォトレジスト層
に屈折面に対応するパターンをパターニングし、熱処理
により表面を凸曲面径状とした後、異方性のエッチング
で上記凸曲面径状を平行平板に彫り写しつつ、エッチン
グの条件を所望の非球面形状が得られるようにコンピュ
ータ制御して形成した。
The refraction surface was prepared by forming a photoresist layer on a parallel plate of the material, patterning a pattern corresponding to the refraction surface on the photoresist layer, and heat-treating the surface to form a convex curved surface. The shape of the convex curved surface was engraved on a parallel plate by anisotropic etching, and the etching conditions were computer-controlled so as to obtain a desired aspherical shape.

【0092】[0092]

【発明の効果】以上に説明したように、この発明によれ
ば、新規な「微小光学素子付き発光素子」および「微小
光学素子」を提供できる。
As described above, according to the present invention, it is possible to provide a novel "light emitting element with a micro optical element" and "micro optical element".

【0093】この発明の微小光学素子付き発光素子は、
発光素子とは別体に形成されて発光素子の取り付けられ
るので、耐環境性に優れた材料のなかから発光素子の波
長特性に応じたものを適宜選択して、正確に作製するこ
とができるので、対環境性に優れ、使用波長に対する制
限がなく、安価に実現できる。
The light emitting element with the micro optical element of the present invention is
Since the light emitting element is formed separately from the light emitting element and attached to the light emitting element, it is possible to accurately select a material according to the wavelength characteristics of the light emitting element from among materials having excellent environmental resistance, so that it can be manufactured accurately. It has excellent environmental resistance, has no limitation on the wavelength used, and can be realized at low cost.

【0094】また、発光素子の発光端面部の極く近傍に
設けられるので微小光学素子自体が小さく従って全体を
コンパクト且つ低コストに実現できる。
Further, since it is provided very close to the light emitting end face portion of the light emitting element, the micro optical element itself is small, so that the whole can be realized compactly and at low cost.

【0095】さらに、微小光学素子は発光素子と光軸合
わせして一体化されているから、使用に際しては、例え
ば光ファイバー端面と発光素子の光軸とを合わせるのみ
でよく、光軸あわせが容易であり作業性が良い。
Further, since the micro optical element is integrated with the light emitting element by aligning the optical axis, it is only necessary to align the end face of the optical fiber and the optical axis of the light emitting element when using, and the optical axis can be easily aligned. Yes Workability is good.

【0096】また請求項5以下の発明では、微小光学素
子と発光素子の発光端面部との間の光学的距離決め(ア
ライメント)が容易であるので、取付けの際に光軸合わ
せのみを行えば良く、歩留まり良く微小光学素子付き発
光素子を実現できる。
In the fifth and subsequent aspects of the invention, the optical distance between the micro optical element and the light emitting end face portion of the light emitting element can be easily determined (alignment), so that only the optical axes need to be aligned during mounting. It is possible to realize a light emitting element with a micro optical element, which has good yield and good yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の微小光学素子付き発光素子の1実施
例を説明するための図である。
FIG. 1 is a diagram for explaining one embodiment of a light emitting element with a micro optical element according to the present invention.

【図2】別実施例を説明するための図である。FIG. 2 is a diagram for explaining another embodiment.

【図3】他の実施例を説明するための図である。FIG. 3 is a diagram for explaining another embodiment.

【図4】他の実施例を説明するための図である。FIG. 4 is a diagram for explaining another embodiment.

【図5】さらに他の実施例を説明するための図である。FIG. 5 is a diagram for explaining still another embodiment.

【図6】具体例を説明するための図である。FIG. 6 is a diagram for explaining a specific example.

【符号の説明】[Explanation of symbols]

100 発光素子 100’ 発光端面部 101 ヒートシンク 107 微小光学素子 100 light emitting element 100 'light emitting end face portion 101 heat sink 107 micro optical element

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】発光素子の発光端面部に、集光性の屈折面
を1面もしくは2面有する微小光学素子を、発光素子の
光軸に光軸合わせした状態で取り付けて構成される、微
小光学素子付き発光素子。
1. A microscopic optical element having one or two condensing refracting surfaces attached to the light emitting end surface of the light emitting element in a state in which the optical axis is aligned with the optical axis of the light emitting element. Light emitting element with optical element.
【請求項2】請求項1記載の微小光学素子付き発光素子
において、 微小光学素子の発光素子側の面が平面で射出側の面が集
光性の屈折面であることを特徴とする微小光学素子付き
発光素子。
2. The light emitting element with a micro optical element according to claim 1, wherein the surface of the micro optical element on the light emitting element side is a flat surface, and the surface on the emission side is a converging refraction surface. Light emitting device with a device.
【請求項3】請求項1または2記載の微小光学素子付き
発光素子において、 微小光学素子を発光素子の光軸に光軸合わせした状態
で、微小光学素子の入射面と発光素子の発光端面部とが
直接接するように、微小光学素子を発光素子に取り付け
たことを特徴とする、微小光学素子付き発光素子。
3. The light emitting element with a micro optical element according to claim 1 or 2, wherein the micro optical element has an optical axis aligned with an optical axis of the light emitting element, and an incident surface of the micro optical element and a light emitting end surface portion of the light emitting element. A light emitting element with a micro optical element, characterized in that a micro optical element is attached to a light emitting element so as to be in direct contact with.
【請求項4】請求項1または2記載の微小光学素子付き
発光素子において、 微小光学素子を発光素子の光軸に光軸合わせした状態
で、微小光学素子の入射面と発光素子の発光端面部とを
僅かに離して、微小光学素子を発光素子に取り付けたこ
とを特徴とする微小光学素子付き発光素子。
4. The light emitting element with a micro optical element according to claim 1 or 2, wherein the micro optical element has an optical axis aligned with an optical axis of the light emitting element, and an incident surface of the micro optical element and a light emitting end surface portion of the light emitting element. A light-emitting element with a micro-optical element, characterized in that the micro-optical element is attached to the light-emitting element with a slight separation between and.
【請求項5】請求項3または4記載の微小光学素子付き
発光素子において、 微小光学素子が、その光線有効径外に、入射面高さ以上
の高さの凸部を光学的距離決め用に有することを特徴と
する微小光学素子付き発光素子。
5. The light emitting element with a micro optical element according to claim 3 or 4, wherein the micro optical element has a convex portion having a height equal to or higher than an incident surface height for determining an optical distance, outside the effective diameter of the light ray. A light-emitting element with a micro-optical element characterized by having.
【請求項6】請求項1または2または3または4記載
の、微小光学素子付き発光素子において、 微小光学素子は、発光素子の発光端面部を基準として、
発光端面部もしくは発光素子を保持するヒ−トシンクに
固定されるこを特徴とする微小光学素子付き発光素子。
6. The light emitting element with a micro optical element according to claim 1, 2 or 3 or 4, wherein the micro optical element is based on a light emitting end face portion of the light emitting element.
A light emitting element with a micro optical element, which is fixed to a light emitting end face portion or a heat sink holding the light emitting element.
【請求項7】請求項1または2または3または4または
5または6記載の微小光学素子付き発光素子において、 微小光学素子の光線有効径外の部分に、発光素子との接
合用のメタライズ膜が形成されていることを特徴とする
微小光学素子付き発光素子。
7. The light emitting element with a micro optical element according to claim 1, 2 or 3 or 4 or 5 or 6, wherein a metallized film for bonding with the light emitting element is provided at a portion outside the effective light beam diameter of the micro optical element. A light emitting element with a micro optical element, which is characterized by being formed.
【請求項8】請求項7記載の微小光学素子付き発光素子
において、 メタライズ膜が、微小光学素子と発光素子の光軸方向の
距離を調整する厚さに形成されていることを特徴とする
微小光学素子付き発光素子。
8. A light emitting device with a micro optical element according to claim 7, wherein the metallized film is formed to a thickness for adjusting the distance between the micro optical device and the light emitting device in the optical axis direction. Light emitting element with optical element.
【請求項9】請求項6記載の微小光学素子付き発光素子
において、 微小光学素子が、その発光素子側の面に光学的距離決め
用に予め厚さを制御した金属層を接合されていることを
特徴とする微小光学素子付き発光素子。
9. The light-emitting element with a micro-optical element according to claim 6, wherein the micro-optical element has a metal layer whose thickness is controlled beforehand for determining an optical distance, which is bonded to the surface on the light-emitting element side. A light-emitting element with a micro optical element characterized by.
【請求項10】請求項2または3または4または5また
は6または7または8または9記載の微小光学素子付き
発光素子に用いられる微小光学素子。
10. A micro optical element used for the light emitting element with a micro optical element according to claim 2, 3 or 4, 5 or 6 or 7 or 8 or 9.
JP329095A 1995-01-12 1995-01-12 Light-emitting element having minute optical element and minute optical element Pending JPH08191172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP329095A JPH08191172A (en) 1995-01-12 1995-01-12 Light-emitting element having minute optical element and minute optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP329095A JPH08191172A (en) 1995-01-12 1995-01-12 Light-emitting element having minute optical element and minute optical element

Publications (1)

Publication Number Publication Date
JPH08191172A true JPH08191172A (en) 1996-07-23

Family

ID=11553270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP329095A Pending JPH08191172A (en) 1995-01-12 1995-01-12 Light-emitting element having minute optical element and minute optical element

Country Status (1)

Country Link
JP (1) JPH08191172A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111542976A (en) * 2017-10-12 2020-08-14 欧司朗Oled股份有限公司 Semiconductor laser and method for producing an optoelectronic semiconductor component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111542976A (en) * 2017-10-12 2020-08-14 欧司朗Oled股份有限公司 Semiconductor laser and method for producing an optoelectronic semiconductor component
US20200313399A1 (en) * 2017-10-12 2020-10-01 Osram Oled Gmbh Semiconductor laser and method of production for optoelectronic semiconductor parts
JP2020537337A (en) * 2017-10-12 2020-12-17 オスラム オーエルイーディー ゲゼルシャフト ミット ベシュレンクテル ハフツングOSRAM OLED GmbH Manufacturing methods for semiconductor lasers and optoelectronic semiconductor components
US11735887B2 (en) 2017-10-12 2023-08-22 Osram Oled Gmbh Semiconductor laser and method of production for optoelectronic semiconductor parts
US11870214B2 (en) 2017-10-12 2024-01-09 Osram Oled Gmbh Semiconductor laser and method of production for optoelectronic semiconductor parts

Similar Documents

Publication Publication Date Title
JPS61260207A (en) Bidirectional optoelectronics component part for forming optical couple
JP3878231B2 (en) Optoelectronic device and manufacturing method thereof
JP2645862B2 (en) Semiconductor light emitting device and its applied products
JP2003167175A (en) Optical mounted substrate and optical device
JP7372522B2 (en) light emitting device
JP2002196182A (en) Optical device having inclined face
JP3298798B2 (en) Optical transceiver module
JPH06151972A (en) Lens-on-chip luminescent device and manufacture thereof
KR20000067535A (en) Optical module
JPH08191172A (en) Light-emitting element having minute optical element and minute optical element
JP2004251976A (en) Optical module
JP2001517810A (en) Optical system for coupling a laser beam into an optical waveguide and method of manufacturing the same
JPH09312407A (en) Optical coupler between monitor diode and laser diode
JP2004101847A (en) Optical module
JP2012098756A (en) Optical path converting body and packaging structure thereof, and optical module with the same
JP2003167159A (en) Lens component with optical fiber
KR20170090593A (en) light module
JP2004361904A (en) Optical component, its manufacturing method, processing tool for optical component and its manufacturing method
JP4633534B2 (en) Lens with reference mounting surface
JP2005352075A (en) Optical semiconductor element module
JP4895066B2 (en) Coupling device and manufacturing method thereof
JPS5982779A (en) Mounting method of optical integrated circuit
JPH07253526A (en) Optical fiber light source device, light source device and production of optical fiber light source device
US20220365310A1 (en) Optical device and optical component
JPH02210406A (en) Optical coupling circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041116