JPH08191164A - Solid-state laser - Google Patents

Solid-state laser

Info

Publication number
JPH08191164A
JPH08191164A JP7002992A JP299295A JPH08191164A JP H08191164 A JPH08191164 A JP H08191164A JP 7002992 A JP7002992 A JP 7002992A JP 299295 A JP299295 A JP 299295A JP H08191164 A JPH08191164 A JP H08191164A
Authority
JP
Japan
Prior art keywords
refrigerant
solid
terminal electrode
cavity
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7002992A
Other languages
Japanese (ja)
Inventor
Tadanobu Iwasaki
唯信 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7002992A priority Critical patent/JPH08191164A/en
Publication of JPH08191164A publication Critical patent/JPH08191164A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To prevent a solid-state laser from being overheated by effectively cooling the terminal electrodes of an exciting lamp, wherein the solid-state laser has such a structure that the exciting lamp is housed in a cavity equipped with an exciting light transmitting window on a solid-state laser medium side, and the exciting lamp is cooled down in a flow of medium introduced into the cavity. CONSTITUTION: Both end electrodes of exciting lamps 8 are separately or collectively are surrounded through the intermediary of empty gaps 100, and flow path guides 11 are provided inside the cavities 15a so as to restrain coolant which flows into the cavities 15a from flowing out of the cavities 15a without passing through either of the empty gaps 100.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、レーザ加工装置等に
用いるレーザであって、励起光の照射を受けてレーザ光
を生成,増幅するレーザ媒体に固体レーザ媒体が用いら
れ、この固体レーザ媒体を照射する励起ランプが、励起
光透過窓により閉鎖される開口をレーザ媒体側に備える
とともに冷媒の入口と出口とを有する空洞内に収納さ
れ、励起光照射中励起ランプが冷媒の流れの中で冷却さ
れる固体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser used in a laser processing apparatus or the like, and a solid-state laser medium is used as a laser medium for generating and amplifying laser light by receiving irradiation of excitation light. The excitation lamp for irradiating the is housed in a cavity having an inlet and an outlet for the refrigerant with an opening closed on the laser medium side by the excitation light transmitting window, and the excitation lamp is irradiating the excitation light in the flow of the refrigerant. It relates to a cooled solid-state laser.

【0002】[0002]

【従来の技術】従来、この種の固体レーザでは、励起ラ
ンプに直管状のランプが用いられ、このランプを断面形
状が円弧状あるいは半楕円状の反射面をもつトンネル状
レフレクタの内側に配し、長手方向がランプの軸方向と
平行になるように置かれた,通常横断面形状方形の固体
レーザ媒体をランプからの直接光およびレフレクタから
の反射光で照射してレーザ媒体に光のエネルギーを吸収
させ、レーザ光を生成,増幅させる構造になっている。
励起ランプには、入力エネルギーに占める光エネルギー
の割合を多くするため、XeやKr等の発光用ガスが充
填されたガス放電式ランプが用いられるが、それでも消
費されるエネルギーの大部分は熱となるため、レフレク
タおよびランプを冷却するために、純水などの冷媒をラ
ンプの周囲とレフレクタ内面とに流して冷却が行われ
る。図3はレーザ光をパルス発振させるためのガス放電
式励起ランプの構造例を示すものであるが、石英ガラス
からなる直管状放電管1の軸方向両側の細径部にそれぞ
れ棒状の端子電極4および5が挿入され、これらの端子
電極4,5を外部へ引き出すアノード端子2およびカソ
ード端子3に放電管1の両端部を溶着させて放電管1内
部の気密が保たれている。端子電極4および5はそれぞ
れ電極冷却部4A,5Aと電極先端部4B,5Bとから
なるが、放電時には電極先端部4B,5Bでの発熱量が
多く、高温になるため、この熱を電極冷却部4A,5A
に伝導し、放電管1の細径部を通して冷媒中へ導出して
いる。励起ランプを冷媒の流れの中に置くために、励起
ランプとレフレクタとは、縦長の深い凹部が形成された
金属ブロックと,この凹部を閉鎖する蓋板とで形成され
る空洞内に収納される。この金属ブロックには冷媒導入
用の入口と冷媒導出用の出口とが形成されるとともに、
固体レーザ媒体側すなわち凹部の底面に開口が形成され
る。この開口は励起光透過窓で閉鎖され、この励起光透
過窓にレーザ光の生成に与らない波長の光を吸収させて
レーザ媒体を無用に加熱することのないようにするとと
もに、レーザ媒体側の冷媒と励起ランプ側の冷媒とを混
合させないようにする。
2. Description of the Related Art Conventionally, in this type of solid-state laser, a straight tube-shaped lamp has been used as an excitation lamp, and this lamp is arranged inside a tunnel-shaped reflector having a reflecting surface whose cross section is arcuate or semi-elliptical. , A rectangular solid laser medium with a transverse cross section, which is placed so that its longitudinal direction is parallel to the axial direction of the lamp, is irradiated with direct light from the lamp and reflected light from the reflector to apply light energy to the laser medium. It has a structure that absorbs and generates and amplifies laser light.
As the excitation lamp, a gas discharge lamp filled with a gas for light emission such as Xe or Kr is used in order to increase the ratio of light energy to the input energy, but still most of the energy consumed is generated by heat. Therefore, in order to cool the reflector and the lamp, a coolant such as pure water is flowed around the lamp and the inner surface of the reflector for cooling. FIG. 3 shows an example of the structure of a gas discharge type excitation lamp for pulsating a laser beam. A rod-shaped terminal electrode 4 is formed on each of the small diameter portions on both axial sides of a straight tubular discharge tube 1 made of quartz glass. And 5 are inserted, and both ends of the discharge tube 1 are welded to the anode terminal 2 and the cathode terminal 3 that draw these terminal electrodes 4 and 5 to the outside, so that the inside of the discharge tube 1 is kept airtight. The terminal electrodes 4 and 5 are composed of electrode cooling portions 4A and 5A and electrode tip portions 4B and 5B, respectively. However, during discharge, the electrode tip portions 4B and 5B generate a large amount of heat and become high in temperature. Part 4A, 5A
To the refrigerant through the small diameter portion of the discharge tube 1. In order to place the excitation lamp in the flow of the refrigerant, the excitation lamp and the reflector are housed in a cavity formed by a metal block having a vertically elongated deep recess and a lid plate closing the recess. . The metal block is formed with an inlet for introducing a refrigerant and an outlet for discharging a refrigerant, and
An opening is formed on the solid-state laser medium side, that is, on the bottom surface of the recess. This opening is closed by a pumping light transmitting window, and the pumping light transmitting window absorbs light having a wavelength that does not contribute to the generation of laser light to prevent unnecessary heating of the laser medium. Do not mix the refrigerant and the refrigerant on the excitation lamp side.

【0003】このように構成される従来の固体レーザで
は、さらに、放電管1細径部からの熱導出を効果的に行
うため、図4に示すように、励起ランプを直管状の石英
ガラスからなるフローチューブ内に入れ、比較的低温の
上流側端子2まわりから流入した冷媒を上流側と下流側
との圧力差で励起ランプに近接させて流すことにより、
冷媒に熱を持ち去らさせるようにしている。
In the conventional solid-state laser configured as described above, in addition, in order to effectively conduct heat from the small diameter portion of the discharge tube 1, as shown in FIG. 4, the excitation lamp is made of straight-tube quartz glass. In the flow tube, the refrigerant flowing from the vicinity of the upstream side terminal 2 having a relatively low temperature is caused to flow near the excitation lamp due to the pressure difference between the upstream side and the downstream side,
The heat is taken away by the refrigerant.

【0004】[0004]

【発明が解決しようとする課題】このように、電極冷却
部を効果的に冷却するためにフローチューブを用いる従
来の方法には以下の問題点があった。 (イ)フローチューブと励起ランプとの間のリング状の
冷媒層の厚さがレフレクタの大きさの制約を受けて十分
大きくとれず、このため冷媒の温度が上昇しやすく、励
起ランプの下流側では冷媒の温度がかなり上昇し、下流
側電極冷却部との温度差が小さくなり、下流側電極冷却
部の冷却が効果的に行われず、一方、電極冷却部と放電
管細径部との間の隙間は、電極冷却部の熱を放電管細径
部を介して外部へ導出するために大きくとれず、このた
め、電極冷却部の熱膨張により隙間が無くなって放電管
細径部を押し広げる力がかかり、放電管が破壊しやすく
なる。
As described above, the conventional method using the flow tube for effectively cooling the electrode cooling portion has the following problems. (B) The thickness of the ring-shaped refrigerant layer between the flow tube and the excitation lamp cannot be set sufficiently large due to the size of the reflector, and therefore the temperature of the refrigerant easily rises and the downstream side of the excitation lamp. In this case, the temperature of the refrigerant rises considerably, the temperature difference with the downstream electrode cooling part becomes small, and the cooling of the downstream electrode cooling part is not performed effectively.On the other hand, between the electrode cooling part and the discharge tube small diameter part, Since the heat of the electrode cooling part is discharged to the outside through the discharge tube small-diameter portion, the gap cannot be large. Therefore, due to the thermal expansion of the electrode cooling part, the gap disappears and the discharge tube small-diameter portion is expanded. Force is applied and the discharge tube is easily broken.

【0005】(ロ)フローチューブに流入した冷媒が高
温の電極冷却部まわりで気化すると、冷媒の蒸気が下流
側のフローチューブ,励起ランプ間空間に励起ランプに
沿って存在し、かつこれが励起ランプにより加熱される
ため、フローチューブに流入する冷媒量が減り、特に下
流側電極部に対する冷却効果がさらに低下して放電管の
破壊がさらに起こりやすくなる。
(B) When the refrigerant flowing into the flow tube is vaporized around the high temperature electrode cooling section, the vapor of the refrigerant exists in the space between the flow tube and the excitation lamp on the downstream side along the excitation lamp, and this is the excitation lamp. As a result, the amount of refrigerant flowing into the flow tube is reduced, and the cooling effect particularly on the downstream electrode portion is further reduced, so that the discharge tube is more easily broken.

【0006】(ハ)フローチューブでの表面反射や吸収
があるため、固体レーザ媒体に照射される励起光エネル
ギーに約10%の損失が生じ、レーザの発振効率が低下
する。 (ニ)フローチューブを入れるためにレフレクタの小形
化が制限される。 これらの問題点を解決する方法として、冷媒を送り出す
ポンプの吐出圧力を上げる方法が考えられるが、空洞の
耐圧力の問題や、ポンプの大型化によるコストアップの
問題がある。
(C) Due to the surface reflection and absorption by the flow tube, the energy of the excitation light with which the solid-state laser medium is irradiated is reduced by about 10%, and the oscillation efficiency of the laser is reduced. (D) Miniaturization of the reflector is restricted because the flow tube is inserted. As a method of solving these problems, a method of increasing the discharge pressure of a pump that sends out the refrigerant is conceivable, but there are problems of pressure resistance of the cavity and cost increase due to an increase in size of the pump.

【0007】本発明の目的は、励起ランプ、特にその両
電極冷却部まわりに冷媒の温度上昇が問題にならないく
らい十分に冷媒を供給することのできる冷却構造をもつ
固体レーザを提供することである。
It is an object of the present invention to provide a solid-state laser having a cooling structure capable of supplying a sufficient amount of cooling medium to the pump lamp, especially around the both electrode cooling parts thereof, so that the temperature rise of the cooling medium is not a problem. .

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明においては、冒頭記載の構成による固体レー
ザ、すなわち、励起光の照射を受けてレーザ光を生成,
増幅する固体レーザ媒体を照射する励起ランプが、励起
光透過窓により閉鎖される開口をレーザ媒体側に備える
とともに冷媒の入口と出口とを有する空洞内に収納さ
れ、励起光照射中励起ランプが冷媒の流れの中で冷却さ
れる固体レーザを、請求項1に記載のごとく、前記空洞
内に、励起ランプの両端子電極部をそれぞれ個別に、あ
るいは一括に空隙を介して囲み、空洞の冷媒入口から空
洞内へ流入した冷媒のうち、前記空隙のいずれをも通過
しないで冷媒出口へ向かう冷媒を存在させない流路ガイ
ドが設けられたレーザとする。
In order to solve the above problems, in the present invention, a solid-state laser having the structure described at the beginning, that is, a laser beam is generated by receiving excitation light irradiation,
An excitation lamp for irradiating a solid-state laser medium to be amplified is housed in a cavity having an inlet and an outlet for a refrigerant, which is provided with an opening on the laser medium side that is closed by an excitation light transmission window, and the excitation lamp during excitation light irradiation is a refrigerant. A solid-state laser that is cooled in a flow of a cavity, as described in claim 1, wherein both terminal electrode parts of the excitation lamp are individually or collectively enclosed in the cavity through a cavity, and a coolant inlet of the cavity is provided. The laser is provided with a flow path guide that does not allow any of the refrigerant flowing into the cavity from the inside of the cavity to pass through none of the voids and flow toward the refrigerant outlet.

【0009】この場合、端子電極部と流路ガイドとの間
の空隙は、請求項2に記載のごとく、端子電極部の周方
向ほぼ一定するのがよい。また、端子電極部を空隙を介
して囲む流路ガイドの空隙部内周面の冷媒の流れ方向の
長さは、請求項3に記載のごとく、端子電極部の冷媒の
流れ方向の全長をカバーする長さとすれば好適である。
In this case, it is preferable that the gap between the terminal electrode portion and the flow path guide is substantially constant in the circumferential direction of the terminal electrode portion. Further, the length of the inner circumferential surface of the void portion of the flow path guide that surrounds the terminal electrode portion via the void in the refrigerant flow direction covers the entire length of the terminal electrode portion in the refrigerant flow direction as described in claim 3. The length is preferable.

【0010】[0010]

【作用】本発明は、冷媒の流れの中に被冷却物体を於い
てこれを冷却する際の冷却効果が、被冷却物体に沿って
流れる冷媒のマスフローによって決まるという冷却の基
本に着目し、空洞内へ送り出された冷媒を可及的多量に
端子電極部に沿って流しうる冷却構造の形成を目指した
ものである。本発明が対象とした冒頭記載の構成による
固体レーザでは、空洞内に送り込まれた冷媒は、励起ラ
ンプと,レーザ媒体の受光面を均一に照射するために必
然的に励起ランプと併用されるレフレクタとの両方の冷
却に用いられることになるが、本発明においては、励起
ランプが破壊するとレーザが機能を失うことから、送り
込まれた冷媒の全量が端子電極部の冷却に使用できる冷
却構造を目指した。冷媒の全量が最初に両端子電極部の
冷却に使用さたとしても、端子電極部は質量が小さく、
熱容量が小さいので、冷却後の冷媒の温度はさほど上昇
せず、励起ランプの放電管本体とレフレクタとを十分に
冷却することができる。そこで、この冷却構造を、請求
項1記載のごとく、空洞内に、励起ランプの両端子電極
部をそれぞれ個別に、あるいは一括に空隙を介して囲
み、空洞の冷媒入口から空洞内へ流入した冷媒のうち、
前記空隙のいずれをも通過しないで冷媒出口へ向かう冷
媒を存在させない流路ガイドが設けられた冷却構造とす
ると、励起ランプが直管状に形成され、空洞の冷媒入口
が励起ランプの長手方向一方の側に設けられているとき
には、冷媒は、上流側端子電極部−励起ランプ本体,レ
フレクタ−下流側端子電極部の順に、かつ両端子電極部
を全量で冷却する。また、空洞の冷媒入口を励起ランプ
の長手方向中間位置に設ける場合には、冷媒入口から流
入した冷媒は空洞内で2方向に分流し、それぞれ、励起
ランプ本体の長手方向約1/2の長さ、レフレクタの励
起ランプ長手方向約1/2の長さ−端子電極部の順に、
かつ両端子電極部をそれぞれ全量の1/2で、両端子電
極部合計では冷媒全量で端子電極部を冷却する。一方、
冷媒内の温度分布を見ると、レフレクタの長手方向範囲
内では、温度は常に励起ランプ側とレフレクタ反射面側
とで高く、中間では低く、温度分布が谷状となり、冷媒
の冷却順としてレフレクタがさきに冷却される冷媒の流
れの中でも、励起ランプの端子電極部まわりにもたらさ
れた冷媒は、空隙の径方向の幅が極端に小さくないかぎ
り、常に温度の谷へ向けて端子電極部の熱を伝達しよう
とするため、端子冷却部は効果的に冷却作用を受けるこ
とができる。また、励起ランプが、固体レーザ受光面の
均一照射を目的として、例えば対向2辺間隔の狭い,縦
長のU字状に形成されるような場合には、両端子電極部
が冷媒の流れの上流側に横一列に並ぶので、両端子電極
部を一括に冷媒全量で冷却することができる。
In the present invention, the cooling effect when the object to be cooled is cooled in the flow of the refrigerant is determined by the mass flow of the refrigerant flowing along the object to be cooled, and the cavity is considered. The purpose of the invention is to form a cooling structure capable of flowing the refrigerant sent inward as much as possible along the terminal electrode portion. In the solid-state laser having the structure described at the beginning of the present invention, the coolant sent into the cavity is inevitably used in combination with the excitation lamp and the reflector to uniformly irradiate the light-receiving surface of the laser medium. However, in the present invention, since the laser loses its function when the excitation lamp is broken, the aim is to provide a cooling structure in which the entire amount of the refrigerant fed can be used to cool the terminal electrode portion. It was Even if the total amount of refrigerant is used to cool both terminal electrode parts first, the terminal electrode parts have a small mass,
Since the heat capacity is small, the temperature of the refrigerant after cooling does not rise so much, and the discharge tube body of the excitation lamp and the reflector can be sufficiently cooled. Therefore, as described in claim 1, this cooling structure encloses both terminal electrode parts of the excitation lamp in the cavity individually or collectively via a cavity, and a refrigerant flowing from the refrigerant inlet of the cavity into the cavity. Out of
When the cooling structure is provided with a flow path guide that does not pass the refrigerant toward the refrigerant outlet without passing through any of the gaps, the excitation lamp is formed in a straight tube shape, and the refrigerant inlet of the cavity is one of the longitudinal direction of the excitation lamp. When it is provided on the side, the refrigerant cools the upstream side terminal electrode portion-excitation lamp body, the reflector-downstream side terminal electrode portion in this order, and both terminal electrode portions in total amount. Further, when the refrigerant inlet of the cavity is provided at an intermediate position in the longitudinal direction of the excitation lamp, the refrigerant that has flowed in from the refrigerant inlet is divided into two directions in the cavity, and the length of the excitation lamp main body is about 1/2 of the longitudinal direction. The length of the reflector in the longitudinal direction of the excitation lamp is about 1 / 2-in the order of the terminal electrodes,
In addition, the total amount of both terminal electrode portions is halved, and the total amount of both terminal electrode portions cools the total amount of the refrigerant. on the other hand,
Looking at the temperature distribution in the refrigerant, the temperature is always high in the longitudinal range of the reflector on the excitation lamp side and the reflector reflection surface side, low in the middle, and the temperature distribution is valley-shaped, and the reflector is cooled in the cooling order. Even in the flow of the cooling medium that was previously cooled, the cooling medium introduced around the terminal electrode section of the excitation lamp is always directed toward the valley of the temperature of the terminal electrode section unless the radial width of the void is extremely small. Since the heat is transferred, the terminal cooling part can be effectively cooled. Further, when the excitation lamp is formed in a vertically long U-shape with a narrow interval between two opposite sides for the purpose of uniform irradiation of the solid-state laser light receiving surface, both terminal electrodes are upstream of the flow of the refrigerant. Since they are lined up in a horizontal row on the side, both the terminal electrode portions can be collectively cooled with the entire amount of the refrigerant.

【0011】そして、端子電極部の冷却構造を上記のよ
うに形成する場合、請求項2記載のように、端子電極部
と流路ガイドとの間の空隙を、端子電極部の周方向ほぼ
一定とすると、端子電極部まわりの冷媒層の厚みが均一
となり、端子電極部まわりの冷媒の流量が一定の場合、
端子電極部の冷却が最もよく行われる。また、請求項3
記載のように、端子電極部を空隙を介して囲む流路ガイ
ドの空隙部内周面の冷媒の流れ方向の長さを、端子電極
部の冷媒の流れ方向の全長をカバーする長さとすると、
冷媒の流れの速さが遅く、流れの慣性だけでは端子電極
部全長にわたり同一流路断面で流れを端子電極部に沿わ
せることのできない場合にも、冷媒を強制的に同一流路
断面で端子電極部に沿わせて冷却に与らせることがで
き、端子電極部を効果的に冷却することができる。
When the cooling structure of the terminal electrode portion is formed as described above, the gap between the terminal electrode portion and the flow path guide is substantially constant in the circumferential direction of the terminal electrode portion as described in claim 2. Then, the thickness of the refrigerant layer around the terminal electrode portion becomes uniform, and when the flow rate of the refrigerant around the terminal electrode portion is constant,
Cooling of the terminal electrode portion is most often performed. Claim 3
As described, the length in the flow direction of the refrigerant of the cavity inner peripheral surface of the flow path guide that surrounds the terminal electrode portion through the void, and the length to cover the entire length of the flow direction of the refrigerant of the terminal electrode portion,
Even if the flow speed of the refrigerant is slow and it is not possible to make the flow along the terminal electrode part along the entire length of the terminal electrode part only by the inertia of the flow, the refrigerant is forced to the terminal in the same channel cross section. The cooling can be performed along the electrode portion, and the terminal electrode portion can be effectively cooled.

【0012】[0012]

【実施例】図1に本発明の一実施例による励起ランプ端
子電極部の冷却構造を備えた固体レーザの構造例を示
す。なお、この実施例では、励起ランプを、レーザ光の
パルス発振を目的とした直管状のガス放電式励起ランプ
としている。レーザは、この例では、YAG結晶からス
ラブ状に切り出してNd3+を注入した固体レーザ媒体1
0と、スラブ状固体レーザ媒体10の長手方向両側に配
されてレーザ媒体10内で生成,増幅されたレーザ光を
紙面の上下方向に導く導光路12と、これらレーザ媒体
10,導光路12を保持する,紙面の上下方向に長い角
溝状の凹部15aが形成されるとともに凹部15aの底
面に開口15bが形成された金属ブロック15と、開口
15bを閉鎖する励起光透過窓9と、金属ブロック15
の凹部15aを閉鎖して凹部15aを空洞空間化する蓋
板14と、空洞空間15a内に収納される励起ランプ8
と、空洞空間15a内に収納され励起ランプ8の放射光
をレーザ媒体10へ向けて反射するレフレクタ7と、本
発明による励起ランプの端子電極部冷却構造を作る流路
ガイド11と、を主要構成要素として構成されている。
なお、蓋板14には、励起ランプ8の端子を挟持して励
起ランプ8を空洞空間15a内に保持する電流端子13
が取り付けられている。
FIG. 1 shows an example of the structure of a solid-state laser provided with a cooling structure for an excitation lamp terminal electrode portion according to an embodiment of the present invention. In this embodiment, the excitation lamp is a straight-tube gas discharge type excitation lamp for the purpose of pulse oscillation of laser light. The laser is, in this example, a solid-state laser medium 1 cut out from a YAG crystal in a slab shape and injected with Nd 3+.
0, a light guide path 12 arranged on both sides in the longitudinal direction of the slab-shaped solid-state laser medium 10 to guide the laser light generated and amplified in the laser medium 10 in the vertical direction of the paper surface, and the laser medium 10 and the light guide path 12. A metal block 15 for holding, which has a long groove-shaped recess 15a formed in the vertical direction of the paper and an opening 15b formed on the bottom of the recess 15a, an excitation light transmitting window 9 for closing the opening 15b, and a metal block. 15
Lid plate 14 that closes the concave portion 15a of the hollow portion 15a to make the concave portion 15a a hollow space, and the excitation lamp 8 housed in the hollow space 15a.
A reflector 7, which is housed in the hollow space 15a and reflects the emitted light of the excitation lamp 8 toward the laser medium 10, and a flow path guide 11 which forms a terminal electrode cooling structure of the excitation lamp according to the present invention. It is organized as an element.
The lid plate 14 holds the terminals of the excitation lamp 8 and holds the excitation lamp 8 in the hollow space 15a.
Is attached.

【0013】レーザ光をパルス発振させる場合には、空
洞空間15a内へ空洞空間15aの紙面上部に形成され
た図示されない冷媒入口から冷媒として純水を導入しな
がら、かつレーザ媒体10が位置する冷媒流路にも純水
を導入しながら励起ランプ8のアノード端子2とカソー
ド端子3との間に所定の時間間隔でコンデンサ電圧を印
加して端子電極4,5(図3)の各先端部4B,5B間
に放電を生じさせ、これにより放電管1内の発光用ガス
を励起して光をパルス状に発生させる。この光は直接
に、またレフレクタで反射されて励起光透過窓9を透過
し、レーザ媒体10を照射する。励起光透過窓9はフィ
ルタガラスで作られ、レーザ光の生成,増幅に与らない
紫外光を吸収してレーザ媒体10の無用の加熱を防止す
る。レーザ媒体10内に生成されたレーザ光は、媒体1
0内を、媒体10の励起光受光面で全反射されながらジ
グザグに紙面の上下方向に進行し、下方へ進んだレーザ
光は下方の導光路12を通って図示されない全反射ミラ
ーに到達し、ここで全反射され、再び導光路12を通
り、レーザ媒体10を通過し、通過の途中で増幅され、
上方の導光路12を通って図示されない出力ミラーに到
達し、一部が出力ミラーを貫通して出力光として外部へ
射出され、残りが反射されて再び上方の導光路12に入
る。
When the laser light is pulsed, pure water is introduced as a refrigerant into the hollow space 15a from a refrigerant inlet (not shown) formed in the upper portion of the hollow space 15a in the plane of the drawing, and the refrigerant in which the laser medium 10 is located is located. While introducing pure water also into the flow path, a capacitor voltage is applied at a predetermined time interval between the anode terminal 2 and the cathode terminal 3 of the excitation lamp 8 so that each tip portion 4B of the terminal electrodes 4, 5 (FIG. 3). , 5B to generate a discharge, which excites the gas for light emission in the discharge tube 1 to generate a pulsed light. This light is directly reflected by the reflector and transmitted through the excitation light transmitting window 9 to irradiate the laser medium 10. The excitation light transmission window 9 is made of filter glass and absorbs ultraviolet light that does not contribute to the generation and amplification of the laser light to prevent unnecessary heating of the laser medium 10. The laser light generated in the laser medium 10 is the medium 1
In 0, while being totally reflected by the excitation light receiving surface of the medium 10, the laser light travels in a zigzag direction up and down on the paper surface, and the laser light traveling downward reaches the total reflection mirror (not shown) through the lower light guide path 12. Here, the light is totally reflected, passes through the light guide path 12 again, passes through the laser medium 10, and is amplified during the passage,
It reaches an output mirror (not shown) through the upper light guide path 12, a part of which penetrates the output mirror and is emitted to the outside as output light, and the rest is reflected and enters the upper light guide path 12 again.

【0014】励起ランプ8内の放電はパルス状に連続し
て発生するので、端子電極先端部(図3)に発生した熱
は次々に電極冷却部4A,5Aへ伝達され、電極冷却部
の温度を上昇させる。電極冷却部4A,5Aは図1およ
び図2に示すように、流路ガイド11により空隙100
を介して囲まれ、この空隙100を、空洞空間15a内
へ図の上部から送り込まれた冷却水の全量が通過する。
流路ガイド11は、電極冷却部4A,5A(図3参照)
の長さに等しい厚みと、トンネル状レフレクタ7の横断
面形状と同一輪郭形状とを有する方形の金属板に、この
方形金属板をトンネル状レフレクタ7前後の端面に輪郭
を一致させて当接したときの励起ランプ8の中心軸位置
を中心とする円形の孔11aが形成されたもので、この
円形の孔11aを励起ランプ8の放電管1(図3)本体
の径よりも径の大きい孔として電極冷却部4A,5Aと
孔11aとの間に空隙100を形成させている。
Since the discharge in the excitation lamp 8 is continuously generated in a pulsed manner, the heat generated at the tip of the terminal electrode (FIG. 3) is transferred to the electrode cooling parts 4A and 5A one after another, and the temperature of the electrode cooling part is increased. Raise. As shown in FIGS. 1 and 2, the electrode cooling parts 4A and 5A are provided with a space 100 by the flow path guide 11.
The entire amount of the cooling water sent from the upper part of the figure into the cavity 15a passes through this void 100.
The flow path guide 11 includes electrode cooling parts 4A and 5A (see FIG. 3).
And a rectangular metal plate having a thickness equal to the length of the tunnel-shaped reflector 7 and the same contour shape as the cross-sectional shape of the tunnel-shaped reflector 7. At this time, a circular hole 11a centered on the central axis position of the excitation lamp 8 is formed. The circular hole 11a has a diameter larger than that of the main body of the discharge tube 1 (FIG. 3) of the excitation lamp 8. As a result, a space 100 is formed between the electrode cooling parts 4A and 5A and the hole 11a.

【0015】この空隙100を通過する純水(以下冷却
水と記す)はまず上部電極冷却部4Aを冷却してレフレ
クタ7の内側へ入り、この内側空間で速度を落としてゆ
っくりと励起ランプ8の放電管1(図3)本体とレフレ
クタ7とを冷却し、再び冷却水の全量が下部電極冷却部
5Aと流路ガイド11の孔11aとの間の空隙100を
通過し、下部電極冷却部5aを冷却して空洞空間15a
下部の出口から外部へ流出する。電極冷却部4Aは電極
先端部からの熱伝達により高温に加熱されようとする
が、十分な量の冷却水により熱を持ち去られて加熱を免
れ、また、電極冷却部は寸法が小さく、熱容量が小さい
ので、上部電極冷却部4Aまわりの空隙100を通過し
た冷却水の温度はさほど上っておらず、かつこの冷却水
が励起ランプ8とレフレクタ7とを冷却する際には、励
起ランプ8側とレフレクタ7側とでは温度が上昇するが
中間では温度の上がり方が少ないため、冷却水の平均温
度はさほど高くならず、励起ランプ8側とレフレクタ7
側とへ広がった冷却水が再び集まって下部電極冷却部5
Aまわりの空隙を通過するときの下部電極冷却部5Aと
冷却水との温度差がさほど小さくならないため、下部電
極冷却部5Aも上部電極冷却部4Aと同等近くまで冷却
される。なお、図1において、2つの空洞空間15a,
15aの各冷媒入口の流路断面はいずれも各冷媒出口の
流路断面よりも十分大きくして、両空洞空間15a,1
5aへの冷媒供給は並列に行い、両空間での冷媒流量を
等しくしている。また、空洞空間15a,15a内の冷
却とレーザ媒体10の冷却とは別の流路で行っている。
Pure water (hereinafter referred to as "cooling water") passing through the gap 100 first cools the upper electrode cooling portion 4A and enters the inside of the reflector 7, and the speed thereof is reduced in this inner space to slowly move the excitation lamp 8. The main body of the discharge tube 1 (FIG. 3) and the reflector 7 are cooled, and the entire amount of the cooling water again passes through the space 100 between the lower electrode cooling portion 5A and the hole 11a of the flow path guide 11, and the lower electrode cooling portion 5a. To cool the hollow space 15a
It flows out from the lower outlet. The electrode cooling part 4A tries to be heated to a high temperature by the heat transfer from the electrode tip part, but the heat is removed by a sufficient amount of cooling water to avoid the heating, and the electrode cooling part has a small size and a heat capacity. Since it is small, the temperature of the cooling water that has passed through the gap 100 around the upper electrode cooling portion 4A does not rise so much, and when this cooling water cools the excitation lamp 8 and the reflector 7, the excitation lamp 8 side The temperature of the cooling water does not rise so much in the middle, and the temperature of the cooling water does not rise so much in the middle, so that the temperature of the excitation lamp 8 side and the reflector 7 side increases.
The cooling water that has spread to the side collects again and the lower electrode cooling unit 5
Since the temperature difference between the lower electrode cooling part 5A and the cooling water when passing through the space around A does not become so small, the lower electrode cooling part 5A is also cooled to almost the same level as the upper electrode cooling part 4A. In FIG. 1, two hollow spaces 15a,
The flow passage cross section of each refrigerant inlet of 15a is made sufficiently larger than the flow passage cross section of each refrigerant outlet so that both cavity spaces 15a, 1
Refrigerant supply to 5a is performed in parallel to equalize the refrigerant flow rates in both spaces. Further, the cooling of the hollow spaces 15a, 15a and the cooling of the laser medium 10 are performed in different flow paths.

【0016】なお、図1には示していないが、流路ガイ
ド11はレフレクタ7の紙面上下方向両端子にねじで固
定されている。従って励起ランプ8の両端子2,3(図
3)を電流端子13(図1)に挿入して挟持させる場合
には、レフレクタ7と流路ガイド11とをねじで一体化
した後、励起ランプ8を流路ガイド11の孔11aを通
して電流端子13への挿入,挟持が行われる。励起ラン
プ8の放電管1(図3)は石英ガラスで作られ、衝撃に
より破損しやすいので、レフレクタ7を、図1の紙面に
平行な平面を分割面とした2つ割り構造とし、励起ラン
プ8の両端子2,3(図3)をさきに電流端子13(図
1)に挿入,挟持させ、励起ランプ8を両側から挟むよ
うにして空洞空間15a内に組み込むようにしたい場合
は、流路ガイド11も図1の紙面に平行な平面を分割面
とした2つの割り構造として、それぞれを2つ割り構造
のレフレクタ各片に一体化する。
Although not shown in FIG. 1, the flow path guide 11 is fixed to both terminals of the reflector 7 in the vertical direction on the paper surface with screws. Therefore, when inserting both terminals 2 and 3 (FIG. 3) of the excitation lamp 8 into the current terminal 13 (FIG. 1) for sandwiching, the reflector 7 and the flow passage guide 11 are integrated with a screw, and then the excitation lamp 8 is inserted and pinched in the current terminal 13 through the hole 11a of the flow path guide 11. Since the discharge tube 1 (FIG. 3) of the excitation lamp 8 is made of quartz glass and is easily damaged by impact, the reflector 7 has a split structure in which the plane parallel to the paper surface of FIG. When it is desired to insert and pinch both terminals 2, 3 (FIG. 3) of 8 into the current terminal 13 (FIG. 1) and insert the excitation lamp 8 from both sides into the hollow space 15a, the flow path guide Reference numeral 11 also has two split structures in which a plane parallel to the paper surface of FIG. 1 is used as a split surface, and each of them is integrated with each piece of the reflector having the split structure.

【0017】[0017]

【発明の効果】本発明では、冒頭記載の構成による固体
レーザを、請求項1に記載のごとく、空洞内に、励起ラ
ンプの両端子電極部をそれぞれ個別に、あるいは一括に
空隙を介して囲み、空洞の冷媒入口から空洞内へ流入し
た冷媒のうち、前記空隙のいずれをも通過しないで冷媒
出口へ向かう冷媒を存在させない流路ガイドを設けたも
のとしたので、空洞内に送り込まれた冷媒の全量で励起
ランプの端子電極部が冷却され、端子電極部の熱が冷媒
により多量に持ち去られるので端子電極部の過熱が生じ
なくなり、端子電極部の熱膨張による励起ランプの放電
管破壊が防止され、端子電極部が励起ランプの寿命を決
める要因にならなくなり、ランプ寿命が飛躍的に長くな
る。また、従来のフローチューブが不要となり、励起光
エネルギーの損失が低減され、レーザの発振効率が向上
した。さらに、レフレクタの小形化が可能となり、わず
かではあるがレーザの小形化が可能となった。
According to the present invention, as described in claim 1, the solid-state laser having the structure described at the beginning is enclosed in a cavity with both terminal electrodes of the excitation lamp individually or collectively via a gap. Of the refrigerant that has flowed into the cavity from the refrigerant inlet of the cavity, since a flow path guide that does not allow the refrigerant to go to the refrigerant outlet without passing through any of the voids is provided, the refrigerant sent into the cavity The entire terminal volume of the excitation lamp is cooled, and a large amount of heat in the terminal electrode section is carried away by the refrigerant, so that overheating of the terminal electrode section does not occur and destruction of the discharge tube of the excitation lamp due to thermal expansion of the terminal electrode section is prevented. As a result, the terminal electrode portion does not become a factor that determines the life of the excitation lamp, and the life of the lamp is dramatically extended. Moreover, the conventional flow tube is no longer required, the loss of excitation light energy is reduced, and the laser oscillation efficiency is improved. Furthermore, the reflector can be downsized, and the laser can be downsized to a small extent.

【0018】そして、請求項2に記載のごとく、端子電
極部と流路ガイドとの間の空隙を端子電極部の周方向ほ
ぼ一定とすることにより、端子電極部まわりの冷媒層の
厚みが均一となり、端子電極部まわりの冷媒の流量が一
定の場合、端子電極部の冷却が最もよく行われるように
なるため、冷媒の利用効率が最大となる。また、請求項
3に記載のごとく、端子電極部を空隙を介して囲む流路
ガイドの空隙部内周面の冷媒の流れ方向の長さを、端子
電極部の冷媒の流れ方向の全長をカバーする長さとする
ことにより、端子電極部に沿う冷媒流の流速が小さく、
流れの慣性だけでは端子電極部の冷媒の流れ方向全長に
冷媒を同一流路断面で沿わせることができない場合に
も、端子電極部の冷媒の流れ方向全長に冷媒を同一流路
断面で沿わせることができ、冷媒の利用効率が向上す
る。
Further, as described in claim 2, the gap between the terminal electrode portion and the flow path guide is made substantially constant in the circumferential direction of the terminal electrode portion, so that the thickness of the refrigerant layer around the terminal electrode portion is uniform. Therefore, when the flow rate of the refrigerant around the terminal electrode portion is constant, the cooling of the terminal electrode portion is performed best, so that the efficiency of use of the refrigerant is maximized. Further, as described in claim 3, the length in the flow direction of the refrigerant of the inner peripheral surface of the void portion of the flow path guide that surrounds the terminal electrode portion via the void is covered by the entire length of the terminal electrode portion in the refrigerant flow direction. By making the length, the flow velocity of the refrigerant flow along the terminal electrode portion is small,
Even if it is not possible to make the refrigerant flow along the entire flow direction of the terminal electrode section in the same flow path cross-section only by the inertia of the flow, make the refrigerant flow along the same flow path cross section of the terminal electrode section in the flow direction of the refrigerant. It is possible to improve the utilization efficiency of the refrigerant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による励起ランプの端子電極部冷却構造
を備えた固体レーザ構造の一実施例を示す断面図
FIG. 1 is a sectional view showing an embodiment of a solid-state laser structure provided with a cooling structure for a terminal electrode portion of an excitation lamp according to the present invention.

【図2】図1におけるA−A線に沿う断面図2 is a sectional view taken along the line AA in FIG.

【図3】直管状励起ランプの構造例を示す断面図FIG. 3 is a sectional view showing a structural example of a straight tube excitation lamp.

【図4】直管状励起ランプの従来の冷却構造の一例を示
す断面図
FIG. 4 is a cross-sectional view showing an example of a conventional cooling structure for a straight tube excitation lamp.

【図5】直管状励起ランプに対する特別の冷却構造をも
たない従来一般の固体レーザにおける励起ランプの冷却
のされ方を説明するための要部断面図
FIG. 5 is a sectional view of an essential part for explaining how to cool an excitation lamp in a conventional general solid-state laser having no special cooling structure for a straight tube excitation lamp.

【図6】図4に示した冷却構造をもつ固体レーザにおけ
る励起ランプの冷却のされ方を説明するための要部断面
6 is a cross-sectional view of a main part for explaining how to cool an excitation lamp in a solid-state laser having the cooling structure shown in FIG.

【符号の説明】[Explanation of symbols]

1 放電管 2 アノード端子 3 カソード端子 4 端子電極 4A 電極冷却部 4B 電極先端部 5 端子電極 5A 電極冷却部 5B 電極先端部 7 レフレクタ 8 励起ランプ 9 励起光透過窓 10 レーザ媒体 11 流路ガイド 11a 孔 14 蓋板 15 金属ブロック 15a 凹部(空洞空間,空洞) 15b 開口 100 空隙 1 Discharge Tube 2 Anode Terminal 3 Cathode Terminal 4 Terminal Electrode 4A Electrode Cooling Section 4B Electrode Tip 5 Terminal Electrode 5A Electrode Cooling Section 5B Electrode Tip 7 Reflector 8 Excitation Lamp 9 Excitation Light Transmission Window 10 Laser Medium 11 Flow Path Guide 11a Hole 14 Cover Plate 15 Metal Block 15a Recess (Cavity Space, Cavity) 15b Opening 100 Void

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】励起光の照射を受けてレーザ光を生成,増
幅する固体レーザ媒体を照射する励起ランプが、励起光
透過窓により閉鎖される開口をレーザ媒体側に備えると
ともに冷媒の入口と出口とを有する空洞内に収納され、
励起光照射中励起ランプが冷媒の流れの中で冷却される
固体レーザにおいて、前記空洞内に、励起ランプの両端
子電極部をそれぞれ個別に、あるいは一括に空隙を介し
て囲み、空洞の冷媒入口から空洞内へ流入した冷媒のう
ち、前記空隙のいずれをも通過しないで冷媒出口へ向か
う冷媒を存在させない流路ガイドが設けられていること
を特徴とする固体レーザ。
1. An excitation lamp for irradiating a solid laser medium for generating and amplifying laser light upon receiving excitation light is provided with an opening closed on the laser medium side by an excitation light transmitting window, and an inlet and an outlet for a refrigerant. Housed in a cavity having and
In the solid-state laser in which the excitation lamp is cooled in the flow of the refrigerant during irradiation of the excitation light, both terminal electrodes of the excitation lamp are individually or collectively enclosed in the cavity through a gap, and the refrigerant inlet of the cavity The solid-state laser is provided with a flow path guide that does not allow a refrigerant, which does not pass through any of the voids and heads toward the refrigerant outlet, to exist in the refrigerant flowing into the cavity from.
【請求項2】請求項1に記載のものにおいて、端子電極
部と、これを囲む流路ガイドとの間の空隙は、端子電極
部の周方向ほぼ一定とすることを特徴とする固体レー
ザ。
2. The solid-state laser according to claim 1, wherein the gap between the terminal electrode portion and the flow path guide surrounding the terminal electrode portion is substantially constant in the circumferential direction of the terminal electrode portion.
【請求項3】請求項1または2に記載のものにおいて、
端子電極部を空隙を介して囲む流路ガイドの空隙部内周
面の冷媒の流れ方向の長さは、端子電極部の冷媒の流れ
方向の全長をカバーする長さとすることを特徴とする固
体レーザ。
3. The method according to claim 1 or 2, wherein
The solid-state laser characterized in that the length of the inner circumferential surface of the void portion of the flow path guide surrounding the terminal electrode portion through the void in the refrigerant flow direction is a length that covers the entire length of the terminal electrode portion in the refrigerant flow direction. .
JP7002992A 1995-01-12 1995-01-12 Solid-state laser Pending JPH08191164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7002992A JPH08191164A (en) 1995-01-12 1995-01-12 Solid-state laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7002992A JPH08191164A (en) 1995-01-12 1995-01-12 Solid-state laser

Publications (1)

Publication Number Publication Date
JPH08191164A true JPH08191164A (en) 1996-07-23

Family

ID=11544881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7002992A Pending JPH08191164A (en) 1995-01-12 1995-01-12 Solid-state laser

Country Status (1)

Country Link
JP (1) JPH08191164A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066368A (en) * 2006-09-05 2008-03-21 Okamoto Kogaku Kakosho:Kk Sunlight excitation laser device
CN104078824A (en) * 2014-07-22 2014-10-01 哈尔滨工业大学(威海) Full-cavity water-cooling solid laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066368A (en) * 2006-09-05 2008-03-21 Okamoto Kogaku Kakosho:Kk Sunlight excitation laser device
CN104078824A (en) * 2014-07-22 2014-10-01 哈尔滨工业大学(威海) Full-cavity water-cooling solid laser

Similar Documents

Publication Publication Date Title
US6115396A (en) Control system for a laser with multiple solid state rods
US5255282A (en) Open waveguide excimer laser
JPH08191164A (en) Solid-state laser
US4292601A (en) Flashlamp excited fluid laser amplifier
EP0202807B1 (en) Unstable optical resonator and laser
JP2007088384A (en) Vacuum ultraviolet laser beam source and method for generating vacuum ultraviolet laser
JPH0645667A (en) Solid laser device
JPH09260756A (en) Optical exciting solid state laser amplifier, optical exciting solid state laser and method for exciting solid state laser
KR20140015552A (en) Gas laser device
Nath et al. Design considerations and scaling laws for high power convective cooled CW CO 2 lasers
JP4003726B2 (en) Solid state laser apparatus and laser processing apparatus
RU1634091C (en) Process of pumping of gas flowing laser and gas flowing laser
CA1207070A (en) Tangential flow laser apparatus
JP2002026429A (en) Gas laser device
JPS6331182A (en) Gas laser device
RU2145140C1 (en) Metal vapor laser
JP4003725B2 (en) Solid state laser apparatus and laser processing apparatus
JPH02129979A (en) Microwave laser device
Witteman et al. Fast Flow Systems
JPS63228781A (en) Cooling structure of solid-state laser device
JPS6029238B2 (en) CO↓2 gas laser device
JPH0661558A (en) Gas laser device
JPH04225579A (en) Laser
JPH0423377A (en) Gas laser
JPS6384180A (en) Cas laser oscillator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees