JPH0819115A - Hybrid power source for motor driven vehicle - Google Patents

Hybrid power source for motor driven vehicle

Info

Publication number
JPH0819115A
JPH0819115A JP14275694A JP14275694A JPH0819115A JP H0819115 A JPH0819115 A JP H0819115A JP 14275694 A JP14275694 A JP 14275694A JP 14275694 A JP14275694 A JP 14275694A JP H0819115 A JPH0819115 A JP H0819115A
Authority
JP
Japan
Prior art keywords
power
power supply
source
power source
hybrid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14275694A
Other languages
Japanese (ja)
Other versions
JP3352534B2 (en
Inventor
Takeshi Inoue
武 井上
Tetsuo Fukuda
哲夫 福田
Nobuhide Seo
宣英 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP14275694A priority Critical patent/JP3352534B2/en
Publication of JPH0819115A publication Critical patent/JPH0819115A/en
Application granted granted Critical
Publication of JP3352534B2 publication Critical patent/JP3352534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Abstract

PURPOSE:To obtain traveling performance and to prevent the deterioration of a power source (P source) by variably controlling an available voltage variable range in response to a predetermined parameter when power storage of the rated performance or more of the P source is required. CONSTITUTION:A power controller 10 inputs a signal from accelerator opening detecting means 11, a signal from vehicle speed detecting means 12, etc. The controller 10 controls a power regulator 3 based on the input signals, and controls the temperature, the upper and lower limit voltages of a P source 2. The controller 10 controls charging and discharging output share of an E source 1 and the P source 2 in response to the traveling state, the vehicle state and a traffic state, and so controls the regulator 3 as to reduce the use frequency of an overvoltage range so as to store and discharge the power over the range limited by the rated performance of the source 2. As a result, the traveling performance can be obtained and the deterioration of the source 2 can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気エネルギーで駆動
される電動車両における2種類の電源を組み合わせたハ
イブリッド電源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hybrid power supply device which combines two types of power supplies in an electric vehicle driven by electric energy.

【0002】[0002]

【従来の技術】長時間の走行が要求され、かつ大きな負
荷変動を伴う電動車両においては、それぞれの要求に適
合する2種類の電源を組み合わせたハイブリッド電源が
用いられる。すなわち、長時間小電力の充放電に適した
エネルギー電源(以下「E電源」と呼ぶ)と、短時間大
電力の充放電に適したパワー電源(以下「P電源」と呼
ぶ)とによって、走行用電気モータを駆動することが行
われている。
2. Description of the Related Art In an electric vehicle which is required to travel for a long time and has a large load change, a hybrid power source is used which is a combination of two types of power sources that meet the respective requirements. That is, traveling is performed by an energy power source (hereinafter referred to as “E power source”) suitable for long-time small power charging and discharging and a power source suitable for short-time large power charging / discharging (hereinafter referred to as “P power source”). Driving an electric motor for use is under way.

【0003】この種のハイブリッド電源装置では、例え
ば特開平5−30608号公報に開示されているよう
に、一般に、E電源として蓄電池を、P電源としてコン
デンサを用いている。
In this type of hybrid power supply device, a storage battery is generally used as an E power supply and a capacitor is used as a P power supply, as disclosed in, for example, Japanese Patent Application Laid-Open No. 5-30608.

【0004】[0004]

【発明が解決しようとする課題】ところで、上述のよう
な構成を有する電動車両用ハイブリッド電源装置におい
ては、小負荷時には上記E電源のみから、大負荷時には
負荷に応じて両電源または上記P電源のみから、走行用
電気モータに電力を供給するように構成されている。す
なわち、通常はE電源のみによって走行するが、E電源
の出力電流をできるだけ節約して航続距離を延ばすた
め、加速時等のように大きな電力を必要とするときに
は、E電源の出力を制限し、不足する電力はP電源から
放電し、P電源の残存蓄電量が減少した場合はE電源か
ら充電するようにしている。
By the way, in the hybrid power supply device for an electric vehicle having the above-mentioned structure, only the E power source is used when the load is small, and both power sources or the P power source is used depending on the load when the load is large. Is configured to supply electric power to the traveling electric motor. That is, the vehicle normally travels only with the E power source, but in order to save the output current of the E power source as much as possible and extend the cruising range, the output of the E power source is limited when a large amount of power is required, such as during acceleration, The shortage of electric power is discharged from the P power source, and is charged from the E power source when the remaining storage amount of the P power source decreases.

【0005】しかしながら、P電源の劣化によって、蓄
電可能な容量が不足したり、内部抵抗が高くなったこと
による電圧降下によって、車両として必要な走行性能を
確保することができない場合が生じる。
However, due to the deterioration of the P power source, there is a case where the running performance required as a vehicle cannot be ensured due to a shortage of a chargeable capacity or a voltage drop due to an increase in internal resistance.

【0006】そこで、本発明は、走行性能を確保する手
段と、P電源の劣化防止手段と、劣化後の対策手段とを
備えた電動車両用ハイブリッド電源装置を提供すること
を目的とする。
Therefore, an object of the present invention is to provide a hybrid power supply device for an electric vehicle, which is provided with means for ensuring running performance, means for preventing deterioration of the P power supply, and means for taking measures after deterioration.

【0007】[0007]

【課題を解決するための手段】本発明によるハイブリッ
ド電源装置は、P電源の定格性能以上の蓄電が要求され
る場合は、所定のパラメータに応じて利用電圧可変範囲
を可変制御する制御手段を備えていることを特徴とす
る。
A hybrid power supply device according to the present invention comprises a control means for variably controlling a usable voltage variable range in accordance with a predetermined parameter when a storage capacity higher than the rated performance of a P power supply is required. It is characterized by

【0008】上記パラメータは、P電源の素子の温度、
定格性能を超える運転時間および負荷の大きさうちのす
くなくとも1つよりなる。
The above parameters are the temperature of the element of the P power supply,
It consists of at least one of the operating time and load magnitude that exceeds the rated performance.

【0009】また、本発明によるハイブリッド電源装置
は、P電源の定格性能以上の充放電電流量が要求される
場合は、上記所定のパラメータのうちの少なくとも1つ
に応じて定格電流以上での充放電頻度を可変可変制御す
る制御手段を備えていることを特徴とする。
Further, in the hybrid power supply device according to the present invention, when a charging / discharging current amount higher than the rated performance of the P power supply is required, charging is performed at a rated current or higher in accordance with at least one of the predetermined parameters. It is characterized in that it is provided with a control means for variably and variably controlling the discharge frequency.

【0010】さらに、本発明によるハイブリッド電源装
置は、P電源の容量の減少からP電源の劣化を検出し、
充電時、P電源に入るエネルギー量をモニターし、蓄電
されたエネルギー量に応じてE電源とP電源の配分を制
御する手段を備えていることを特徴とする。
Further, the hybrid power supply device according to the present invention detects deterioration of the P power supply from the decrease of the capacity of the P power supply,
It is characterized by including means for monitoring the amount of energy entering the P power source during charging and controlling distribution of the E power source and the P power source according to the stored energy amount.

【0011】その場合に、減少した容量に応じてP電源
の蓄電電圧(上限電圧)および放電終了電圧(下限電
圧)を可変制御する制御手段を備えている。
In this case, there is provided control means for variably controlling the stored voltage (upper limit voltage) and the discharge end voltage (lower limit voltage) of the P power supply according to the reduced capacity.

【0012】また、上記P電源の容量の減少による劣化
を、充放電初期の時間に対する電圧値の傾きから検出し
ている。
Further, the deterioration due to the decrease in the capacity of the P power supply is detected from the slope of the voltage value with respect to the initial time of charge / discharge.

【0013】さらに、本発明によるハイブリッド電源装
置は、P電源が複数の素子からなり、該P電源の充放電
初期の電圧降下から、内部抵抗の大きさを検出し、該内
部抵抗が所定の値以上になったとき、P電源の素子が劣
化したと判定して、内部抵抗低減処理を実行する手段を
備えている。
Further, in the hybrid power supply device according to the present invention, the P power supply is composed of a plurality of elements, the magnitude of the internal resistance is detected from the voltage drop of the P power supply at the initial stage of charging and discharging, and the internal resistance is set to a predetermined value. When the above is reached, it is determined that the element of the P power supply has deteriorated, and means for executing the internal resistance reduction processing is provided.

【0014】上記内部抵抗低減処理を実行する手段は、
充放電電流の大きさによりP電源の素子の加熱・冷却を
行う手段、内部抵抗が所定の値以上になった素子をバイ
パスさせる手段およびP電源の内部抵抗が所定の値にな
るように上記複数の素子を組み合わせる手段のうちすく
なくとも1つよりなる。
Means for executing the internal resistance reduction process are as follows:
A plurality of means for heating / cooling the elements of the P power supply according to the magnitude of the charging / discharging current, a means for bypassing the elements having an internal resistance equal to or higher than a predetermined value, and a plurality of the above-mentioned elements so that the internal resistance of the P power supply has a predetermined value. It comprises at least one of the means for combining the elements of.

【0015】[0015]

【作用および発明の効果】図4に示すように、P電源の
蓄電電圧(上限電圧)をV1 、放電終了電圧(下限電
圧)をV2 、容量をCとするとき、放電可能エネルギー
量Uは、一般的に下記の式で表される。
As shown in FIG. 4, when the stored voltage (upper limit voltage) of the P power source is V 1 , the discharge end voltage (lower limit voltage) is V 2 , and the capacity is C, the dischargeable energy amount U Is generally represented by the following formula.

【0016】U=1/2C(V1 2 −V2 2 ) 車両走行中に、所定以上の加速が所定時間以上連続する
場合、加速度および加速持続時間の関数で決定される量
に応じてP電源への蓄電エネルギー量を増やすことにな
るが、本発明では、P電源の定格性能以上の蓄電が要求
される場合は、P電源の素子の温度、定格性能を超える
運転時間、走行路の登坂角、車両重量等のパラメータに
応じて利用電圧可変範囲を可変制御する制御手段を備え
ているため、必要な走行性能を確保することができる。
U = 1 / 2C (V 1 2 -V 2 2 ) When acceleration of a predetermined value or more continues for a predetermined time or more while the vehicle is traveling, P is determined according to the amount determined by the function of the acceleration and the acceleration duration. Although the amount of energy stored in the power supply will be increased, in the present invention, when the storage performance equal to or higher than the rated performance of the P power supply is required, the temperature of the element of the P power supply, the operating time exceeding the rated performance, and the uphill of the traveling path. Since the control means for variably controlling the usable voltage variable range according to the parameters such as the angle and the vehicle weight is provided, it is possible to ensure the required traveling performance.

【0017】また、所定以上の加速が所定時間以上連続
する場合、加速度および加速持続時間の関数で決定され
る量に応じてP電源への充電電流量およびP電源からの
放電電流量を増やすことになるが、P電源の定格性能以
上の充放電電流量が要求される場合には、P電源の内部
抵抗の抵抗損失分で局所的に温度が上昇し、電極破壊等
の電気化学的な劣化が生じる可能性がある。本発明で
は、P電源の定格性能以上の充放電電流量が要求される
場合は、P電源の素子の温度、定格性能を超える運転時
間等のパラメータに応じて定格電流以上での充放電頻度
を可変制御する制御手段を備えているため、P電源の劣
化を防止することができる。
Further, when acceleration of a predetermined amount or more continues for a predetermined period of time or more, the amount of charging current to the P power source and the amount of discharging current from the P power source are increased according to the amount determined by the function of the acceleration and the acceleration duration. However, when a charging / discharging current amount higher than the rated performance of the P power supply is required, the temperature locally rises due to the resistance loss of the internal resistance of the P power supply, causing electrochemical deterioration such as electrode breakdown. May occur. In the present invention, when a charge / discharge current amount exceeding the rated performance of the P power supply is required, the charging / discharging frequency above the rated current is determined according to parameters such as the temperature of the element of the P power supply and the operating time exceeding the rated performance. Since the control means for variably controlling is provided, deterioration of the P power supply can be prevented.

【0018】次に、P電源の端子間電圧Vpは下記の式
で表される(tは時間、αは定数)。
Next, the voltage Vp between the terminals of the P power supply is expressed by the following equation (t is time and α is a constant).

【0019】Vp=1/C(t−a) (ただし充電
電流値一定のとき) すなわち、充電初期時および放電初期時における定電流
充放電の場合、P電源が蓄電できる容量Cについては、
図5に示すように、時間tに対する電圧値Vpの傾きか
ら求められる。
Vp = 1 / C (ta) (when the charging current value is constant) That is, in the case of constant current charging / discharging at the beginning of charging and at the beginning of discharging, the capacity C that can be stored by the P power source is
As shown in FIG. 5, it is obtained from the slope of the voltage value Vp with respect to time t.

【0020】本発明においては、この電圧値Vpの傾き
から容量Cを常にモニターし、容量Cが所定の値以下に
まで減少したことが検出された場合、P電源の素子が劣
化したと判定して、充電時、P電源に入るエネルギー量
をモニターし、蓄電されたエネルギー量に応じてE電源
とP電源の出力分担を決定するとともに、減少した容量
に応じてP電源の蓄電電圧V1 および放電終了電圧V2
を可変しているから、P電源が劣化した後も必要な走行
性能を確保することができる。
In the present invention, the capacitance C is constantly monitored from the slope of the voltage value Vp, and when it is detected that the capacitance C has decreased to a predetermined value or less, it is determined that the element of the P power supply has deteriorated. During charging, the amount of energy entering the P power source is monitored, the output sharing of the E power source and the P power source is determined according to the stored energy amount, and the storage voltage V 1 and P 1 of the P power source are determined according to the reduced capacity. Discharge end voltage V 2
Since P is varied, it is possible to ensure the required traveling performance even after the P power source has deteriorated.

【0021】また、図4から明らかなように、P電源の
充電および放電の初期に、内部抵抗RpによりΔVpだ
け電圧低下が生じるから、本発明では、このときの充放
電電流Ipに対する電圧低下分ΔVpをモニターするこ
とにより、内部抵抗Rpの大きさを検出し(Rp=ΔV
p/Ip)、内部抵抗Rpが所定の値以上になったと判
定された場合、P電源の素子が劣化したと判定して、内
部抵抗低減処理を実行する手段を備えているから、P電
源が劣化した後も必要な走行性能を確保することができ
る。
Further, as is clear from FIG. 4, since the internal resistance Rp causes a voltage drop of ΔVp at the initial stage of charging and discharging of the P power supply, the present invention, in the present invention, shows the amount of voltage drop with respect to the charging / discharging current Ip at this time. By monitoring ΔVp, the magnitude of the internal resistance Rp is detected (Rp = ΔV
p / Ip), when it is determined that the internal resistance Rp is equal to or more than a predetermined value, it is determined that the element of the P power supply has deteriorated, and a means for executing the internal resistance reduction process is provided. The required running performance can be secured even after deterioration.

【0022】[0022]

【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0023】図1は、本発明によるハイブリッド電源装
置のシステム構成を示すブロック図である。図におい
て、E電源1は、燃料電池、鉛蓄電池等の電気化学反応
を用いた各種電池のいずれか1つ、もしくはこれらを複
合したもの、あるいはエンジンで駆動される発電機を備
えたエンジン発電機等から構成され、電動機4に対する
負荷電力の供給およびP電源2に対する充電電力の供給
を行う長時間小出力型の電源である。
FIG. 1 is a block diagram showing the system configuration of a hybrid power supply device according to the present invention. In the figure, an E power source 1 is any one of various batteries using an electrochemical reaction such as a fuel cell or a lead storage battery, or a combination thereof, or an engine generator equipped with a generator driven by an engine. Is a long-time small-output type power supply configured to supply load power to the electric motor 4 and charging power to the P power supply 2.

【0024】P電源2は、電気二重層コンデンサ、大容
量電解コンデンサ等の化学反応を用いないで電気を蓄電
するもののいずれか1つ、もしくはこれらを複合したも
のから構成され、電動機4に対する負荷電力の供給およ
び電動機4の回生機能に基づく制動電力の吸収を行う短
時間大電力の充放電に適した電源である。
The P power source 2 is composed of any one of electric double layer capacitors, large-capacity electrolytic capacitors or the like that stores electricity without using chemical reaction, or a combination of these, and load power to the electric motor 4 Is a power source suitable for charging and discharging a large amount of electric power for a short period of time, which absorbs braking power based on the regenerative function of the electric motor 4.

【0025】E電源1の出力電力PeおよびP電源2の
出力電力Ppは電力調節器3に供給され、この電力調節
器3により、両電源1、2から電動機4に出力される電
力Pmに対する両電源1、2の電力配分と、P電源2に
対するE電源1からの充電電力Pcおよび電動機4の回
生機能によるP電源2に対する充電電力Pcが調節され
る。
The output power Pe of the E power source 1 and the output power Pp of the P power source 2 are supplied to the power regulator 3, and by this power regulator 3, the power Pm output from both power sources 1 and 2 to the electric motor 4 is supplied. The power distribution of the power sources 1 and 2 and the charging power Pc from the E power source 1 to the P power source 2 and the charging power Pc to the P power source 2 by the regenerative function of the electric motor 4 are adjusted.

【0026】上記電力調節器3およびP電源2を制御す
る電力制御装置10には、このハイブリッド電源装置を
搭載した電動車両が備えているアクセル開度検出手段1
1からのアクセル開度aを表す信号と、車速検出手段1
2からの車速Vを表す信号と、登坂角検出手段13から
の登坂角rを表す信号と、車両重量検出手段14からの
車両重量wを表す信号と、P電源電圧検出手段15から
のP電源電圧Vpを表す信号と、P電源電流検出手段1
6からのP電源電流Ipを表す信号と、P電源温度検出
手段17からのP電源温度Tpを表す信号と、E電源電
圧検出手段18からのE電源電圧Veを表す信号と、E
電源電流検出手段19からのE電源電流Ieを表す信号
とが入力される。電力制御装置10は、これら入力信号
に基づいて、E電源1の出力電力Pe、P電源2の出力
電力PpおよびP電源に対する充電電力Pcをそれぞれ
表す信号を電力調節器3に出力して電力調節器3を制御
するとともに、P電源2の温度Tpと上限電圧V1 およ
び下限電圧V2 を制御するように構成されている。
The electric power control device 10 for controlling the electric power controller 3 and the P power supply 2 has an accelerator opening detecting means 1 provided in an electric vehicle equipped with this hybrid power supply device.
A signal indicating the accelerator opening a from 1 and the vehicle speed detecting means 1
2, a signal representing the vehicle speed V, a signal representing the climbing angle r from the climbing angle detecting means 13, a signal representing the vehicle weight w from the vehicle weight detecting means 14, and a P power source from the P power source voltage detecting means 15. A signal representing the voltage Vp and the P power supply current detection means 1
6, a signal representing the P power supply current Ip from the P power supply 6, a signal representing the P power supply temperature Tp from the P power supply temperature detecting means 17, a signal representing the E power supply voltage Ve from the E power supply voltage detecting means 18,
A signal representing the E power supply current Ie from the power supply current detection means 19 is input. Based on these input signals, the power control device 10 outputs signals representing the output power Pe of the E power source 1, the output power Pp of the P power source 2 and the charging power Pc for the P power source to the power regulator 3 to adjust the power. It is configured to control the temperature of the P power supply 2 and the upper limit voltage V 1 and the lower limit voltage V 2 while controlling the container 3.

【0027】図2は電力制御装置10の構成および機能
を示す制御ブロック図で、電力制御装置10は、アクセ
ル開度検出手段11から出力されるアクセル開度aを表
す信号に基づいてこのアクセル開度aから要求される電
力Paを算出する要求出力検出/演算手段21と、車速
検出手段12から出力される車速Vを表す信号に基づい
てこの車速Vを維持するのに必要な電力Pvを算出する
必要出力検出/演算手段22と、電力PaとPvの大小
の比較により加速要求があるか否かを判定する加速判定
手段23と、加速持続時間および加速頻度を検出して、
加速増量係数Cacおよび加速に必要な電力Pdを算出
する加速時間/頻度検出手段24と、E電源1の電力P
eとP電源2の電力Ppとの電力配分を決定して、電力
調節器3に指令信号を出力する電力配分指令手段25と
を備えている。
FIG. 2 is a control block diagram showing the structure and function of the power control device 10. The power control device 10 opens the accelerator based on a signal output from the accelerator opening detection means 11 indicating the accelerator opening a. The required output detecting / calculating means 21 for calculating the electric power Pa required from the degree a, and the electric power Pv required for maintaining the vehicle speed V are calculated based on the signal representing the vehicle speed V output from the vehicle speed detecting means 12. Required output detecting / calculating means 22, an acceleration determining means 23 for determining whether or not there is an acceleration request by comparing the magnitudes of electric power Pa and Pv, and detecting an acceleration duration and an acceleration frequency,
Acceleration time / frequency detection means 24 for calculating the acceleration increase coefficient Cac and the electric power Pd necessary for acceleration, and the electric power P of the E power source 1.
Power distribution command means 25 for determining a power distribution between e and the power Pp of the P power source 2 and outputting a command signal to the power controller 3.

【0028】さらに電力制御装置10は、P電源2を加
熱または冷却してP電源2の温度Tpを制御するP電源
温度制御手段26と、P電源2の電圧Vpおよび充放電
電流Ipの検出に基づいて、図4に示す時間tに対する
電圧値Vpの傾きと、充放電電流Ipに対する電圧低下
分ΔVpによって表されるP電源2の内部抵抗Rpの大
きさとからP電源2の劣化を判定するP電源劣化判定手
段27と、このP電源劣化判定手段27によるP電源2
の劣化判定に基づいて、P電源2に対する充電電力Pc
と、P電源2の上限電圧V1 および下限電圧V2 とを決
定するP電源充放電指令手段28とを備えている。
Further, the power control device 10 detects P voltage source temperature control means 26 for controlling the temperature Tp of the P power source 2 by heating or cooling the P power source 2 and the voltage Vp and the charging / discharging current Ip of the P power source 2. Based on the slope of the voltage value Vp with respect to the time t shown in FIG. 4 and the magnitude of the internal resistance Rp of the P power supply 2 represented by the voltage drop ΔVp with respect to the charging / discharging current Ip, the deterioration of the P power supply 2 is determined P Power deterioration determination means 27 and P power supply 2 by this P power deterioration determination means 27
Charging power Pc for the P power source 2 based on the deterioration determination of
When, and a P source discharge instruction means 28 for determining the upper limit voltage V 1 and the lower limit voltage V 2 of the P supply 2.

【0029】このような構成により、電力制御装置10
は、E電源1およびP電源2の充放電出力分担を、車両
の走行状態(加減速の大きさ、加速頻度等)、車両状態
(車両の総重量等)および交通状態に応じて制御すると
ともに、P電源2が劣化して走行に必要な十分な容量を
確保できないような事態にならないように、P電源2の
定格性能により制限される過電圧領域を超えて蓄電およ
び放電するような過電圧領域の使用頻度を下げる制御を
行う。そして、電力制御装置10は、上記のような頻度
制御において、走行状態、車両状態および交通状態に応
じてP電源2の電圧利用範囲を可変して、過度の過電圧
領域の使用頻度を下げるようにしている。
With such a configuration, the power control device 10
Controls the charge / discharge output sharing of the E power source 1 and the P power source 2 according to the running state of the vehicle (magnitude of acceleration / deceleration, acceleration frequency, etc.), vehicle state (total weight of the vehicle, etc.) and traffic state. In order to prevent a situation in which the P power supply 2 is deteriorated and sufficient capacity required for traveling cannot be secured, an overvoltage region in which the power is stored and discharged beyond the overvoltage region limited by the rated performance of the P power supply 2. Control to reduce the frequency of use. Then, in the frequency control as described above, the power control device 10 changes the voltage use range of the P power supply 2 according to the traveling state, the vehicle state, and the traffic state to reduce the use frequency of the excessive overvoltage region. ing.

【0030】また、電力制御装置10は、P電源2の素
子内部の温度をモニターし、局所的に温度が上昇するよ
うであれば、冷媒等を用いて温度上昇を防止する制御を
行う。
Further, the power control device 10 monitors the temperature inside the element of the P power source 2 and, if the temperature rises locally, performs control to prevent the temperature rise by using a refrigerant or the like.

【0031】さらに、電力制御装置10は、P電源2が
劣化して、これを定格性能範囲で用いたのでは走行に必
要な十分な容量が確保できない事態になったとき、走行
状態、車両状態および交通状態に応じて、P電源2の定
格性能により制限される過電圧領域を用いて蓄電および
放電が行われるように電力調節器3を制御する。これに
より、加速不良あるいは回生制動エネルギーの吸収が十
分にできない等の不具合を生じることなく、走行が可能
になるようにしている。
Further, the power control device 10 is configured so that when the P power source 2 is deteriorated and it is not possible to secure a sufficient capacity required for running if the P power source 2 is used within the rated performance range, the running state and the vehicle state. In addition, the power controller 3 is controlled so that power storage and discharge are performed using the overvoltage region limited by the rated performance of the P power supply 2 according to the traffic state. As a result, the vehicle can travel without causing problems such as poor acceleration or insufficient absorption of regenerative braking energy.

【0032】この場合、電力制御装置10は、過電圧領
域の使用において、劣化する以前の初期のエネルギー量
を確保し得るように、あるいは加減速の大きさや加速頻
度に応じてP電源2の電圧利用範囲を可変する。
In this case, the power control device 10 uses the voltage of the P power source 2 so as to secure the initial amount of energy before deterioration in the use of the overvoltage region, or according to the magnitude of acceleration / deceleration and the acceleration frequency. Change the range.

【0033】また、電力制御装置10は、P電源2が劣
化して、これを定格性能範囲で用いたのでは走行に必要
な十分な容量が確保できない事態になったとき、P電源
2に蓄電したエネルギー量を計測し、使用可能なエネル
ギー量に応じてP電源2とE電源1の電力分担を決定し
て電力調節器3を制御する。
In addition, the power control device 10 stores electricity in the P power source 2 when the P power source 2 is deteriorated and it is not possible to secure a sufficient capacity required for running if the P power source 2 is used within the rated performance range. The measured energy amount is measured, the power sharing of the P power source 2 and the E power source 1 is determined according to the usable energy amount, and the power regulator 3 is controlled.

【0034】さらに電力制御装置10は、P電源2が劣
化して内部抵抗Rpが高くなることによって大電流充放
電時に抵抗損失が増大し、電力が不足するという不具合
を防止するために、予めP電源2の雰囲気温度を、内部
抵抗Rpが低くなる温度範囲のうち化学変化による劣化
が進行しない温度まで加熱する制御を行う。その場合、
充放電電流の大きさに応じて温度制御を行う。すなわ
ち、加速頻度、車体総重量および交通状況に応じて電流
値を制御するとともに、大電流時には温度を高くし、小
電流時には温度を低くしている。
Further, in order to prevent the power control device 10 from having a shortage of electric power, the P power source 2 is deteriorated and the internal resistance Rp is increased, so that resistance loss increases at the time of charging / discharging a large current and power is insufficient. The ambient temperature of the power source 2 is controlled to be heated to a temperature within the temperature range where the internal resistance Rp is low, at which deterioration due to chemical change does not proceed. In that case,
Temperature control is performed according to the magnitude of charge / discharge current. That is, the current value is controlled according to the acceleration frequency, the total weight of the vehicle body, and the traffic condition, and the temperature is increased when the current is large and the temperature is decreased when the current is small.

【0035】さらに電力制御装置10は、P電源2が複
数個の素子(セル)が直列および並列に接続されて構成
されている場合に、P電源2が劣化して内部抵抗Rpが
高くなったとき、内部抵抗が高い素子を検出し、充放電
電流量が所定以上大きい場合、内部抵抗が高い素子をバ
イパスさせて、抵抗損失が低減するように制御してい
る。
Further, in the power control device 10, when the P power supply 2 is composed of a plurality of elements (cells) connected in series and in parallel, the P power supply 2 is deteriorated and the internal resistance Rp is increased. At this time, an element having a high internal resistance is detected, and when the charge / discharge current amount is larger than a predetermined amount, the element having a high internal resistance is bypassed to control so as to reduce the resistance loss.

【0036】図3は電力調節器3の1例構成を概略的に
示す回路図である。電力調節器3はパルス発生器30
と、このパルス発生器30からパルス信号が供給される
3個のパルス変調器31〜33と、回生信号発生器34
と、トランジスタ35〜38を備えている。パルス変調
器31にはE電源1の電力Peを表す信号が入力され、
パルス変調器32にはP電源2の電力Ppを表す信号が
入力され、パルス変調器33および回生信号発生器34
にはP電源2の充電電力Pcを表す信号が入力され、各
パルス変調器31〜33から出力される変調されたパル
ス信号のパルス幅はそれぞれPe、Pp、Pcの大きさ
に従って決定される。E電源1から電動機4に供給され
る電力Peは、パルス変調器31の出力を受けるトラン
ジスタ35により制御され、P電源2から電動機4に供
給される電力Ppは、パルス変調器32の出力を受ける
トランジスタ36により制御され、E電源1からP電源
2に供給される充電電力Pcは、パルス変調器33の出
力を受けるトランジスタ37により制御され、この充電
時と、電動機4の回生機能によって制動電力が発生する
ときには、回生信号発生器34によりトランジスタ38
がONになる。
FIG. 3 is a circuit diagram schematically showing an example configuration of the power controller 3. The power controller 3 is a pulse generator 30.
, Three pulse modulators 31 to 33 to which pulse signals are supplied from the pulse generator 30, and a regenerative signal generator 34.
And transistors 35-38. A signal representing the power Pe of the E power source 1 is input to the pulse modulator 31,
A signal indicating the power Pp of the P power supply 2 is input to the pulse modulator 32, and the pulse modulator 33 and the regenerative signal generator 34 are input.
A signal representing the charging power Pc of the P power supply 2 is input to the pulse generator 2, and the pulse widths of the modulated pulse signals output from the pulse modulators 31 to 33 are determined according to the magnitudes of Pe, Pp, and Pc, respectively. The electric power Pe supplied from the E power source 1 to the electric motor 4 is controlled by the transistor 35 receiving the output of the pulse modulator 31, and the electric power Pp supplied from the P power source 2 to the electric motor 4 receives the output of the pulse modulator 32. The charging power Pc controlled by the transistor 36 and supplied from the E power source 1 to the P power source 2 is controlled by the transistor 37 that receives the output of the pulse modulator 33. During this charging, the braking power is regenerated by the regenerative function of the electric motor 4. When generated, the regeneration signal generator 34 causes the transistor 38
Turns on.

【0037】次に、電力制御装置10が実行する制御ル
ーチンの1例を、図6〜図12に示すフローチャートに
従って説明する。なお、Sは各ステップを表す。
Next, an example of the control routine executed by the power control device 10 will be described with reference to the flow charts shown in FIGS. In addition, S represents each step.

【0038】先ず、図6において、検出されたアクセル
開度aに基づいて、このアクセル開度aから要求される
電力Paを、アクセル開度aに対する電力Paの関係を
表す関数faaを示すマップを用いて算出し(S1)、
かつ検出された車速Vに基づいて、この車速Vを維持す
るのに必要な電力Pvを、車速Vに対する電力Paの関
係を表す関数favを示すマップを用いて算出する(S
2)。そしてPaとPvの大小を比較し(S3)、Pa
>Pvであれば(S3:YES)、ドライバの加速要求
があると判定し、現在の車速維持する定速分の電力はE
電源の電力Peで賄い、加速に必要な電力はP電源から
供給することを決定する(S4)。次に加速持続時間T
aおよび加速頻度Naをカウントするための加速増量係
数Cacの初期値を0とし(S5)、PaとPvの差か
ら加速に必要な電力(以下単に「加速電力」と呼ぶ)P
dを求め(S6)、図7のS7へ進む。
First, in FIG. 6, a map showing the electric power Pa required from the accelerator opening a based on the detected accelerator opening a and a function faa representing the relationship of the electric power Pa to the accelerator opening a is shown. Calculated using (S1),
Based on the detected vehicle speed V, the electric power Pv required to maintain this vehicle speed V is calculated using a map showing a function fav representing the relationship of the electric power Pa to the vehicle speed V (S).
2). Then, the magnitudes of Pa and Pv are compared (S3), and Pa is
If> Pv (S3: YES), it is determined that there is a driver's acceleration request, and the constant-speed electric power for maintaining the current vehicle speed is E.
It is determined that the power Pe of the power source is used and that the power required for acceleration is supplied from the P power source (S4). Next acceleration duration T
The initial value of the acceleration increase coefficient Cac for counting a and the acceleration frequency Na is set to 0 (S5), and the electric power required for acceleration (hereinafter simply referred to as "acceleration electric power") P from the difference between Pa and Pv.
d is calculated (S6), and the process proceeds to S7 in FIG.

【0039】図7のS7〜S9は加速持続時間Taに関
連する処理である。すなわち、所定の加速度以上の加速
持続時間Taの長短判定用の比較定数Ka1と加速電力
Pdとを比較し(S7)、Pd>Ka1であれば(S
7:YES)、加速持続時間Taをインクリメントする
(S8)。したがって、加速持続時間Taに対する加速
増量係数Cacの関係を表す関数fa1のマップに示す
ように、加速増量係数Cacも増大して行く。なお、加
速電力Pdが大のとき、関数fa1の傾きも大になる。
一方、Pd≦Ka1であれば(S7:NO)、加速持続
時間Taを0にクリアする(S9)。このようにして加
速持続時間Taに基づく加速増量係数Cacが決定され
る(S10)。
S7 to S9 in FIG. 7 are processes relating to the acceleration duration time Ta. That is, the comparison constant Ka1 for determining the length of the acceleration duration Ta equal to or greater than the predetermined acceleration is compared with the acceleration power Pd (S7), and if Pd> Ka1 (S
7: YES), the acceleration duration time Ta is incremented (S8). Therefore, as shown in the map of the function fa1 representing the relationship of the acceleration increase coefficient Cac with respect to the acceleration duration time Ta, the acceleration increase coefficient Cac also increases. When the acceleration power Pd is large, the slope of the function fa1 also becomes large.
On the other hand, if Pd ≦ Ka1 (S7: NO), the acceleration duration time Ta is cleared to 0 (S9). In this way, the acceleration increase coefficient Cac based on the acceleration duration time Ta is determined (S10).

【0040】次のS11〜S15は加速頻度に関連する
処理である。すなわち、加速頻度Naの大小判定用の比
較定数Ka2と加速電力Pdとを比較し(S11)、P
d>Ka2であれば(S11:YES)、一定時間内か
否かを判定し(S12)、一定時間内であれば(S1
2:YES)、加速頻度Naをインクリメントし(S1
3)、一定時間内でなければ(S12:NO)、加速頻
度Naを0にクリアして(S14)、加速頻度Naに対
する加速増量係数Cacの関数fa2を表すマップから
加速頻度Naに基づく加速増量係数Cacを決定し、こ
れを加速持続時間Taに基づく加速増量係数Cacに加
える(S15)。一方、Pd≦Ka2であれば(S1
1:NO)、S12〜S15の処理をスキップする。
The following S11 to S15 are the processes related to the acceleration frequency. That is, the comparison constant Ka2 for determining the magnitude of the acceleration frequency Na is compared with the acceleration power Pd (S11), and P
If d> Ka2 (S11: YES), it is determined whether it is within a fixed time (S12), and if it is within a fixed time (S1).
2: YES), the acceleration frequency Na is incremented (S1
3) If it is not within the fixed time (S12: NO), the acceleration frequency Na is cleared to 0 (S14), and the acceleration increase amount based on the acceleration frequency Na is calculated from the map showing the function fa2 of the acceleration increase coefficient Cac with respect to the acceleration frequency Na. The coefficient Cac is determined and added to the acceleration increase coefficient Cac based on the acceleration duration time Ta (S15). On the other hand, if Pd ≦ Ka2 (S1
1: NO), S12 to S15 are skipped.

【0041】次に登坂角rに対する加速増量係数Cac
の関数farを表すマップから登坂角rに基づく加速増
量係数Cacを決定し、この加速増量係数Cacの値を
先に算出された加速増量係数Cacの値に加え(S1
6)、さらに、車両重量wに対する加速増量係数Cac
の関数fawを表すマップから車両重量w基づく加速増
量係数Cacを決定して、この加速増量係数Cacの値
を先に求められた加速増量係数Cacの値に加え(S1
7)、得られた加速増量係数Cacの値を加速電力Pd
に乗じたものをE電源の車速維持分の電力Peに加算し
て、これを加速時にE電源が分担する電力とし(S1
8)、図8のS19へ進む。
Next, the acceleration increase coefficient Cac for the uphill angle r
The acceleration increase coefficient Cac based on the uphill angle r is determined from the map representing the function far of, and the value of the acceleration increase coefficient Cac is added to the value of the acceleration increase coefficient Cac calculated previously (S1
6), further, the acceleration increase coefficient Cac with respect to the vehicle weight w
The acceleration increase coefficient Cac based on the vehicle weight w is determined from the map representing the function faw of the above, and the value of this acceleration increase coefficient Cac is added to the previously obtained value of the acceleration increase coefficient Cac (S1
7), the value of the obtained acceleration increase coefficient Cac is set to the acceleration power Pd.
Is added to the power Pe for maintaining the vehicle speed of the E power source, and this is used as the power shared by the E power source during acceleration (S1
8) and proceeds to S19 of FIG.

【0042】図8のS19では、アクセル開度aから要
求される電力PaとE電源が分担する電力Peとの差を
求め、この差分を加速時にP電源が分担する電力Ppと
し、Pe+Ppをこのハイブリッド電源から電動機に出
力する電力と決定する(S20)。そして、電力調節器
により、E電源から電力Peを出力し、P電源から電力
Ppを出力して、電動機に電力Pmを出力し(S2
1)、後述する図11のS36へ進む。
In S19 of FIG. 8, the difference between the electric power Pa required from the accelerator opening a and the electric power Pe shared by the E power source is obtained, and this difference is taken as the electric power Pp shared by the P power source during acceleration, and Pe + Pp is The power output from the hybrid power source to the electric motor is determined (S20). Then, the power regulator outputs the power Pe from the E power source, the power Pp from the P power source, and the power Pm to the electric motor (S2).
1), and proceeds to S36 of FIG. 11 described later.

【0043】次に、図6のS3における加速判定で、低
速もしくは慣性走行時であると判定されたときには(S
3:NO)、P電源の充電が完了したか否かを調べ(S
22)、P電源の充電が完了していれば(S22:YE
S)、アクセル開度aから要求される電力PaをE電源
の電力Peとし(S23)、かつP電源が担当する電力
Ppを0として(S24)、図8のS20へ進む。ま
た、P電源の充電が完了していなければ(S22:N
O)、E電源からP電源へ充電電力Pcを供給するため
に、図9のS25へ進む。
Next, when it is determined in S3 of FIG. 6 that the vehicle is running at low speed or during inertial running (S
3: NO), it is checked whether or not the charging of the P power supply is completed (S
22), if the charging of the P power supply is completed (S22: YE
S), the electric power Pa required from the accelerator opening a is set as the electric power Pe of the E power source (S23), and the electric power Pp handled by the P power source is set to 0 (S24), and the process proceeds to S20 of FIG. If the charging of the P power supply is not completed (S22: N
O), in order to supply the charging power Pc from the E power source to the P power source, the process proceeds to S25 in FIG.

【0044】図9のS25〜S29および図10のS3
2〜S35はP電源充電中の制御ルーチンである。先ず
図9のS25では、大容量コンデンサよりなるP電源が
劣化しているか否かを判定する。このP電源の劣化は、
容量Cおよび/または内部抵抗Rpの増加によるもので
あるが、前記したように、P電源の充放電電流Ipが一
定のとき、P電源の容量Cは図4に示すP電源の端子間
電圧Vpの上昇直線の傾きが1/Cに比例することに基
づいて、また内部抵抗Rpは充電終了時および放電開始
時における電圧Vpの落ち込みΔVpから検出できる
(Rp=ΔVp/Ip)。そして、P電源の容量Cが初
期容量C0 以上でかつ内部抵抗Rpが初期内部抵抗R0
以下であれば(S25:YES)、P電源は正常と判定
して、図9のS26〜S29でP電源に対する充電電力
Pcを決定する。すなわち、加速持続時間Taの加速増
量係数Cacに対するP電源の制御温度Tpの関数ft
pを表すマップからP電源の制御温度Tpを決定し(S
26)、加速頻度Naに対する充電電力Pcの関数fc
tを表すマップから充電電力Pcを決定し(S27)、
この充電電力Pcに、登坂角rに対する充電電力Pcの
関数fcrを表すマップから求められる充電電力Pcを
加算し(S28)、さらにこの充電電力Pcに、車両重
量wに対する充電電力Pcの関数fcwを表すマップか
ら求められる充電電力Pcを加算し(S29)、図8の
S30へ進む。S30では、E電源の電力Peに充電電
力Pcを加算したものをE電源が分担する電力Peとす
るとともに(S30)、P電源に充電電力Pcを供給し
(S31)、S20へ進む。
S25 to S29 of FIG. 9 and S3 of FIG.
2 to S35 are control routines during charging of the P power supply. First, in S25 of FIG. 9, it is determined whether or not the P power supply including the large-capacity capacitor is deteriorated. This deterioration of the P power source
This is due to the increase in the capacitance C and / or the internal resistance Rp. However, as described above, when the charge / discharge current Ip of the P power supply is constant, the capacitance C of the P power supply is the voltage Vp between the terminals of the P power supply shown in FIG. The internal resistance Rp can be detected from the drop ΔVp of the voltage Vp at the end of charging and the start of discharging (Rp = ΔVp / Ip), based on the fact that the slope of the rising line of is proportional to 1 / C. The capacitance C of the P power supply is equal to or larger than the initial capacitance C 0 and the internal resistance Rp is the initial internal resistance R 0.
If the following is true (S25: YES), the P power supply is determined to be normal, and the charging power Pc for the P power supply is determined in S26 to S29 of FIG. That is, a function ft of the control temperature Tp of the P power supply with respect to the acceleration increase coefficient Cac of the acceleration duration time Ta.
The control temperature Tp of the P power supply is determined from the map representing p (S
26), a function fc of the charging power Pc with respect to the acceleration frequency Na
The charging power Pc is determined from the map representing t (S27),
To this charging power Pc, the charging power Pc obtained from the map showing the function fcr of the charging power Pc with respect to the uphill angle r is added (S28), and the function fcw of the charging power Pc with respect to the vehicle weight w is further added to this charging power Pc. The charging power Pc obtained from the map shown is added (S29), and the process proceeds to S30 of FIG. In S30, the power Pe obtained by adding the charging power Pc to the power Pe of the E power supply is used as the power Pe shared by the E power supply (S30), the charging power Pc is supplied to the P power supply (S31), and the process proceeds to S20.

【0045】一方、図9のS25の判定で、P電源の容
量Cが初期容量C0 以上でかつ内部抵抗Rpが初期内部
抵抗R0 以下であるという条件が満足されない場合は
(S25:NO)、P電源が劣化していると判定して、
図10のS32〜S35に示すような関数変更による劣
化対策を実行する。すなわち、関数ftpをftppに
変更してP電源の制御温度Tpを上昇させてP電源を活
性化し(S32)、関数fct、fcr、fcwをそれ
ぞれfctt、fcrr、fcwwに変更して充電量を
増大させてから(S33、S34、S35)、図9のS
26へ進む。
On the other hand, in the determination of S25 in FIG. 9, when the condition that the capacitance C of the P power supply is the initial capacitance C 0 or more and the internal resistance Rp is the initial internal resistance R 0 or less is not satisfied (S25: NO). , P power supply has deteriorated,
A deterioration countermeasure is executed by changing the function as shown in S32 to S35 of FIG. That is, the function ftp is changed to ftpp to raise the control temperature Tp of the P power supply to activate the P power supply (S32), and the functions fct, fcr, and fcw are changed to fctt, fcrr, and fcww to increase the charge amount. After that (S33, S34, S35), S in FIG.
Proceed to 26.

【0046】次に、図11および図12のS36〜S4
8は、力行中に次の加速に備えた制御ルーチンである。
先ず図11のS36では、P電源が劣化しているか否か
を判定する。そして、P電源の容量Cが初期容量C0
上でかつ内部抵抗Rpが初期内部抵抗R0 以下であれば
(S36:YES)、P電源は正常と判定して、S37
〜S40でP電源の電圧利用範囲を拡大する。すなわ
ち、加速増量係数CacをP電源の定格性能に基づく比
較定数Ka3と比較し(S37)、Cac>Ka3であ
れば(S37:YES)、P電源の定格性能以上の蓄電
が要求されていると判定して、加速増量係数Cacに対
するP電源の上限電圧V1 の関数fch1を表すマップ
に基づいて上限電圧V1 を上げ(S38)、かつ加速増
量係数Cacに対するP電源の下限電圧V2 の関数fc
h2を表すマップに基づいて下限電圧V2 を下げ(S3
9)、さらにP電源からの出力Ppに対するP電源の制
御温度Tpの関数ftpを表すマップに基づいて制御温
度Tpを上昇させ(S40)、図6のS1に戻る。
Next, S36 to S4 in FIGS.
Reference numeral 8 is a control routine for the next acceleration during power running.
First, in S36 of FIG. 11, it is determined whether the P power supply has deteriorated. If the capacitance C of the P power supply is equal to or larger than the initial capacitance C 0 and the internal resistance Rp is equal to or smaller than the initial internal resistance R 0 (S36: YES), it is determined that the P power supply is normal, and S37 is performed.
In step S40, the voltage use range of the P power supply is expanded. That is, the acceleration increase coefficient Cac is compared with the comparison constant Ka3 based on the rated performance of the P power supply (S37), and if Cac> Ka3 (S37: YES), it is determined that the storage capacity equal to or higher than the rated performance of the P power supply is required. It is determined that the upper limit voltage V 1 is increased based on the map representing the function fch1 of the upper limit voltage V 1 of the P power supply with respect to the acceleration increase coefficient Cac (S38), and the function of the lower limit voltage V 2 of the P power supply with respect to the acceleration increase coefficient Cac. fc
The lower limit voltage V 2 is lowered based on the map representing h2 (S3
9) Further, the control temperature Tp is increased based on the map showing the function ftp of the control temperature Tp of the P power supply with respect to the output Pp from the P power supply (S40), and the process returns to S1 of FIG.

【0047】一方、図11のS36の判定で、P電源の
容量Cが初期容量C0 以上でかつ内部抵抗Rpが初期内
部抵抗R0 以下であるという条件が満足されない場合は
(S36:NO)、P電源が劣化していると判定して、
図12のS41へ進み、P電源の劣化の原因が容量が減
少によるものか否かを調べる。そして、P電源の容量が
減少していれば(S41:YES)、加速増量係数Ca
cに対するP電源の上限電圧V1 の関数fch1をfc
h11に変更してP電源の上限電圧V1 を上げ(S4
2)、かつ加速増量係数Cacに対するP電源の下限電
圧V2 の関数fch2をfch22に変更してP電源の
下限電圧V2 を下げてから(S43)、図11のS37
へ進む。
On the other hand, in the determination of S36 in FIG. 11, if the condition that the capacitance C of the P power supply is the initial capacitance C 0 or more and the internal resistance Rp is the initial internal resistance R 0 or less is not satisfied (S36: NO). , P power supply has deteriorated,
The process proceeds to S41 in FIG. 12 and it is checked whether or not the cause of the deterioration of the P power source is the decrease in the capacity. Then, if the capacity of the P power source has decreased (S41: YES), the acceleration increase coefficient Ca
The function fch1 of the upper limit voltage V 1 of the P power supply with respect to c is fc
Change to h11 and raise the upper limit voltage V 1 of the P power supply (S4
2), and the function fch2 undervoltage V 2 of P supply for acceleration increase coefficient Cac Lower the lower limit voltage V 2 of the P source is changed to fch22 (S43), S37 of FIG. 11
Go to.

【0048】また、S41でP電源の容量は減少してい
ないと判定されたときは(S41:NO)、P電源の劣
化の原因が、内部抵抗の増加によるものと判定して、前
述の関数ftpをftppに変更してP電源の制御温度
Tpを上昇させてP電源を活性化するとともに(S4
4)、多数の素子からなるP電源の劣化した素子を検索
し(S45)、上記素子を内部抵抗の大きさ別に分類し
(S46)、放電電流量に応じて素子を選択し(不良素
子を不接続とする)(S47)、トータル容量を計測し
てから(S48)、図11のS37へ進む。
When it is determined in S41 that the capacity of the P power supply has not decreased (S41: NO), it is determined that the cause of the deterioration of the P power supply is the increase of the internal resistance, and the above-mentioned function is used. While changing ftp to ftpp to raise the control temperature Tp of the P power supply to activate the P power supply (S4
4) Search for deteriorated elements of P power supply composed of a large number of elements (S45), classify the elements according to the size of the internal resistance (S46), and select the elements according to the discharge current amount (defective elements are (Not connected) (S47), after measuring the total capacity (S48), the process proceeds to S37 in FIG.

【0049】電力制御装置10が以上のような制御を実
行することにより、走行性能の確保と、P電源2の劣化
防止とをはかることができ、かつP電源2が劣化した場
合であっても、走行性能の確保が可能になる。
By the electric power control device 10 executing the above control, it is possible to secure the traveling performance and prevent the deterioration of the P power supply 2, and even when the P power supply 2 deteriorates. It becomes possible to secure driving performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるハイブリッド電源装置のシステム
構成図
FIG. 1 is a system configuration diagram of a hybrid power supply device according to the present invention.

【図2】本発明によるハイブリッド電源装置が備えてい
る電力制御装置の構成および機能を示す制御ブロック図
FIG. 2 is a control block diagram showing a configuration and a function of a power control device included in the hybrid power supply device according to the present invention.

【図3】本発明によるハイブリッド電源装置が備えてい
る電力調節器の1例構成を概略的に示す回路図
FIG. 3 is a circuit diagram schematically showing an example configuration of a power regulator included in the hybrid power supply device according to the present invention.

【図4】本発明によるハイブリッド電源装置の作用の説
明に供する図
FIG. 4 is a diagram for explaining the operation of the hybrid power supply device according to the present invention.

【図5】本発明によるハイブリッド電源装置の作用の説
明に供する図
FIG. 5 is a diagram for explaining the operation of the hybrid power supply device according to the present invention.

【図6】本発明によるハイブリッド電源装置が備えてい
る電力制御装置の制御ルーチンの説明に供するフローチ
ャートの一部
FIG. 6 is a part of a flowchart for explaining a control routine of a power control device provided in a hybrid power supply device according to the present invention.

【図7】本発明によるハイブリッド電源装置が備えてい
る電力制御装置の制御ルーチンの説明に供するフローチ
ャートの一部
FIG. 7 is a part of a flowchart for explaining a control routine of a power control device included in the hybrid power supply device according to the present invention.

【図8】本発明によるハイブリッド電源装置が備えてい
る電力制御装置の制御ルーチンの説明に供するフローチ
ャートの一部
FIG. 8 is a part of a flowchart for explaining a control routine of a power control device included in the hybrid power supply device according to the present invention.

【図9】本発明によるハイブリッド電源装置が備えてい
る電力制御装置の制御ルーチンの説明に供するフローチ
ャートの一部
FIG. 9 is a part of a flowchart for explaining a control routine of a power control device provided in a hybrid power supply device according to the present invention.

【図10】本発明によるハイブリッド電源装置が備えて
いる電力制御装置の制御ルーチンの説明に供するフロー
チャートの一部
FIG. 10 is a part of a flowchart for explaining a control routine of a power control device included in the hybrid power supply device according to the present invention.

【図11】本発明によるハイブリッド電源装置が備えて
いる電力制御装置の制御ルーチンの説明に供するフロー
チャートの一部
FIG. 11 is a part of a flow chart for explaining a control routine of a power control device included in the hybrid power supply device according to the present invention.

【図12】本発明によるハイブリッド電源装置が備えて
いる電力制御装置の制御ルーチンの説明に供するフロー
チャートの一部
FIG. 12 is a part of a flowchart for explaining a control routine of a power control device included in the hybrid power supply device according to the present invention.

【符号の説明】[Explanation of symbols]

1 P電源 2 E電源 3 電力調節器 4 電動機 10 電力制御装置 11 アクセル開度検出手段 12 車速検出手段 DESCRIPTION OF SYMBOLS 1 P power supply 2 E power supply 3 Electric power controller 4 Electric motor 10 Electric power control device 11 Accelerator opening detection means 12 Vehicle speed detection means

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 長時間小電力型特性を有するエネルギー
電源と、該エネルギー電源から電力が供給される短時間
大電力型特性を有するパワー電源とを備え、小負荷時に
は上記エネルギー電源のみから、大負荷時には負荷に応
じて両電源または上記パワー電源のみから、走行用電気
モータに電力を供給するように構成された電動車両のハ
イブリッド電源装置において、 上記パワー電源の定格性能以上の蓄電量が要求された場
合、所定のパラメータに応じて上記パワー電源の利用電
圧範囲を可変制御する制御手段を備えていることを特徴
とする電動車両のハイブリッド電源装置。
1. An energy source having a long-time low-power type characteristic, and a power source having a short-time high-power type characteristic to which power is supplied from the energy source, and when the load is small, only the energy source supplies a large power. In a hybrid power supply device for an electric vehicle that is configured to supply electric power to a traveling electric motor from both power supplies or only the power supply according to the load at the time of load, it is required to store more than the rated performance of the power supply. In this case, the hybrid power supply device for an electric vehicle is provided with a control means for variably controlling the usable voltage range of the power supply according to a predetermined parameter.
【請求項2】 上記所定のパラメータが、上記パワー電
源の温度、上記パワー電源の定格性能を超える運転時間
および上記負荷の大きさのうちの少なくとも1つよりな
ることを特徴とする請求項1に記載の電動車両のハイブ
リッド電源装置。
2. The predetermined parameter comprises at least one of a temperature of the power supply, an operating time exceeding a rated performance of the power supply, and a magnitude of the load. A hybrid power supply device for the electric vehicle described.
【請求項3】 長時間小電力型特性を有するエネルギー
電源と、該エネルギー電源から電力が供給される短時間
大電力型特性を有するパワー電源とを備え、小負荷時に
は上記エネルギー電源のみから、大負荷時には負荷に応
じて両電源または上記パワー電源のみから、走行用電気
モータに電力を供給するように構成された電動車両のハ
イブリッド電源装置において、 上記パワー電源の定格性能以上の充放電電流量が要求さ
れた場合、所定のパラメータに応じて定格電流以上の充
放電頻度を可変制御する制御手段を備えていることを特
徴とする電動車両のハイブリッド電源装置。
3. An energy source having a long-time low-power type characteristic and a power source having a short-time high-power type characteristic to which power is supplied from the energy power source. In a hybrid power supply device for an electric vehicle configured to supply electric power to a traveling electric motor from both power sources or only the power source depending on the load at the time of load, a charging / discharging current amount equal to or higher than the rated performance of the power source is provided. A hybrid power supply device for an electric vehicle, comprising control means for variably controlling a charging / discharging frequency of a rated current or more according to a predetermined parameter when required.
【請求項4】 上記所定のパラメータが、上記パワー電
源の温度、上記パワー電源の定格性能を超える運転時間
および上記負荷の大きさのうちの少なくとも1つよりな
ることを特徴とする請求項3に記載の電動車両のハイブ
リッド電源装置。
4. The predetermined parameter comprises at least one of a temperature of the power source, an operating time exceeding a rated performance of the power source, and a magnitude of the load. A hybrid power supply device for the electric vehicle described.
【請求項5】 長時間小電力型特性を有するエネルギー
電源と、該エネルギー電源から電力が供給される短時間
大電力型特性を有するパワー電源とを備え、小負荷時に
は上記エネルギー電源のみから、大負荷時には負荷に応
じて両電源または上記パワー電源のみから、走行用電気
モータに電力を供給するように構成された電動車両のハ
イブリッド電源装置において、 上記パワー電源の容量の減少から該パワー電源の劣化を
検出し、充電時、上記パワー電源に入るエネルギー量を
モニターし、蓄電されたエネルギー量に応じて上記エネ
ルギー電源と上記パワー電源の配分を制御する手段を備
えていることを特徴とする電動車両のハイブリッド電源
装置。
5. An energy source having a long-time low-power type characteristic and a power source having a short-time high-power type characteristic to which power is supplied from the energy power source, and when only a small load is used, only the energy source is used. In a hybrid power supply device for an electric vehicle configured to supply electric power to a traveling electric motor from both power sources or only the power source depending on the load when the load is applied, deterioration of the power source due to a decrease in capacity of the power source. Is detected, the amount of energy entering the power source is monitored during charging, and means for controlling distribution of the energy source and the power source according to the stored energy amount is provided. Hybrid power supply.
【請求項6】 上記パワー電源の容量の減少に応じて該
パワー電源の蓄電上限電圧および放電終了電圧を可変制
御する制御手段を備えていることを特徴とする請求項5
に記載の電動車両のハイブリッド電源装置。
6. A control means for variably controlling a storage upper limit voltage and a discharge end voltage of the power supply according to a decrease in the capacity of the power supply.
A hybrid power supply device for an electric vehicle according to item 1.
【請求項7】 上記パワー電源の充放電初期の時間に対
する電圧値の傾きから該パワー電源の劣化を検出するこ
とを特徴とする請求項5に記載の電動車両のハイブリッ
ド電源装置。
7. The hybrid power supply device for an electric vehicle according to claim 5, wherein deterioration of the power supply is detected from a slope of a voltage value with respect to an initial time of charging / discharging of the power supply.
【請求項8】 長時間小電力型特性を有するエネルギー
電源と、該エネルギー電源から電力が供給される短時間
大電力型特性を有するパワー電源とを備え、小負荷時に
は上記エネルギー電源のみから、大負荷時には負荷に応
じて両電源または上記パワー電源のみから、走行用電気
モータに電力を供給するように構成された電動車両のハ
イブリッド電源装置において、 上記パワー電源が複数の素子からなり、該パワー電源の
充放電初期の電圧降下から、内部抵抗Rpの大きさを検
出し、該内部抵抗が所定の値以上になったとき、上記パ
ワー電源の素子が劣化したと判定して、内部抵抗低減処
理を実行する手段を備えていることを特徴とする電動車
両のハイブリッド電源装置。
8. An energy source having a long-time low-power type characteristic and a power source having a short-time high-power type characteristic to which electric power is supplied from the energy power source, and when the load is small, only the energy source is used. In a hybrid power supply device for an electric vehicle configured to supply electric power to a traveling electric motor from both power sources or only the power source according to the load when the load is applied, the power source includes a plurality of elements, The magnitude of the internal resistance Rp is detected from the voltage drop at the initial charging / discharging time, and when the internal resistance becomes equal to or higher than a predetermined value, it is determined that the element of the power supply has deteriorated, and the internal resistance reduction processing is performed. A hybrid power supply device for an electric vehicle, which is provided with a means for executing.
【請求項9】 上記内部抵抗低減処理を実行する手段
が、充放電電流の大きさにより上記パワー電源の素子の
加熱・冷却を行う手段よりなることを特徴とする請求項
8に記載の電動車両のハイブリッド電源装置。
9. The electric vehicle according to claim 8, wherein the means for executing the internal resistance reduction process comprises means for heating / cooling the element of the power supply according to the magnitude of the charge / discharge current. Hybrid power supply.
【請求項10】 上記内部抵抗低減処理を実行する手段
が、内部抵抗が所定の値以上になった素子をバイパスさ
せる手段よりなることを特徴とする請求項8または9に
記載の電動車両のハイブリッド電源装置。
10. The hybrid of an electric vehicle according to claim 8, wherein the means for executing the internal resistance reduction processing comprises means for bypassing an element having an internal resistance of a predetermined value or more. Power supply.
【請求項11】 上記内部抵抗低減処理を実行する手段
が、上記パワー電源の内部抵抗が所定の値になるように
上記複数の素子を組み合わせる手段よりなることを特徴
とする請求項8ないし10のうちの1つに記載の電動車
両のハイブリッド電源装置。
11. The means for executing the internal resistance reduction process comprises means for combining the plurality of elements so that the internal resistance of the power supply becomes a predetermined value. A hybrid power supply device for an electric vehicle according to one of the above.
JP14275694A 1994-06-24 1994-06-24 Hybrid power supply for electric vehicles Expired - Fee Related JP3352534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14275694A JP3352534B2 (en) 1994-06-24 1994-06-24 Hybrid power supply for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14275694A JP3352534B2 (en) 1994-06-24 1994-06-24 Hybrid power supply for electric vehicles

Publications (2)

Publication Number Publication Date
JPH0819115A true JPH0819115A (en) 1996-01-19
JP3352534B2 JP3352534B2 (en) 2002-12-03

Family

ID=15322848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14275694A Expired - Fee Related JP3352534B2 (en) 1994-06-24 1994-06-24 Hybrid power supply for electric vehicles

Country Status (1)

Country Link
JP (1) JP3352534B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189407A (en) * 2001-12-17 2003-07-04 Nissan Motor Co Ltd Battery degradation diagnosing device
US7196492B2 (en) 2001-12-19 2007-03-27 Toyota Jidosha Kabushiki Kaisha Power supply apparatus including fuel cell and capacitor, and operation method thereof
JP2012171491A (en) * 2011-02-22 2012-09-10 Toyota Motor Corp Hybrid vehicle and method for controlling the same
JP2014042407A (en) * 2012-08-22 2014-03-06 Toshiba Mach Co Ltd Hybrid construction machine control method and hybrid construction machine
US9379568B2 (en) 2013-10-29 2016-06-28 Hyundai Motor Company Method and apparatus for controlling charge of a low-voltage battery
CN114423638A (en) * 2019-10-11 2022-04-29 松下知识产权经营株式会社 Information processing method, information processing apparatus, and information processing system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7319798B2 (en) 2019-03-27 2023-08-02 本田技研工業株式会社 vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189407A (en) * 2001-12-17 2003-07-04 Nissan Motor Co Ltd Battery degradation diagnosing device
US7196492B2 (en) 2001-12-19 2007-03-27 Toyota Jidosha Kabushiki Kaisha Power supply apparatus including fuel cell and capacitor, and operation method thereof
JP2012171491A (en) * 2011-02-22 2012-09-10 Toyota Motor Corp Hybrid vehicle and method for controlling the same
JP2014042407A (en) * 2012-08-22 2014-03-06 Toshiba Mach Co Ltd Hybrid construction machine control method and hybrid construction machine
US9379568B2 (en) 2013-10-29 2016-06-28 Hyundai Motor Company Method and apparatus for controlling charge of a low-voltage battery
CN114423638A (en) * 2019-10-11 2022-04-29 松下知识产权经营株式会社 Information processing method, information processing apparatus, and information processing system

Also Published As

Publication number Publication date
JP3352534B2 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
US6232744B1 (en) Method of controlling battery condition of self-generation electric vehicle
EP3292018B1 (en) Hybrid energy storage system
US6501250B2 (en) Device and method for controlling input/output of secondary battery
US9343920B2 (en) Storage capacity management system
US9855854B2 (en) Charge control device and charge control method
US5883496A (en) Electric vehicle power supply
US5945808A (en) Hybrid electric vehicle with battery management
US7791216B2 (en) Method and system for use with a vehicle electric storage system
JP3967043B2 (en) Control device for hybrid vehicle
US9166443B2 (en) Energy supply device for a hybrid vehicle and method for operating an electric high voltage energy storage device
US6982540B2 (en) Energy management system for a motor vehicle electrical system
US8674659B2 (en) Charge control device and vehicle equipped with the same
JP3620517B2 (en) Voltage control device for battery pack
JP2002369391A (en) Method and device for controlling residual capacity of secondary battery
JPWO2009013891A1 (en) Vehicle power supply
US20100052618A1 (en) Battery capacity controller
JP2008273518A (en) Battery control device and method for hybrid automobile, and hybrid automobile
JP2010088194A (en) Device and method for adjusting capacity of battery pack
US20150171640A1 (en) Battery parameter estimation
JP2000134805A (en) Battery assembly charge/discharge state deciding method and battery assembly charge/discharge state deciding device
JP2001314040A (en) Method of controlling charging/discharging in hybrid vehicle
JP3352534B2 (en) Hybrid power supply for electric vehicles
JP2004166350A (en) Battery controller
JP2001086604A (en) Set-battery and remaining capacity detector
JPH089511A (en) Hybrid power source for motor-driven vehicle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070920

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees