JPH08189915A - Carbon dioxide gas sensor - Google Patents

Carbon dioxide gas sensor

Info

Publication number
JPH08189915A
JPH08189915A JP7002222A JP222295A JPH08189915A JP H08189915 A JPH08189915 A JP H08189915A JP 7002222 A JP7002222 A JP 7002222A JP 222295 A JP222295 A JP 222295A JP H08189915 A JPH08189915 A JP H08189915A
Authority
JP
Japan
Prior art keywords
solid electrolyte
carbon dioxide
heater
sensor
dioxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7002222A
Other languages
Japanese (ja)
Inventor
Hironori Hatano
博憲 波多野
Takayuki Suzuki
隆之 鈴木
Hozumi Nita
穂積 二田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP7002222A priority Critical patent/JPH08189915A/en
Publication of JPH08189915A publication Critical patent/JPH08189915A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE: To detect concentration of carbon dioxide gas accurately even under the usage condition of intermittent energizing of a heater by using a material, represented by a specific formula, as solid electrolyte, so that recovery time to steady electromotive farce is shortened. CONSTITUTION: On one surface of a solid electrolyte 1, a reference pole 2 and a detection pole 3 are provided, and the detection pale 3 is coated with carbonate 4. On the other surface of the solid electrolyte 1, a heater substrate 6 provided with a heater 5 is bonded and fixed with bonding agent 7. Then, the heater 5 is energized, and used in to-be-detected gas under the condition an element is kept at high temperature. Sensor output is taken out of the detection pole 3. The solid electrolyte 1 is a material which is represented by a chemical formula Li4-0.5 XTi5-x Al1.5x O12 , where in a value of X is in a range 0<=X<=0.30, or the one represented by a chemical formula Li4-2x Ti5-x Mg3x O12 , where a value of X in in a range 0<=X<=0.40.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大気中の炭酸ガス濃度
を測定する固体電解質型の炭酸ガスセンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte type carbon dioxide sensor for measuring the concentration of carbon dioxide in the atmosphere.

【0002】[0002]

【従来の技術】固体電解質型ガスセンサは、検知材料で
ある固体電解質にガスが接触したとき発生する起電力に
よってガスの濃度を検出するものである。この固体電解
質型ガスセンサのガスセンサの動作原理を略述すると、
いま、固体電解質の両面に電極を形成し、この固体電解
質を数百度の高温に保って固体電解質の両面にガスの分
圧差を与えると、固体電解質中でイオン伝導が生じ、ガ
ス濃度差に応じた起電力が発生する。そしてこの起電力
を測定することによりガスの濃度を検出することができ
る。従来、固体電解質型の炭酸ガスセンサの検知材料と
しては温度に対する信頼性や経時的な安定性を向上させ
た。Na3 Zr2 PSi212(NASICON;Na
−Super;IonicConducton),Li
14Zn(Ge3 )4 (LISICON;Lithium
Super Ionic Conductor)等種
々の物質が用いられるが、これらほとんどの固体電解質
は、その導電率σが常温では小さく充分なガス検知特性
が得られないため、センサ材料としは、目安として、セ
ンサ動作時の温度でσが10-4Ω-1cm-1程度以上が必
要となる。このため、通常の固体電解質型炭酸ガスセン
サでは加熱用のヒータを設け、固体電解質を数百度の高
温に保って使用している。
2. Description of the Related Art A solid electrolyte type gas sensor detects a gas concentration by an electromotive force generated when a gas comes into contact with a solid electrolyte as a sensing material. When the operating principle of the gas sensor of this solid electrolyte type gas sensor is briefly described,
Now, if electrodes are formed on both sides of the solid electrolyte and this solid electrolyte is kept at a high temperature of several hundred degrees Celsius to give a partial pressure difference of gas to both sides of the solid electrolyte, ionic conduction occurs in the solid electrolyte, depending on the difference in gas concentration. Generated electromotive force. The gas concentration can be detected by measuring the electromotive force. Conventionally, as a sensing material for a solid electrolyte type carbon dioxide gas sensor, reliability with respect to temperature and stability over time have been improved. Na 3 Zr 2 PSi 2 O 12 (NASICON; Na
-Super; IonicConducton), Li
14 Zn (Ge 3 ) 4 (LISICON; Lithium
Various substances such as Super Ionic Conductor) are used, but most of these solid electrolytes have a low electric conductivity σ at room temperature and cannot obtain sufficient gas detection characteristics. At this temperature, σ needs to be about 10 −4 Ω −1 cm −1 or more. For this reason, in a normal solid electrolyte type carbon dioxide gas sensor, a heater for heating is provided and the solid electrolyte is used while being kept at a high temperature of several hundred degrees.

【0003】しかしながら、センサの実際の使用におい
ては、センシングが不要な時には加熱用ヒータへの通電
を停止しセンシングが必要な時にだけ加熱用のヒータを
作動させるという断続的な使用がなされることがある。
図1は、固体電解質としてNASICONを用いた炭酸
ガスセンサを、1日サイクルのヒータ断続作動で使用し
た場合の起電力の変化を示したものである。1日目の終
わりに連続通電していたヒータの作動を停止すると、セ
ンサ起動力は、ほぼ250mVの出力から計測不能点ま
で低下する。2日目はヒータの作動は停止したままとし
ておき、3日目の初めにヒータを作動状態とする。この
時センサ起動力はある程度までは急激に上昇するが、そ
れ以降は1日中ヒータの通電を続けてもセンサ起動力
は、ヒータを連続通電している時の定常の起電力には達
せず10mVほど低い値を示す。そして、センサの起動
力が定常状態にまで回復するには、2日以上待たなけれ
ばならない。したがって、従来の固体電解質を用いた炭
酸ガスセンサにおいては、ヒータの断続作動状態での使
用下では、正確な炭酸ガスの濃度検出はできないという
問題があった。
However, in the actual use of the sensor, when the sensing is not necessary, the energization of the heating heater is stopped, and the heating heater is operated only when the sensing is necessary. is there.
FIG. 1 shows a change in electromotive force when a carbon dioxide gas sensor using NASICON as a solid electrolyte is used in intermittent operation of a heater in one day cycle. When the operation of the heater that has been continuously energized is stopped at the end of the first day, the sensor starting force decreases from an output of approximately 250 mV to a point where measurement is impossible. On the second day, the heater operation is stopped and the heater is activated at the beginning of the third day. At this time, the sensor starting force rises rapidly to some extent, but after that, even if the heater is continuously energized all day long, the sensor starting force does not reach the steady electromotive force when the heater is continuously energized. It shows a value as low as 10 mV. Then, in order to recover the starting force of the sensor to the steady state, it is necessary to wait for two days or more. Therefore, the carbon dioxide gas sensor using the conventional solid electrolyte has a problem that the carbon dioxide gas concentration cannot be accurately detected when the heater is used in the intermittent operation state.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記問題点
を解決するためになされたもので、定常起電力への回復
時間を短縮し、ヒータの断続通電という使用条件下で
も、正確な炭酸ガスの濃度検出が可能な固体電解質型の
炭酸ガスセンサを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, shortens the recovery time to a steady electromotive force, and allows accurate carbon dioxide emission even under the operating conditions of intermittent energization of a heater. An object is to provide a solid electrolyte type carbon dioxide gas sensor capable of detecting gas concentration.

【0005】[0005]

【課題を解決するための手段】本発明の固体電解質型の
炭酸ガスセンサは上記目的を達成するため、固体電解質
として、 Li4-0.5xTi5-x Al1.5x12 (0≦x ≦0.30) あるいは、 Li4-2xTi5-x Mg3x12 (0≦x ≦0.40) の化学式で表される物質を具備することを特徴とするも
のである。
In order to achieve the above object, the solid electrolyte type carbon dioxide gas sensor of the present invention has a solid electrolyte of Li 4-0.5x Ti 5-x Al 1.5x O 12 ( 0≤x≤0.30). ) or, it is characterized in that it comprises a substance represented by the chemical formula Li 4-2x Ti 5-x Mg 3x O 12 (0 ≦ x ≦ 0.40).

【0006】[0006]

【作用】本発明の固体電解質型の炭酸ガスセンサの固体
電解質として、 Li4-0.5xTi5-x Al1.5x12 (0≦x ≦0.30) あるいは、Li4-2xTi5-x Mg3x12 (0≦x ≦0.4
0) の化学式で表される物質を用いたので、充分な感度と起
電力の経時的安定性を得ることができるとともに、ヒー
タの断続通電という使用条件下においても、正確な炭酸
ガスの濃度検出することができる。
As a solid electrolyte of the solid electrolyte type carbon dioxide gas sensor of the present invention, Li 4-0.5x Ti 5-x Al 1.5x O 12 ( 0≤x ≤0.30 ) or Li 4-2x Ti 5-x Mg 3x O 12 (0 ≦ x ≦ 0.4
Since the substance represented by the chemical formula (0) is used, it is possible to obtain sufficient sensitivity and stability of electromotive force over time, and to accurately detect the concentration of carbon dioxide gas even under the operating conditions of intermittent energization of the heater. can do.

【0007】[0007]

【実施例】以下、本発明の詳細を図2ないし図6を参照
しながら各実施例により説明する。最部に、本発明炭酸
ガスセンサの構成を説明する。図2(a)は、本発明固
体電解質型炭酸ガスセンサの素子構造の1例を示す断面
図であり、固体電解質1の一方の面には、基準極2及び
検知極3が設けられ、検知極3には炭酸塩4がコーティ
ングされている。固体電解質1の他方の面には、ヒータ
5が設けられたヒータ基板6が接着剤7により接着固定
されている。図2(b)は、本発明固体電解質型炭酸ガ
スセンサの他の素子構造を示す断面図であり、この素子
構造と、図2(a)に示された素子構造との相違は、基
準極2が検知極3が設けられた固体電解質1の面と反対
の面に設けられている点だけであり、どちらの素子構造
も同じ特性を示すものである。
The details of the present invention will be described below with reference to FIGS. 2 to 6. The configuration of the carbon dioxide sensor of the present invention will be described at the most part. FIG. 2A is a sectional view showing an example of the element structure of the solid electrolyte type carbon dioxide gas sensor of the present invention, in which one side of the solid electrolyte 1 is provided with a reference electrode 2 and a detection electrode 3, and a detection electrode. 3 is coated with carbonate 4. A heater substrate 6 provided with a heater 5 is adhered and fixed to the other surface of the solid electrolyte 1 with an adhesive 7. 2B is a cross-sectional view showing another element structure of the solid electrolyte type carbon dioxide sensor of the present invention. The difference between this element structure and the element structure shown in FIG. Is only provided on the surface opposite to the surface of the solid electrolyte 1 on which the detection electrode 3 is provided, and both element structures show the same characteristics.

【0008】このような素子構造の本発明固体電解質炭
酸ガスセンサは、ヒータ5に通電され、素子を数百度の
高温に保った状態で被検出ガス中に置かれて使用され
る。そして、センサ出力は検知極から取り出される。 固体電解質1は、Li4-0.5xTi5-x Al1.5x12 の化学式で表される物質であってXの値が 0≦ x ≦0.
30 の範囲にあるもの、あるいは、 Li4-2xTi5-x Mg3x12 の化学式で表される物質であって、Xの値が 0≦ x ≦
0.40 の範囲にあるものである。
The solid electrolyte carbon dioxide gas sensor of the present invention having such an element structure is used by being placed in a gas to be detected while the heater 5 is energized and the element is kept at a high temperature of several hundreds of degrees. Then, the sensor output is taken out from the detection electrode. The solid electrolyte 1 is a substance represented by a chemical formula of Li 4-0.5x Ti 5-x Al 1.5x O 12 , and the value of X is 0≤x≤0 .
A substance represented by the chemical formula of Li 4-2x Ti 5-x Mg 3x O 12 in which the value of X is 0 ≦ x ≦≦
It is in the range of 0.40.

【0009】次に、本発明の固体電解質型炭酸ガスセン
サの特性を実験結果に基づいて説明する。 (実験結果1)(導電率σの温度依存性) 図3(a)は、固体電解質Li4-0.5xTi5-x Al1.5x
12のLi+ イオンの導電率σの温度依存性を示す実験
結果であり、絶対温度T(K)の逆数にたいして、導電
率σ(Ω-1・cm-1)と絶対温度(K)の積σT(Ω-1
・cm-1・K)をプロットしたものである。 この場合、●:x=0 ○:x=0.1 ◎:
x=0.2 ■:x=0.3 □:x=0.4 ◆:x=0.5 となっている。この実験結果から、実用上センサとして
使用できる導電率の条件 σ>10-4Ω-1・cm-1(400°C) を満たすXの値は0 ≦ x ≦0.30 であり、Xの値が
0.3以上になると固体電解質の内部抵抗が大きくなっ
て十分な起電力が得られなくなることがわかる。したが
って、固体電解質1をLi4-0.5xTi5-x Al1.5x12
の化学式で表される物質とした場合のXの値は0 ≦ x
≦0.30 が最適である。
Next, the characteristics of the solid electrolyte type carbon dioxide gas sensor of the present invention will be described based on experimental results. (Experimental Result 1) (Temperature Dependence of Conductivity σ) FIG. 3A shows a solid electrolyte Li 4-0.5x Ti 5-x Al 1.5x.
It is an experimental result showing the temperature dependence of the conductivity σ of Li + ions of O 12 , and the conductivity σ (Ω −1 · cm −1 ) and the absolute temperature (K) are expressed as the reciprocal of the absolute temperature T (K). Product σT (Ω -1
・ Cm −1 · K) is plotted. In this case, ●: x = 0 ○: x = 0.1 ◎:
x = 0.2 (4): x = 0.3 □: x = 0.4 ◆: x = 0.5. From this experimental result, the value of X satisfying the condition of conductivity σ> 10 -4 Ω -1 cm -1 (400 ° C) that can be practically used as a sensor is 0 ≤ x ≤ 0.30, and the value of X is It can be seen that if it is 0.3 or more, the internal resistance of the solid electrolyte becomes large and a sufficient electromotive force cannot be obtained. Therefore, the solid electrolyte 1 is replaced with Li 4-0.5x Ti 5-x Al 1.5x O 12
When the substance represented by the chemical formula is, the value of X is 0 ≤ x
≤0.30 is optimal.

【0010】図3(b)は、固体電解質Li4-2xTi
5-x Mg3x12 のLi+ イオンの導電率σの温度依存
性を示す実験結果であり、絶対温度T(K)の逆数にた
いして、導電率σ(Ω-1・cm-1)と絶対温度(K)の
積σT(Ω-1・cm-1・K)をプロットしたものであ
る。 この場合、●:x=0 ○:x=0.1 ◎:
x=0.2 ■:x=0.3 □:x=0.4 ◆:x=0.5 ◇:x=0.6 ▲:x=0.7 となっている。この実験結果から、実用上センサとして
使用できる導電率の条件 σ>10-4Ω-1・cm-1(400°C) を満たすXの値は0 ≦ x ≦0.40 であり、Xの値が0
. 4を超えると固体電解質の内部抵抗が大きくなって十
分な起電力が得られなくなることがわかる。したがっ
て、固体電解質1をLi4-2xTi5-x Mg3x12 の化
学式で表される物質とした場合のXの値は0 ≦ x ≦0.
40 が最適である。
FIG. 3B shows the solid electrolyte Li 4-2x Ti.
These are experimental results showing the temperature dependence of the electrical conductivity σ of Li + ions of 5-x Mg 3x O 12 , and the electrical conductivity σ (Ω −1 · cm −1 ) and the absolute value of the reciprocal of the absolute temperature T (K) It is a plot of the product of temperature (K), σT (Ω −1 · cm −1 · K). In this case, ●: x = 0 ○: x = 0.1 ◎:
x = 0.2 ■: x = 0.3 □: x = 0.4 ◆: x = 0.5 ◇: x = 0.6 ▲: x = 0.7 From this experimental result, the value of X satisfying the condition of conductivity σ> 10 -4 Ω -1 cm -1 (400 ° C) that can be practically used as a sensor is 0 ≤ x ≤ 0.40, and the value of X is 0
It can be seen that when it exceeds 0.4, the internal resistance of the solid electrolyte becomes large and a sufficient electromotive force cannot be obtained. Therefore, when the solid electrolyte 1 is a substance represented by the chemical formula of Li 4-2x Ti 5-x Mg 3x O 12 , the value of X is 0 ≤ x ≤ 0.
40 is the best.

【0011】(実験結果2)(炭酸ガスセンサとしての
感度確認) 図4(a)は、Xの値の異なる7種の固体電解質 Li4-0.5xTi5-x Al1.5x12を用いて、図2(a)
および図2(b)に示される素子構造の炭酸ガスセンサ
を構成し、それぞれの炭酸ガスセンサのCO2 感度(m
V)をプロットしたものである。CO2 感度は、炭酸ガ
ス濃度を大気の濃度から2000ppmまで変化させた
ときのセンサの起電力差である。この実験結果からXの
値が0.3を超えるとセンサ感度は、急激に低下する
が、Xの値が0 ≦ x ≦0.30 の範囲ではセンサ感度
は、40mV程度が得られ、炭酸ガスセンサとして十分
な感度を有することが確認された。
(Experimental Result 2) (Confirmation of Sensitivity as Carbon Dioxide Gas Sensor ) FIG. 4 (a) shows the case where seven kinds of solid electrolytes Li 4-0.5x Ti 5-x Al 1.5x O 12 having different X values are used. , Fig. 2 (a)
And a carbon dioxide gas sensor having the element structure shown in FIG. 2B is configured, and the CO 2 sensitivity (m
V) is plotted. The CO 2 sensitivity is the difference in electromotive force of the sensor when the carbon dioxide concentration is changed from the atmospheric concentration to 2000 ppm. From this experimental result, the sensor sensitivity sharply decreases when the value of X exceeds 0.3, but when the value of X is in the range of 0 ≤ x ≤ 0.30, the sensor sensitivity is about 40 mV, which is sufficient as a carbon dioxide sensor. It was confirmed that it has various sensitivity.

【0012】図4(b)はXの値の異なる9種の固体電
解質 Li4-2xTi5-x Mg3x12 を、用いて、図2(a)
および図2(b)に示される素子構造の炭酸ガスセンサ
を構成し、それぞれの炭酸ガスセンサのCO2 感度(m
V)をプロットしたものである。CO2 感度は、炭酸ガ
ス濃度を大気の濃度から2000ppmまで変化させた
ときのセンサの起電力差である。この実験結果からXの
値が0.4を超えるとセンサ感度は急激に低下するが、
Xの値が0≦×≦0.40の範囲ではセンサ感度は、4
0mV程度が得られ、炭酸ガスセンサとして十分な感度
を有することが確認された。
FIG. 4 (b) is obtained by using nine kinds of solid electrolytes Li 4-2x Ti 5-x Mg 3x O 12 having different X values, and FIG.
And a carbon dioxide gas sensor having the element structure shown in FIG. 2B is configured, and the CO 2 sensitivity (m
V) is plotted. The CO 2 sensitivity is the difference in electromotive force of the sensor when the carbon dioxide concentration is changed from the atmospheric concentration to 2000 ppm. From this experimental result, when the value of X exceeds 0.4, the sensor sensitivity sharply decreases,
When the value of X is 0 ≦ × ≦ 0.40, the sensor sensitivity is 4
About 0 mV was obtained, and it was confirmed that the carbon dioxide sensor had sufficient sensitivity.

【0013】(実験結果3)(センサ起電力の経時安定
性) 図5、は炭酸ガスセンサのヒータを連続通電状態にした
場合のセンサ起電力の経時変化を示すものである。白丸
印○は、固体電解質としてNASICONを用いた従来
の炭酸ガスセンサを示している。黒丸印●は、固体電解
質としてLi4 Ti5 12、すなわち固体電解質 L
4-0.5xTi5-x Al1.5x12あるいは、 Li4-2xTi5-x Mg3x12 においてXの値を0としたものを用いた本発明炭酸ガス
センサを示している。四角印□は、固体電解質としてL
3.85Ti4.7 Al0.4512、すなわち固体電解質Li
4-0.5xTi5-x Al1.5x12においてXの値を0.3と
したものを用いた本発明炭酸ガスセンサを示している。
三角印△は、固体電解質としLi3.4 Ti4.7 Mg0.9
12すなわち固体電解質Li4-2xTi5-x Mg3x12
においてXの値が0.3としたものを用いた本発明炭酸
ガスセンサ示している。上記いずれの本発明炭酸ガスセ
ンサもNASICONを用いた従来の炭酸ガスセンサと
比較してセンサ起電力の経時変化はなく、300日を経
過した時点では起電力の劣化は認められなかった。
(Experimental result 3) (Stability of sensor electromotive force with time) FIG. 5 shows a change with time of the sensor electromotive force when the heater of the carbon dioxide sensor is continuously energized. A white circle indicates a conventional carbon dioxide gas sensor using NASICON as a solid electrolyte. A black circle indicates a solid electrolyte of Li 4 Ti 5 O 12 , that is, a solid electrolyte L.
i 4-0.5x Ti 5-x Al 1.5x O 12 or the value of X a in Li 4-2x Ti 5-x Mg 3x O 12 shows the present invention carbon dioxide sensor which was used as a 0. Square mark □ is L as a solid electrolyte
i 3. 85 Ti 4. 7 Al 0. 45 O 12, namely the solid electrolyte Li
4 shows the carbon dioxide gas sensor of the present invention using 4-0.5x Ti 5-x Al 1.5x O 12 having an X value of 0.3.
The triangles △ are solid electrolytes Li 3.4 Ti 4.7 Mg 0.9
O 12 or solid electrolyte Li 4-2x Ti 5-x Mg 3x O 12
2 shows the carbon dioxide gas sensor of the present invention in which the value of X is 0.3. In any of the above carbon dioxide sensors of the present invention, the electromotive force of the sensor did not change with time as compared with the conventional carbon dioxide sensor using NASICON, and no deterioration of the electromotive force was observed after 300 days had passed.

【0014】(実験結果4)(センサ起電力の回復時
間) 図6(a)及び図6(b)はそれぞれ固体電解質として
Li4 Ti5 12,Li3.4 Ti4.7 Mg0.9 12,L
3.85Ti4.7 Al0.4512を用いた本発明炭酸ガスセ
ンサを大気雰囲気中で1日サイクルのヒータ断続通電で
使用した場合のセンサ起電力の回復時間を示したもので
ある。これらの特性から明らかなように、本発明炭酸ガ
スセンサにおいては、その起電力は、ヒータ通電開始か
ら約10分程度で定常起電力に達し、固体電解質として
NASICONを用いた従来の炭酸ガスセンサと比較し
て格段の回復時間の短縮を図ることができた。また、ヒ
ータの断続通電の周期を1日よりさらに長くした場合に
は、従来の炭酸ガスセンサでは、起電力の回復がさらに
遅くなったが、本発明炭酸ガスセンサでは、ほとんど同
じ10分程度の時間で起電力の回復がみられた。
[0014] (Experiment Result 4) (recovery time of the sensor electromotive force) FIGS. 6 (a) and 6 (b) Li 4 Ti 5 O 12 as the respective solid electrolyte, Li 3. 4 Ti 4. 7 Mg 0. 9 O 12 , L
i 3. 85 Ti 4. 7 Al 0. is 45 O 12 of the present invention carbon dioxide gas sensor using a shows the sensor electromotive force of the recovery time when used in the heater intermittently energizing day cycle in the atmosphere . As is clear from these characteristics, in the carbon dioxide gas sensor of the present invention, the electromotive force reached a steady electromotive force in about 10 minutes from the start of energization of the heater, and compared with the conventional carbon dioxide gas sensor using NASICON as the solid electrolyte. It was possible to significantly reduce the recovery time. Further, when the intermittent energization cycle of the heater was made longer than one day, the recovery of electromotive force was further delayed in the conventional carbon dioxide gas sensor, but in the carbon dioxide gas sensor of the present invention, it took about the same time of about 10 minutes. The electromotive force was recovered.

【0015】[0015]

【発明の効果】以上詳述したように、本発明は、炭酸ガ
スセンサとして充分な感度と起動力の経時安定性を確保
しつつ、ヒータの断続通電という使用条件下において
も、センサ起動力の回復時間を格段に短縮することがで
きるから、高い信頼性と正確な炭酸ガス濃度の検知が実
現できると共に、使用条件の制約を大幅に減らすことが
できる。
As described in detail above, the present invention ensures sufficient sensitivity as a carbon dioxide sensor and stability of the starting force with time, and recovers the starting force of the sensor even under the use condition of intermittent energization of the heater. Since the time can be remarkably shortened, high reliability and accurate detection of the carbon dioxide concentration can be realized, and restrictions on use conditions can be greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の炭酸ガスセンサのヒータの断続状態での
起動力特性図。
FIG. 1 is a starting force characteristic diagram of a conventional carbon dioxide gas sensor in an intermittent heater state.

【図2】本発明炭酸ガスセンサの構成図。FIG. 2 is a block diagram of the carbon dioxide sensor of the present invention.

【図3】本発明の固体電解質の導電率温度依存特性図。FIG. 3 is a characteristic diagram of temperature dependence of electric conductivity of the solid electrolyte of the present invention.

【図4】本発明炭酸ガスセンサの感度特性図。FIG. 4 is a sensitivity characteristic diagram of the carbon dioxide sensor of the present invention.

【図5】本発明炭酸ガスセンサの起動力の経時特性図。FIG. 5 is a time-dependent characteristic diagram of the starting force of the carbon dioxide sensor of the present invention.

【図6】本発明炭酸ガスセンサの起動力回復特性図。FIG. 6 is a characteristic diagram of recovery of starting force of the carbon dioxide sensor of the present invention.

【符号の説明】[Explanation of symbols]

1…固体電解質 2…基準極 3…検知極 4…炭酸塩 5…ヒータ 6…ヒータ基板 7…接着剤 1 ... Solid electrolyte 2 ... Reference electrode 3 ... Detection electrode 4 ... Carbonate 5 ... Heater 6 ... Heater substrate 7 ... Adhesive

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】固体電解質が、 Li4-0.5xTi5-x Al1.5x12 (0≦x ≦0.30) であることを特徴とする固体電解質型の炭酸ガスセン
サ。
1. A solid electrolyte type carbon dioxide gas sensor, wherein the solid electrolyte is Li 4-0.5x Ti 5-x Al 1.5x O 12 ( 0≤x≤0.30 ).
【請求項2】固体電解質が、 Li4-2xTi5-x Mg3x12 (0≦x ≦0.40) であることを特徴とする固体電解質型の炭酸ガスセン
サ。
2. A solid electrolyte type carbon dioxide gas sensor, wherein the solid electrolyte is Li 4-2x Ti 5-x Mg 3x O 12 (0 ≦ x ≦ 0.40).
JP7002222A 1995-01-10 1995-01-10 Carbon dioxide gas sensor Pending JPH08189915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7002222A JPH08189915A (en) 1995-01-10 1995-01-10 Carbon dioxide gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7002222A JPH08189915A (en) 1995-01-10 1995-01-10 Carbon dioxide gas sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000246820A Division JP2001083116A (en) 2000-08-16 2000-08-16 Carbonic acid gas sensor

Publications (1)

Publication Number Publication Date
JPH08189915A true JPH08189915A (en) 1996-07-23

Family

ID=11523331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7002222A Pending JPH08189915A (en) 1995-01-10 1995-01-10 Carbon dioxide gas sensor

Country Status (1)

Country Link
JP (1) JPH08189915A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326271A (en) * 1998-05-19 1999-11-26 Yazaki Corp Preventive method for sensitivity drop of solid electrolyte carbon dioxide sensor
JP2006504973A (en) * 2002-11-01 2006-02-09 ハネウェル・インターナショナル・インコーポレーテッド Gas sensor
KR100958695B1 (en) * 2008-01-07 2010-05-18 한국과학기술연구원 High-performance sensor for detecting carbon dioxide and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326271A (en) * 1998-05-19 1999-11-26 Yazaki Corp Preventive method for sensitivity drop of solid electrolyte carbon dioxide sensor
JP2006504973A (en) * 2002-11-01 2006-02-09 ハネウェル・インターナショナル・インコーポレーテッド Gas sensor
KR100958695B1 (en) * 2008-01-07 2010-05-18 한국과학기술연구원 High-performance sensor for detecting carbon dioxide and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6551497B1 (en) Measuring NOx concentration
JPH0646189B2 (en) Oxygen concentration sensor
JPH021539A (en) Heating type oxygen sensor
JPH112621A (en) Manufacturing method of nox sensor and nox sensor
JPH0244392B2 (en)
JP2003083936A (en) Gas sensor element
JPH08189915A (en) Carbon dioxide gas sensor
US7967964B2 (en) Single cell sensor for measuring the partial pressure of oxygen
JP2598172B2 (en) Carbon dioxide detection sensor
JPH1048179A (en) Detecting apparatus for nox
JP2001083116A (en) Carbonic acid gas sensor
JPH09297119A (en) Nitrogen oxides detecting device
JPH0933483A (en) Co2 sensor
JPH07167833A (en) Gas sensor
JPH08201336A (en) Electrochemical gas sensor and driving method thereof
JPH06265516A (en) Oxygen/humidity sensor
JP3489658B2 (en) Solid electrolyte type carbon dioxide gas / oxygen gas sensor
JPS61162743A (en) Oxygen gas detector
JP2678045B2 (en) Carbon dioxide sensor
JP3755801B2 (en) Solid electrolyte type carbon dioxide gas sensor element
JP2526729B2 (en) Carbon dioxide sensor device
JPS6116936B2 (en)
JP4271053B2 (en) Carbon dioxide detector
JP2001296272A (en) Nitrogen oxide sensor
JPH06308076A (en) Solid electrolyte gas sensor