JPH08188926A - Conjugate fiber having heat resistance and durability - Google Patents

Conjugate fiber having heat resistance and durability

Info

Publication number
JPH08188926A
JPH08188926A JP6340398A JP34039894A JPH08188926A JP H08188926 A JPH08188926 A JP H08188926A JP 6340398 A JP6340398 A JP 6340398A JP 34039894 A JP34039894 A JP 34039894A JP H08188926 A JPH08188926 A JP H08188926A
Authority
JP
Japan
Prior art keywords
fiber
base material
heat resistance
composite fiber
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6340398A
Other languages
Japanese (ja)
Inventor
Hidenori Kita
英紀 北
Hideo Kawamura
英男 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP6340398A priority Critical patent/JPH08188926A/en
Publication of JPH08188926A publication Critical patent/JPH08188926A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE: To obtain the subject fiber useful for a lining on the inner wall of a combustion chamber, for a filter for removing fine particles from the exhaust gas of a Diesel engine, etc., by forming the coating film of a nitrogen-containing compound on the surface of a ceramic fiber, etc. CONSTITUTION: A ceramic fiber, glass fiber or metal fiber is used as a base material, and the antioxidizing coating film 3 of a oxynitride glass is formed on the surface of the base material. The content of the nitrogen in the coating film components is adjusted to reduce the difference between the thermal expansion coefficients of the base material and the coating film, preferably into a value of <=8×10<-6> / deg.C. The conjugate fiber is excellent in oxidation resistance against high temperature combustion gases and exhaust gases.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃焼室の内壁面に結合さ
れるライニング、デイーゼル機関の排気微粒子を取り除
くフイルタなどに好適な、耐熱性と耐久性に優れた複合
繊維に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite fiber having excellent heat resistance and durability, which is suitable for a lining bonded to an inner wall surface of a combustion chamber, a filter for removing exhaust fine particles of a diesel engine, and the like.

【0002】[0002]

【従来の技術】例えば実開昭61-90832号公報に開示され
るように、燃焼室の内壁面に結合されるライニングに
は、セラミツク繊維を芯材とし、表面にセラミツク材と
無機結合材との混合物をコーテイングしたものが知られ
ており、また特開平6-108820号公報に開示されるよう
に、排気微粒子フイルタにはセラミツク繊維をフエルト
状に絡み合せたものが知られている。
2. Description of the Related Art As disclosed in, for example, Japanese Utility Model Publication No. 61-90832, a lining bonded to an inner wall surface of a combustion chamber has a ceramic fiber as a core material, and a ceramic material and an inorganic binder material on the surface. Is known, and as disclosed in Japanese Patent Laid-Open No. 6-108820, an exhaust fine particle filter is known in which ceramic fibers are entwined in a felt shape.

【0003】上述のようなライニングやフイルタに用い
るセラミツク繊維には、SiC繊維、SiTiCO繊
維、Al23−SiO2−B23 、SiN、オキシナイ
トライド(酸窒化)ガラス繊維などが用いられている。
しかし、上述の各繊維は高温の燃焼ガスないし排ガスに
長時間曝されると、次のような問題が生じる。すなわ
ち、SiC繊維やSiTiCO繊維は高温の燃焼ガスに
より酸化されると強度が次第に低下し、ボロボロに崩壊
して飛散する。Al23−SiO2−B23 繊維は、高
温の燃焼ガスに曝される内に、セラミツクの結晶粒が粗
大化し、強度が次第に低下して崩壊する。オキシナイト
ライドガラス繊維は、燃焼ガス中の成分により腐食す
る。なかでも、Si34(窒化ケイ素)繊維、SiC
(炭化ケイ素)繊維、SiTiCO繊維はコストが極め
て高く、用途が限定され、排気微粒子フイルタとしては
コスト上に問題がある。
SiC fibers, SiTiCO fibers, Al 2 O 3 --SiO 2 --B 2 O 3 , SiN, oxynitride (oxynitride) glass fibers, etc. are used as the ceramic fibers used in the linings and filters as described above. Has been.
However, when the above fibers are exposed to high temperature combustion gas or exhaust gas for a long time, the following problems occur. That is, when the SiC fiber or SiTiCO fiber is oxidized by the high temperature combustion gas, the strength thereof gradually decreases, and the SiC fiber or the SiTiCO fiber collapses into pieces and scatters. In the Al 2 O 3 —SiO 2 —B 2 O 3 fiber, while being exposed to high-temperature combustion gas, the crystal grains of the ceramic become coarse, and the strength gradually decreases and collapses. Oxynitride glass fibers corrode due to the components in the combustion gas. Among them, Si 3 N 4 (silicon nitride) fiber, SiC
(Silicon carbide) fiber and SiTiCO fiber are extremely high in cost and have limited uses, and there is a problem in cost as an exhaust particulate filter.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は上述の
問題に鑑み、セラミツク繊維などの表面に、熱膨張係数
を調整した耐酸化性の被膜を形成することにより、耐熱
性と耐久性を高めた複合繊維を提供することにある。
SUMMARY OF THE INVENTION In view of the above problems, the object of the present invention is to improve the heat resistance and durability by forming an oxidation resistant coating having a controlled coefficient of thermal expansion on the surface of ceramic fibers or the like. It is to provide an enhanced composite fiber.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の構成はセラミツク繊維、ガラス繊維または
金属繊維を母材とし、該母材の表面に窒素を含む化合物
からなる被膜を形成したものである。
In order to achieve the above object, the constitution of the present invention comprises a ceramic fiber, a glass fiber or a metal fiber as a base material and forms a film made of a compound containing nitrogen on the surface of the base material. It was done.

【0006】[0006]

【作用】本発明による複合繊維はオキシナイトライドガ
ラス繊維を用い、該ガラス繊維の表面に耐酸化性に優れ
たセラミツク被膜を形成したことを特徴とし、高温の排
ガスに対する耐酸化性に優れるので、本発明による複合
繊維は例えば排気微粒子フイルタに用いて、強度の低下
が抑えられ、耐久寿命が延長される。
The composite fiber according to the present invention is characterized by using oxynitride glass fiber and forming a ceramic coating excellent in oxidation resistance on the surface of the glass fiber, which is excellent in oxidation resistance to high temperature exhaust gas. The composite fiber according to the present invention is used, for example, in an exhaust particulate filter to suppress a decrease in strength and extend a durable life.

【0007】[0007]

【実施例】図1に示すように、本発明による複合繊維
は、SiC繊維などの母材2の表面に、酸窒化ガラスな
どの耐酸化性を有する被膜3を形成したものである。被
膜3の成分はN(窒素)の含有量を加減することによ
り、母材2と被膜3の熱膨張係数の差を小さくする。
EXAMPLE As shown in FIG. 1, the composite fiber according to the present invention is one in which a base material 2 such as SiC fiber is provided with a coating 3 having oxidation resistance such as oxynitride glass. The component of the coating film 3 reduces the difference in thermal expansion coefficient between the base material 2 and the coating film 3 by adjusting the content of N (nitrogen).

【0008】実施例1(図5の試料No.1) 直径が約10μmのSiC繊維の表面に、Al(OC2
53,Mg(OCH32,Si(OCH3)の3成分から
なるアルコキシド混合溶液を表面に薄く塗布した後に、
温度約800℃で加熱し、塗布した溶液をガラスに転化
させた。次いで、NH3 (アンモニア)の雰囲気中で加
熱処理して窒素を拡散させ、約3at%の窒素を含む厚さ
約3μmのMg−Al−Si−O−N系の酸窒化ガラス
の被膜を形成した。被膜の酸窒化ガラスに含まれる窒素
を約3at%とすることにより、母材であるSiC繊維と
の熱膨張係数の差を極めて小さくできる。
Example 1 (Sample No. 1 in FIG. 5) Al (OC 2 H) was formed on the surface of SiC fiber having a diameter of about 10 μm.
5 ) 3 , a Mg (OCH 3 ) 2 , Si (OCH 3 ) alkoxide mixed solution consisting of three components is applied thinly on the surface,
The coating solution was converted to glass by heating at a temperature of about 800 ° C. Then, heat treatment is performed in an atmosphere of NH 3 (ammonia) to diffuse nitrogen to form a film of Mg—Al—Si—O—N oxynitride glass containing about 3 at% nitrogen and having a thickness of about 3 μm. did. By setting the nitrogen contained in the oxynitride glass of the coating to be about 3 at%, the difference in the coefficient of thermal expansion from the SiC fiber as the base material can be made extremely small.

【0009】上述のようにして得られた複合繊維につい
て耐酸化試験を行つた。つまり、実施例1の複合繊維を
大気中で約800℃に所要時間加熱して酸化させた後
に、複合繊維の引張強度を測定した結果は図2に示すと
おりであり、実施例1の複合繊維は耐酸化性被膜を施さ
ないSiC繊維に比べて、強度低下の度合が非常に少な
いことが分る。ここで、実施例1の複合繊維における被
膜の酸窒化ガラスは、酸素の一部が窒素に置換された構
造を有し、窒素によりSiX4 (X=O,N)の酸窒化
ガラスの網目が強固になり、耐酸化特性が向上されるも
のである。
An oxidation resistance test was conducted on the composite fiber obtained as described above. That is, the result of measuring the tensile strength of the composite fiber after heating the composite fiber of Example 1 to about 800 ° C. in the air for a required time to oxidize is as shown in FIG. It can be seen that the degree of strength reduction is very small as compared with the SiC fiber not provided with the oxidation resistant coating. Here, the oxynitride glass of the coating in the composite fiber of Example 1 has a structure in which a part of oxygen is replaced by nitrogen, and the network of the oxynitride glass of SiX 4 (X = O, N) is changed by nitrogen. It becomes stronger and the oxidation resistance is improved.

【0010】実施例2(図5の試料No.2) Y23,Al23,Si34を所定量配合してなる混合
粉末を溶融紡糸法により、直径が約10μmで約1.5
at%の窒素を含むY−Al−Si−O−N系のガラス繊
維を製造した。該ガラス繊維の表面にケイ素を主鎖にも
つポリマーの溶液を塗布してNH3 で熱分解し、厚さ約
3μmのSi34の被膜を形成した。
Example 2 (Sample No. 2 in FIG. 5) A mixed powder containing Y 2 O 3 , Al 2 O 3 and Si 3 N 4 in a predetermined amount was melt-spun to have a diameter of about 10 μm. 1.5
A Y-Al-Si-O-N based glass fiber containing at% nitrogen was manufactured. A solution of a polymer having silicon as the main chain was applied to the surface of the glass fiber and pyrolyzed with NH 3 to form a film of Si 3 N 4 having a thickness of about 3 μm.

【0011】上述のようにして得られた複合繊維を、高
温の排ガスによる暴露試験を行つた後に、複合繊維の引
張強度を測定した結果は、図3に示すとおりである。
The tensile strength of the composite fiber obtained by subjecting the composite fiber obtained as described above to an exposure test with high temperature exhaust gas is shown in FIG.

【0012】排ガスに含まれるCaOは、ガラスを腐食
させる作用があるので、実施例2のガラス繊維にSi3
4の被膜を施してないものは、排ガス暴露試験で痩せ
細り、強度も次第に低下するのに対し、本発明の実施例
2による複合繊維では、Si34の被膜を施してあるの
で、排ガス暴露試験による強度の低下の度合が少ないこ
とが分る。
Since CaO contained in the exhaust gas has a function of corroding glass, Si 3 is added to the glass fiber of Example 2.
Those not subjected to coating of N 4 is thinning lean in gas exposure test, whereas strength decreases gradually, since the composite fiber according to the second embodiment of the present invention, are subjected to a coating of Si 3 N 4, It can be seen that the degree of decrease in strength due to the exhaust gas exposure test is small.

【0013】実施例3(図5の試料No.3) 母材としてのAl23−SiO2−B23 繊維の表面
に、実施例2と同様の耐酸化性被膜を形成して複合繊維
を製造した。該複合繊維を大気中で温度約800℃に加
熱して耐酸化試験を行つた後に、同複合繊維の引張強度
を測定した結果を図4に示す。耐酸化性被膜の組成は、
母材であるAl23−SiO2−B23 繊維との熱膨張
係数の差が小さくなるように調整した。
Example 3 (Sample No. 3 in FIG. 5) The same oxidation resistant coating as in Example 2 was formed on the surface of Al 2 O 3 --SiO 2 --B 2 O 3 fiber as a base material. A composite fiber was produced. FIG. 4 shows the result of measuring the tensile strength of the composite fiber after heating the composite fiber in the atmosphere to a temperature of about 800 ° C. to perform an oxidation resistance test. The composition of the oxidation resistant coating is
It was adjusted so that the difference in the coefficient of thermal expansion from the Al 2 O 3 —SiO 2 —B 2 O 3 fiber as the base material was small.

【0014】実施例4(図5の試料No.4) 母材としてのSUS(ステンレス)繊維の表面に、実施
例2と同様の耐酸化性被膜を形成して複合繊維を製造し
た。該複合繊維を大気中で温度約800℃に加熱して耐
酸化試験を行つた後に、同複合繊維の引張強度を測定し
たところ、実施例3とほぼ同様の結果が得られた。
Example 4 (Sample No. 4 in FIG. 5) A composite fiber was produced by forming the same oxidation resistant coating as in Example 2 on the surface of SUS (stainless steel) fiber as a base material. The composite fiber was heated to a temperature of about 800 ° C. in the atmosphere and subjected to an oxidation resistance test, and the tensile strength of the composite fiber was measured. As a result, almost the same result as in Example 3 was obtained.

【0015】実施例5 図6に示すように、直径が約2μmのSi3N4繊維2を
複数本紡ぐか撚り合せて糸ないし撚り線4とし、該撚り
線4の表面に実施例1と同様の方法により耐酸化性被膜
3を形成して複合繊維を製造した。得られた複合繊維の
耐久強度を試験するために、大気中で温度約800℃で
所定時間加熱した後に、複合繊維の引張強度を測定した
ところ約3GPaであつた。
Example 5 As shown in FIG. 6, a plurality of Si 3 N 4 fibers 2 having a diameter of about 2 μm are spun or twisted to form a thread or a twisted wire 4, and the surface of the twisted wire 4 is subjected to the same method as in the first embodiment. The oxidation resistant coating 3 was formed to produce a composite fiber. In order to test the durability strength of the obtained conjugate fiber, the tensile strength of the conjugate fiber was measured after heating in the air at a temperature of about 800 ° C. for a predetermined time, and it was about 3 GPa.

【0016】実施例6(図5の試料No.1A,5,6 ) 熱膨張係数が4.5×10-6/℃のSiC繊維の表面
に、図5に示す各組成の耐酸化性被膜を形成して複合繊
維を製造した。複合繊維に加熱と冷却(常温)を100
0回繰返し行なつた後に、複合繊維の表面の状態を観察
したところ、母材と耐酸化性被膜との熱膨張係数の差が
大きいと、耐酸化性被膜に亀裂が生じることが分つた。
母材と被膜の熱膨張係数の差が8×10-6/℃以下であ
れば、耐酸化性被膜に亀裂が生じることはなく、耐久性
が損われることもない。
Example 6 (Sample No. 1A, 5, 6 in FIG. 5) The surface of the SiC fiber having a thermal expansion coefficient of 4.5 × 10 −6 / ° C. has an oxidation resistant coating of each composition shown in FIG. To form a composite fiber. Heating and cooling (normal temperature) of the composite fiber is 100
After repeated 0 times, the surface state of the composite fiber was observed, and it was found that if the difference in the coefficient of thermal expansion between the base material and the oxidation resistant coating was large, cracks were formed in the oxidation resistant coating.
When the difference in the coefficient of thermal expansion between the base material and the coating is 8 × 10 −6 / ° C. or less, the oxidation resistant coating does not crack and the durability is not impaired.

【0017】[0017]

【発明の効果】本発明は上述のように、炭化ケイ素など
のセラミツク繊維、ガラス繊維または金属繊維を母材と
し、母材の表面にMg−Al−Si−O−N系の酸窒化
ガラスなどの窒素を含む化合物からなる耐酸化性の被膜
を形成し、母材と被膜の熱膨張係数の差を8×10-6
℃以下としたものであるから、例えば燃焼室内壁面のラ
イニングや排気微粒子フイルタに用いても、高温の燃焼
ガスや高温の排ガスに含まれる成分により酸化ないし腐
食が抑えられるので、強度の低下が抑えられ、長期使用
に耐える。
As described above, the present invention uses a ceramic fiber such as silicon carbide, a glass fiber or a metal fiber as a base material, and a Mg-Al-Si-O-N-based oxynitride glass on the surface of the base material. Forming an oxidation resistant coating made of a compound containing nitrogen, and the difference in the coefficient of thermal expansion between the base material and the coating is 8 × 10 -6 /
Even if it is used for the lining of the wall surface of the combustion chamber or the exhaust particulate filter, for example, the components contained in the high-temperature combustion gas and high-temperature exhaust gas can suppress the oxidation or corrosion, so the reduction in strength can be suppressed. And withstands long-term use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る耐熱性と耐久性を有する複合繊維
の断面図である。
FIG. 1 is a cross-sectional view of a composite fiber having heat resistance and durability according to the present invention.

【図2】同複合繊維の耐熱耐久試験の結果を表す線図で
ある。
FIG. 2 is a diagram showing the results of a heat resistance durability test of the composite fiber.

【図3】同複合繊維の耐熱耐久試験の結果を表す線図で
ある。
FIG. 3 is a diagram showing the results of a heat resistance durability test of the composite fiber.

【図4】同複合繊維の耐熱耐久試験の結果を表す線図で
ある。
FIG. 4 is a diagram showing the results of a heat resistance durability test of the composite fiber.

【図5】同複合繊維の組成を示す表図である。FIG. 5 is a table showing the composition of the composite fiber.

【図6】本発明の変更実施例に係る耐熱性と耐久性を有
する複合繊維の断面図である。
FIG. 6 is a cross-sectional view of a heat-resistant and durable composite fiber according to a modified example of the present invention.

【符号の説明】[Explanation of symbols]

2:母材 3:耐酸化性被膜 4:撚り線 2: Base material 3: Oxidation resistant coating 4: Stranded wire

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】セラミツク繊維、ガラス繊維または金属繊
維を母材とし、該母材の表面に窒素を含む化合物からな
る被膜を形成したことを特徴とする耐熱性と耐久性を有
する複合繊維。
1. A composite fiber having heat resistance and durability, which comprises ceramic fiber, glass fiber or metal fiber as a base material and a coating film made of a compound containing nitrogen is formed on the surface of the base material.
【請求項2】前記母材と前記被膜の熱膨張係数の差は8
×10-6/℃以下である、請求項1に記載の耐熱性と耐
久性を有する複合繊維。
2. The difference in coefficient of thermal expansion between the base material and the coating is 8
The composite fiber having heat resistance and durability according to claim 1, which is not more than × 10 -6 / ° C.
【請求項3】前記母材である繊維が炭化ケイ素である、
請求項1,2の何れかに記載の耐熱性と耐久性を有する
複合繊維。
3. The fiber as the base material is silicon carbide,
A composite fiber having heat resistance and durability according to claim 1.
【請求項4】前記母材である繊維が炭化ケイ素であり、
前記被膜がMg−Al−Si−O−N系の酸窒化ガラス
である、請求1〜3の何れかに記載の耐熱性と耐久性を
有する複合繊維。
4. The base material fiber is silicon carbide,
The composite fiber having heat resistance and durability according to any one of claims 1 to 3, wherein the coating film is an Mg-Al-Si-O-N-based oxynitride glass.
【請求項5】前記母材である繊維がケイ素と窒素を主成
分とする、請求項1に記載の耐熱性と耐久性を有する複
合繊維。
5. The composite fiber having heat resistance and durability according to claim 1, wherein the matrix fiber is composed mainly of silicon and nitrogen.
【請求項6】前記母材である繊維がガラスであつて、前
記被膜が窒化ケイ素である、請求項1,2の何れかに記
載の耐熱性と耐久性を有する複合繊維。
6. The composite fiber having heat resistance and durability according to claim 1, wherein the fiber as the base material is glass and the coating is silicon nitride.
【請求項7】前記ガラスがY−Al−Si−O−N系の
ものである、請求項5に記載の耐熱性と耐久性を有する
複合繊維。
7. The composite fiber having heat resistance and durability according to claim 5, wherein the glass is a Y—Al—Si—O—N type glass.
【請求項8】前記母材である繊維がステンレスである、
請求項1,2の何れかに記載の耐熱性と耐久性を有する
複合繊維。
8. The fiber as the base material is stainless steel,
A composite fiber having heat resistance and durability according to claim 1.
【請求項9】前記母材である繊維がステンレスであり、
前記被膜がSi−Na−O−N系のガラスである、請求
項1,2,7の何れかに記載の耐熱性と耐久性を有する
複合繊維。
9. The base material fiber is stainless steel,
The composite fiber having heat resistance and durability according to any one of claims 1, 2 and 7, wherein the coating film is Si-Na-O-N glass.
【請求項10】前記母材である繊維が複数本の繊維を撚
り合せて構成されている、請求項1に記載の耐熱性と耐
久性を有する複合繊維。
10. The composite fiber having heat resistance and durability according to claim 1, wherein the matrix fiber is formed by twisting a plurality of fibers together.
【請求項11】前記複合繊維がデイーゼル機関の排気微
粒子フイルタである、請求項1〜10の何れかに記載の
耐熱性と耐久性を有する複合繊維。
11. The composite fiber having heat resistance and durability according to claim 1, wherein the composite fiber is an exhaust particulate filter of a diesel engine.
JP6340398A 1994-12-28 1994-12-28 Conjugate fiber having heat resistance and durability Pending JPH08188926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6340398A JPH08188926A (en) 1994-12-28 1994-12-28 Conjugate fiber having heat resistance and durability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6340398A JPH08188926A (en) 1994-12-28 1994-12-28 Conjugate fiber having heat resistance and durability

Publications (1)

Publication Number Publication Date
JPH08188926A true JPH08188926A (en) 1996-07-23

Family

ID=18336577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6340398A Pending JPH08188926A (en) 1994-12-28 1994-12-28 Conjugate fiber having heat resistance and durability

Country Status (1)

Country Link
JP (1) JPH08188926A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041266B1 (en) 2002-07-10 2006-05-09 Advanced Composite Materials Corp. Silicon carbide fibers essentially devoid of whiskers and products made therefrom
US7083771B2 (en) 2002-07-10 2006-08-01 Advanced Composite Materials Corporation Process for producing silicon carbide fibers essentially devoid of whiskers
CN101959815A (en) * 2008-03-05 2011-01-26 波音公司 The glass fibre that intensity improves
US7963126B2 (en) * 2008-03-05 2011-06-21 The Boeing Company Glass fibers having improved durability
JPWO2010143608A1 (en) * 2009-06-08 2012-11-22 株式会社超高温材料研究センター COMPOSITE INORGANIC FIBER AND METHOD FOR PRODUCING SAME, AND COMPOSITE INORGANIC FIBER PRODUCT AND METHOD FOR PRODUCING SAME

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041266B1 (en) 2002-07-10 2006-05-09 Advanced Composite Materials Corp. Silicon carbide fibers essentially devoid of whiskers and products made therefrom
US7083771B2 (en) 2002-07-10 2006-08-01 Advanced Composite Materials Corporation Process for producing silicon carbide fibers essentially devoid of whiskers
CN101959815A (en) * 2008-03-05 2011-01-26 波音公司 The glass fibre that intensity improves
US7963126B2 (en) * 2008-03-05 2011-06-21 The Boeing Company Glass fibers having improved durability
US7963125B2 (en) * 2008-03-05 2011-06-21 The Boeing Company Glass fibers having improved strength
US8132430B2 (en) 2008-03-05 2012-03-13 The Boeing Company Glass fibers having improved strength
US8141393B2 (en) 2008-03-05 2012-03-27 The Boeing Company Glass fibers having improved durability
JPWO2010143608A1 (en) * 2009-06-08 2012-11-22 株式会社超高温材料研究センター COMPOSITE INORGANIC FIBER AND METHOD FOR PRODUCING SAME, AND COMPOSITE INORGANIC FIBER PRODUCT AND METHOD FOR PRODUCING SAME

Similar Documents

Publication Publication Date Title
JP3866002B2 (en) Article having silicon-containing substrate and yttrium-containing barrier layer and method for producing the same
JPH11502499A (en) Composite material protected from oxidation by self-healing matrix, and method of making the same
US5846899A (en) Ceramic honeycomb catalyst having excellent thermal shock resistance
JPH08188926A (en) Conjugate fiber having heat resistance and durability
Shimoo et al. Thermal stability of low‐oxygen silicon carbide fiber (Hi‐Nicalon) subjected to selected oxidation treatment
US5167988A (en) Ceramic coating bonded to iron member
JPH0250994B2 (en)
RU2065505C1 (en) Turbine blade and method for its manufacture
JP3259646B2 (en) Continuous siliconizing equipment for steel strip
JP2812019B2 (en) Carbon fiber / carbon composite
JPH0725688A (en) Improvement in structural article
JPH02225383A (en) Bonded ceramics and iron parts and production thereof
JPH09217235A (en) Heat-resistant silicon carbide fiber
JPS5988371A (en) Heat resistant composite material and manufacture
JPS60156958A (en) Member for internal-combustion engine
JPS62184073A (en) Heat-resistant adhesive or coating agent
Kumagawa et al. Fabrication and Mechanical Properties of Si‐M‐C‐(O) Tyranno Fibers
JPS58122016A (en) Production of silicon carbide filter
JP3060589B2 (en) High temperature heat resistant material
JPS63129115A (en) Exhaust system apparatus and manufacture thereof
JP3116753B2 (en) Thermal insulation film and method of forming the same
JPS6330386A (en) Manufacture of reaction-sintered silicon carbide heat-resistant parts
JPH059752A (en) Heat resistant ceramic coated film
JP2751364B2 (en) Corrosion resistant ceramic material and method for producing the same
JP2001122681A (en) Oxidation resistant coating method for non-oxide high temperature material

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20060602

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060602

A61 First payment of annual fees (during grant procedure)

Effective date: 20060721

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250