JPH08186939A - Power supply - Google Patents

Power supply

Info

Publication number
JPH08186939A
JPH08186939A JP6327656A JP32765694A JPH08186939A JP H08186939 A JPH08186939 A JP H08186939A JP 6327656 A JP6327656 A JP 6327656A JP 32765694 A JP32765694 A JP 32765694A JP H08186939 A JPH08186939 A JP H08186939A
Authority
JP
Japan
Prior art keywords
storage battery
voltage
load
discharge
discharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6327656A
Other languages
Japanese (ja)
Inventor
Hiroshi Sugiyama
寛 杉山
Hidemi Fukunaga
秀美 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6327656A priority Critical patent/JPH08186939A/en
Publication of JPH08186939A publication Critical patent/JPH08186939A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: To judge the deteriorating state of a storage battery without the effect on a load by providing the storage battery, which is charged by a float charging method or a trickle charging method, and forcibly decreasing the output voltage of the storage battery to an arbitrary value between the super power of the storage battery itself and the minimum allowable operating voltage of a load apparatus. CONSTITUTION: A storage battery 2 and a load 3 are connected to a charging device 1 in parallel. The charging device 1 uses a commercial power source as the input power source. The voltage is converted into the optimum floating voltage for the storage battery 2, and the electric energy is supplied into the storage battery 2 and the load 3. For judging the deteriorating state of the storage battery 2, the output voltage of the charging device 1 is forcibly decreased to an arbitrary value between the electromotive force of the storage battery 2 itself and the minimum allowable operating voltage of the load 3. At this time, the output voltage of the charging device 1 is lower than the discharging voltage of the storage battery 3, and the discharging is started from the storage battery 2. The difference between the discharging voltage when a test is discontinued and the standard voltage at the time of theoritical discharging capacity corresponding to the discharging is obtained. The ratio between the difference and the discharging voltage is made to be the deterioration ratio. The deterioration of the storage battery 2 can be judged based on the deterioration ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、浮動充電やトリクル充
電状態で使用される蓄電池の劣化状況を判定する機能を
有した電源装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply device having a function of determining the deterioration status of a storage battery used in floating charging or trickle charging.

【0002】[0002]

【従来の技術】近年、コンピュータを中核とする情報、
通信分野の発展が著しい。据置用電池は、停電などに対
して、これら分野で使用される機器の非常用電源として
広く用いられ、システム補償の役割を担っている。
2. Description of the Related Art In recent years, information centered on computers,
The development of the communication field is remarkable. Stationary batteries are widely used as an emergency power source for devices used in these fields in the event of a power failure, etc., and play a role of system compensation.

【0003】この据置用電池は、停電時や負荷変動時に
無瞬断で電池から負荷である機器へ電力を供給しなけれ
ばならず、その状態を常時良好に維持するために、電池
の劣化状況を把握する必要がある。
This stationary battery must supply electric power from the battery to the load device without interruption during a power failure or a load change, and in order to maintain that state at all times, the state of deterioration of the battery must be maintained. Need to figure out.

【0004】ところで、据置用電池の充電には、充電装
置に電池と負荷とを並列に接続し、電池に常に一定の電
圧を加えて充電状態にしておく浮動充電方法や、負荷と
は別回路で電池に常時、微小な電流を流し、電池の自己
放電による容量損失を補うトリクル充電方法が一般的に
用いられている。
By the way, when charging a stationary battery, a floating charging method in which a battery and a load are connected in parallel to a charging device and a constant voltage is always applied to the battery to bring it into a charged state, and a circuit separate from the load is used. Therefore, a trickle charging method is generally used in which a minute current is constantly applied to the battery to compensate for capacity loss due to self-discharge of the battery.

【0005】前記充電方法に用いられる電源装置は、一
定の電圧を電池に印加し続けるものであり、電源から供
給される浮動充電電圧あるいはトリクル充電電圧を強制
的に低下させる機能を有した電源装置は見当たらない。
逆に、均等充電と称される充電電圧を高くする機能を持
つものとして、例えば、負極吸収式シール形据置鉛蓄電
池を用いた電源装置では、通常、1セル当たりの浮動充
電電圧を2.18Vに設定しているが、一定期間経過
後、この充電電圧を2.30Vまで上昇させる機能を有
した電源装置がある。この均等充電は、浮動充電中の自
己放電累積値のバラツキを解消することを目的とするも
ので、電池の劣化状況を判定することはできない。
The power supply device used in the above charging method is for continuously applying a constant voltage to the battery, and has a function of forcibly reducing the floating charging voltage or the trickle charging voltage supplied from the power supply. Is not found.
On the other hand, as a power supply device using a negative electrode absorption type seal type stationary lead-acid battery, which has a function of increasing the charging voltage called equal charge, the floating charging voltage per cell is usually 2.18V. However, there is a power supply device having a function of increasing the charging voltage to 2.30V after a lapse of a certain period. This uniform charging is intended to eliminate the variation in the self-discharge accumulated value during floating charging, and it is not possible to judge the deterioration state of the battery.

【0006】[0006]

【発明が解決しようとする課題】従来、電池の劣化状況
の判定は、浮動充電されている組電池の中より、数セル
以下の電池状況の評価用セルを選定し、これらを充放電
することにより行っていた。この方法は、組電池を構成
する個々の電池の劣化状況に大きな差がない場合には有
効である。しかし、組電池全体の状況を判断することや
個々の電池の劣化状況を掌握することができない。
Conventionally, in the determination of the deterioration status of a battery, a battery status evaluation cell of several cells or less is selected from the assembled battery that is floatingly charged, and these cells are charged and discharged. Was going by. This method is effective when there is no significant difference in the deterioration status of the individual batteries that form the assembled battery. However, it is not possible to judge the condition of the whole assembled battery or grasp the deterioration condition of each battery.

【0007】個々の電池の劣化状況を判断するために
は、電源および負荷との接続を主電池からスペア電池に
切り替えた後、電池の放電試験を行う必要がある。しか
し、前記スペア電池に交換する方法では、電池の切り替
えに起因するシステムの信頼性低下という課題があっ
た。また、放電試験時のシステム全体の信頼性を維持す
るためには、スペア電池に、主電池の容量に近いものを
選定する必要があり、多額の試験費用を要するものとな
っていた。
In order to judge the deterioration status of each battery, it is necessary to carry out a battery discharge test after switching the connection between the power supply and the load from the main battery to the spare battery. However, the method of replacing the spare battery has a problem that the reliability of the system is deteriorated due to the switching of the battery. Further, in order to maintain the reliability of the entire system during the discharge test, it is necessary to select a spare battery having a capacity close to that of the main battery, which requires a large amount of test cost.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明の電源装置は、装置内の充電装置より供給され
る浮動充電電圧あるいはトリクル充電電圧の値を、蓄電
池自体の起電圧から負荷となる機器の最低許容動作電圧
までの任意の値に強制的に低下させる制御手段を持たせ
ることにより、蓄電池に接続された負荷に影響を与える
ことなく蓄電池を放電させる。さらに、その放電電流値
における理論放電容量と実放電容量から蓄電池の放電持
続時間の推定を行い、劣化状況を判定する手段を有する
ものである。
In order to solve the above-mentioned problems, a power supply device of the present invention uses a floating charging voltage or a trickle charging voltage value supplied from a charging device in the device as a load from an electromotive voltage of a storage battery itself. The storage battery is discharged without affecting the load connected to the storage battery by providing the control means for forcibly reducing the value to the minimum allowable operating voltage of the device. Further, it has means for estimating the discharge duration of the storage battery from the theoretical discharge capacity and the actual discharge capacity at the discharge current value and determining the deterioration status.

【0009】[0009]

【作用】本発明は、上記構成をとることにより、負荷に
影響を与えることなく、電池の劣化状況の判定や放電持
続時間の推定を行なうことができるものである。
According to the present invention, by adopting the above configuration, it is possible to judge the deterioration state of the battery and to estimate the discharge duration without affecting the load.

【0010】[0010]

【実施例】以下、実施例により本発明を詳細に説明す
る。
The present invention will be described in detail below with reference to examples.

【0011】図1に本発明の電源装置の基本回路構成を
示す。充電装置1に、蓄電池2と負荷3とが並列に接続
されている。この充電装置1は商用電源を入力電源と
し、蓄電池2に最適な浮動充電電圧に変換し、蓄電池2
および負荷3に電気エネルギーを供給している。負荷3
には、通常、電話交換機や非常用照明等が用いられる。
尚、本実施例では負荷として電話交換機を使用した。こ
の電話交換機の最低許容動作電圧は43Vであり、負荷
電流は20Aである。
FIG. 1 shows the basic circuit configuration of the power supply device of the present invention. A storage battery 2 and a load 3 are connected in parallel to the charging device 1. This charging device 1 uses a commercial power source as an input power source and converts it into a floating charging voltage most suitable for the storage battery 2,
And the load 3 is supplied with electric energy. Load 3
Usually, a telephone exchange, an emergency lighting, or the like is used for.
In this example, a telephone exchange was used as the load. The minimum allowable operating voltage of this telephone exchange is 43V and the load current is 20A.

【0012】蓄電池2は、10時間率容量200Ahの
負極吸収式シール形鉛蓄電池を使用し、これを24個直
列に接続した。1セル当たり2.25Vの充電電圧にな
るように、充電装置1から供給する浮動充電電圧は54
Vに設定した。
As the storage battery 2, a negative electrode absorption type sealed lead storage battery having a 10-hour rate capacity of 200 Ah was used, and 24 of these were connected in series. The floating charging voltage supplied from the charging device 1 is 54 so that the charging voltage is 2.25V per cell.
Set to V.

【0013】蓄電池の劣化状況を判断するために、充電
装置の出力電圧をその制御手段により強制的に45.6
Vまで低下させ、負荷として電話交換機を使用して放電
試験を行った。
In order to judge the state of deterioration of the storage battery, the output voltage of the charging device is forced by the control means to 45.6.
The discharge test was conducted by lowering to V and using a telephone exchange as a load.

【0014】図2に試験中の充電装置の出力電圧4と蓄
電池の放電電圧5および充電装置の出力電流6と蓄電池
からの放電電流7の推移を示す。充電装置1の出力電圧
4は、試験開始前まで54Vに維持されている。試験が
開始されるA点で充電装置の出力電圧4は、強制的に4
5.6Vまで低下される。この時、充電装置の出力電圧
4は蓄電池の放電電圧5を下回り、蓄電池2からの放電
が始まり、充電装置から蓄電池への電流供給は行われな
い。蓄電池2はその放電電圧が45.6Vに達するB点
まで、放電を続ける。
FIG. 2 shows changes in the output voltage 4 of the charging device, the discharging voltage 5 of the storage battery, the output current 6 of the charging device and the discharging current 7 from the storage battery during the test. The output voltage 4 of the charging device 1 is maintained at 54V before the start of the test. At the point A when the test starts, the output voltage 4 of the charging device is forced to 4
It is lowered to 5.6V. At this time, the output voltage 4 of the charging device becomes lower than the discharging voltage 5 of the storage battery, the discharging from the storage battery 2 starts, and no current is supplied from the charging device to the storage battery. The storage battery 2 continues discharging until the point B where the discharge voltage reaches 45.6V.

【0015】蓄電池2の放電電圧が45.6Vに低下す
ると、充電装置1が出力電圧45.6Vを維持している
ため、電源供給が切換わり、蓄電池2は放電を行わなく
なる。この時でも負荷3である電話交換機は、その最低
許容動作電圧43Vを上回る電圧が印加されているため
に、何ら影響を受けない。
When the discharge voltage of the storage battery 2 drops to 45.6V, the charging device 1 maintains the output voltage of 45.6V, the power supply is switched, and the storage battery 2 does not discharge. Even at this time, the telephone exchange, which is the load 3, is not affected because the voltage exceeding the minimum allowable operating voltage 43V is applied.

【0016】また万一、試験中に停電が発生しても、蓄
電池2には電話交換機の最低許容動作電圧を上回る残存
容量があるため、放電が再開されて電話交換機の機能を
維持することができる。
Further, even if a power failure occurs during the test, since the storage battery 2 has a remaining capacity exceeding the minimum allowable operating voltage of the telephone exchange, the discharge can be restarted and the function of the telephone exchange can be maintained. it can.

【0017】なお、放電試験中に低下させる充電装置の
出力電圧4は、蓄電池1の残存容量を考慮したうえで、
蓄電池の起電圧と負荷の許容最低動作電圧との間の任意
の値を設定することができる。
The output voltage 4 of the charging device, which is lowered during the discharge test, takes into consideration the remaining capacity of the storage battery 1,
Any value between the electromotive voltage of the storage battery and the allowable minimum operating voltage of the load can be set.

【0018】このように放電試験中または終了時に、放
電電流および全電池の端子電圧を測定することで、個々
の電池の劣化状態を把握することができる。
As described above, by measuring the discharge current and the terminal voltage of all the batteries during or after the discharge test, the deterioration state of each battery can be grasped.

【0019】本実施例のように負荷に電話交換機を用い
て放電する場合、試験打切時の放電電圧と、その放電に
見合った理論放電容量時の標準電圧との差を求める。こ
の差と放電電圧との比を劣化率とし、標準放電特性から
求めた放電容量に劣化率を掛けて容量を算出することが
できる。
When discharging using a telephone exchange as a load as in this embodiment, the difference between the discharge voltage at the time of test termination and the standard voltage at the theoretical discharge capacity corresponding to the discharge is obtained. The ratio of this difference and the discharge voltage is taken as the deterioration rate, and the capacity can be calculated by multiplying the discharge capacity obtained from the standard discharge characteristics by the deterioration rate.

【0020】なお、標準放電特性は、温度毎に放電特性
と電圧との関係から算出した換算係数を、マイコン内に
マトリックス状もしくは換算式を用いて格納し、規定時
間経過後の標準電圧値と測定電圧とを比較して劣化率を
求めることができる。さらに、この劣化率を放電時間に
掛け合わせて劣化率を含めた放電可能時間を算出するこ
とができる。
For the standard discharge characteristic, the conversion coefficient calculated from the relationship between the discharge characteristic and the voltage for each temperature is stored in the microcomputer in the form of a matrix or a conversion formula, and the standard voltage value after the lapse of the specified time is stored. The deterioration rate can be obtained by comparing with the measured voltage. Further, the deterioration rate can be multiplied by the discharge time to calculate the dischargeable time including the deterioration rate.

【0021】なお、短時間に充電装置の出力を低下さ
せ、その時の放電電圧の低下度合いから蓄電池の劣化を
判定することもできる。
It is also possible to decrease the output of the charging device in a short time and judge the deterioration of the storage battery from the degree of decrease in the discharge voltage at that time.

【0022】[0022]

【発明の効果】以上のように本発明の電源装置は、蓄電
池の放電深度を任意に設定でき、負荷に影響を与えるこ
となく蓄電池の劣化状況の判定を可能にするものであ
り、さらに充電装置と蓄電池とを切り放す作業がないた
め、放電試験中の信頼性も高く保つことができる。
As described above, the power supply device of the present invention is capable of arbitrarily setting the depth of discharge of the storage battery and enabling the determination of the deterioration state of the storage battery without affecting the load. Since there is no work to disconnect the battery and the storage battery, reliability during the discharge test can be kept high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電源装置の基本回路構成を示す図FIG. 1 is a diagram showing a basic circuit configuration of a power supply device of the present invention.

【図2】充電装置の出力電圧と蓄電池の放電電圧および
充電装置の出力電流と蓄電池の放電電流の推移を示す図
FIG. 2 is a diagram showing changes in output voltage of a charging device and discharge voltage of a storage battery, and output current of a charging device and discharge current of a storage battery.

【符号の説明】[Explanation of symbols]

1 充電装置 2 蓄電池 3 負荷 4 充電装置の出力電圧 5 蓄電池の放電電圧 6 充電装置の出力電流 7 蓄電池の放電電流 1 Charging device 2 Storage battery 3 Load 4 Output voltage of charging device 5 Discharge voltage of storage battery 6 Output current of charging device 7 Discharge current of storage battery

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 浮動充電方法もしくはトリクル充電方法
により充電されている蓄電池と、この蓄電池の出力電圧
を蓄電池自体の起電圧と負荷となる機器の最低許容動作
電圧との間の任意の値に強制的に低下させる制御手段と
を設けたことを特徴とする電源装置。
1. A storage battery charged by a floating charging method or a trickle charging method, and the output voltage of the storage battery is forced to an arbitrary value between the electromotive voltage of the storage battery itself and the minimum allowable operating voltage of a device serving as a load. A power supply device, which is provided with a control unit that lowers the electric power.
【請求項2】 蓄電池の放電電圧、放電電流および放電
時間と蓄電池温度を計測し、前記放電電流値における理
論放電容量と前記計測値から推定した放電容量とを比較
し、これらの容量比から蓄電池の劣化率を推定する手段
を有したことを特徴とする電源装置。
2. The discharge voltage, discharge current and discharge time of the storage battery and the storage battery temperature are measured, the theoretical discharge capacity at the discharge current value and the discharge capacity estimated from the measured value are compared, and the storage battery is calculated from the capacity ratio of these. A power supply device having means for estimating a deterioration rate of the power supply device.
【請求項3】 蓄電池と負荷とを電気的に切断すること
なく前記蓄電池の劣化率を推定する請求項2記載の電源
装置。
3. The power supply device according to claim 2, wherein the deterioration rate of the storage battery is estimated without electrically disconnecting the storage battery and the load.
JP6327656A 1994-12-28 1994-12-28 Power supply Pending JPH08186939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6327656A JPH08186939A (en) 1994-12-28 1994-12-28 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6327656A JPH08186939A (en) 1994-12-28 1994-12-28 Power supply

Publications (1)

Publication Number Publication Date
JPH08186939A true JPH08186939A (en) 1996-07-16

Family

ID=18201499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6327656A Pending JPH08186939A (en) 1994-12-28 1994-12-28 Power supply

Country Status (1)

Country Link
JP (1) JPH08186939A (en)

Similar Documents

Publication Publication Date Title
US5694023A (en) Control and termination of a battery charging process
KR100280308B1 (en) Method and apparatus for charging, melting and formatting batteries
US5889385A (en) Equalization of series-connected cells of a battery using controlled charging and discharging pulses
US4237411A (en) Charge maintenance and continuous charging for storage batteries
US20030062874A1 (en) Circuit for adjusting charging rate of cells in combination
KR20180082345A (en) Charge Control Apparatus capable of high speed cell balancing and energy saving and Method thereof
US7071653B2 (en) Method for charging a non-aqueous electrolyte secondary battery and charger therefor
JP2003009411A (en) Charging rate adjustment circuit of set battery
CN111175664A (en) Method for determining aging state of battery, controller and vehicle
AU710799B2 (en) Control and termination of a battery charging process
WO1998052270A1 (en) Equalization of series-connected cells and batteries
JP3991620B2 (en) Control circuit
US5541492A (en) Method for charging a multiple voltage electrochemical cell
JP3796918B2 (en) Battery device
KR20190051483A (en) Charging control apparatus and method for the same
EP0921620B1 (en) Method for temperature dependent charging of a back-up power source which is subject to self-discharging
JP3157688B2 (en) Charge control method and charge control device for assembled battery
JPH08186939A (en) Power supply
US6137266A (en) Recharging circuit and method for recharging a battery having a reference electrode
JP3428895B2 (en) Charging method of alkaline aqueous secondary battery for backup
GB2271228A (en) Controlling charging of a battery in an uninterruptible power supply
JP3649655B2 (en) Charging method for multiple parallel alkaline aqueous solution secondary batteries for backup
JPH05236662A (en) Charging system for lead storage battery
CN218385365U (en) Lead-acid battery new and old mixed use balance circuit structure
JPH1174001A (en) Charging method for lead-acid battery