JPH08186205A - Temperature control device and method - Google Patents

Temperature control device and method

Info

Publication number
JPH08186205A
JPH08186205A JP32739994A JP32739994A JPH08186205A JP H08186205 A JPH08186205 A JP H08186205A JP 32739994 A JP32739994 A JP 32739994A JP 32739994 A JP32739994 A JP 32739994A JP H08186205 A JPH08186205 A JP H08186205A
Authority
JP
Japan
Prior art keywords
temperature
heat
peltier element
temperature control
sink member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32739994A
Other languages
Japanese (ja)
Other versions
JP3087813B2 (en
Inventor
Shigenao Maruyama
重直 圓山
Hiroshi Nishimura
博 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Nichiden Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiden Machinery Ltd filed Critical Nichiden Machinery Ltd
Priority to JP06327399A priority Critical patent/JP3087813B2/en
Publication of JPH08186205A publication Critical patent/JPH08186205A/en
Application granted granted Critical
Publication of JP3087813B2 publication Critical patent/JP3087813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE: To provide a compact temperature control device which brings a Peltier element into thermal contact with a heat sink member held at a temperature which is different from an ambient temperature and heats and cools a temperature control object by large heat flow flux in a short time. CONSTITUTION: The title device is provided with a Peltier element 1 with one side wherein a temperature control object 3 is arranged and the other side wherein a heat sink member 6 is arranged to be brought into thermal contact and an electric control circuit 12 which accelerates electronic cold heat by energization which inverses polarity to the Peltier element 1, and generates rapid temperature change in a temperature control object by electronic cold heat during non-steady heat conduction of a heat sink member. Here, an electronic control circuit makes an energization state changeable according to a signal which shows an operational state of a laser 3 of a temperature control object or a detection signal of a temperature sensor which is arranged in one side of the Peltier element 1, a method for controlling a temperature control object by a predetermined temperature profile is disclosed and desired temperature control is thereby realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ペルチェ素子に極性
反転の通電により物体の温度を制御する方法、特に被温
度制御物体を短時間に急速加熱または冷却する被温度制
御物体の温度制御装置に関し、詳しくは、被温度制御物
体を瞬時に加熱・冷却する際、高熱流束を生じさせる非
定常熱伝導を利用したコンパクトな温度制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the temperature of an object by energizing the Peltier device by reversing the polarity, and more particularly to a temperature control device for the object to be temperature controlled which rapidly heats or cools the object to be temperature controlled. More specifically, the present invention relates to a compact temperature control device that utilizes unsteady heat conduction that causes a high heat flux when an object to be temperature-controlled is instantly heated and cooled.

【0002】[0002]

【従来の技術】従来、物体の温度を制御する方法とし
て、ペルチェ効果を利用した電子冷熱素子を用いて電子
加熱や電子冷却する可動部を持たない加熱冷却装置が知
られている。例えば、ペルチェ素子のサーモモジュール
冷却装置は、通常、熱伝導や熱流束の定常状態の冷却性
能に基づいて設計されていた(特開昭61−82450
号、特開昭61−172358号、特開昭63−686
4号、特開平1−143347号および特開平4−16
2551号公報参照)。サーモモジュールは、熱伝導度
が低くて電気導電度が高いと良好な性能を期待される
が、これら物理上相反する特性を満足するものはなく、
実用化されているサーモモジュールは、定常時の冷却性
能は芳しくないものである。それ故に、性能向上のため
にはサーモモジュールを多段に積み重ねると共に素子自
身が熱を発生するので空冷・水冷などの適当な冷却手段
を用いて冷却能力を高めていた。しかし、多段化では順
次大容量の素子を積み重ねる必要から効率の低下となる
のみならず、定常熱伝導時の熱制御も難しくなり、急速
冷却ができる温度制御ができなかった。
2. Description of the Related Art Conventionally, as a method of controlling the temperature of an object, a heating / cooling device using an electronic cooling / heating element utilizing the Peltier effect and having no movable part for electronic heating / electronic cooling has been known. For example, a Peltier element thermomodule cooling device is usually designed based on steady-state cooling performance of heat conduction and heat flux (Japanese Patent Laid-Open No. 61-82450).
No. 61-172358, 63-686.
4, JP-A-1-143347 and JP-A-4-16.
2551 publication). Thermo modules are expected to have good performance when they have low thermal conductivity and high electrical conductivity, but none of them satisfy these physically contradictory characteristics.
The thermo module that has been put into practical use has a poor cooling performance in a steady state. Therefore, in order to improve the performance, the thermomodules are stacked in multiple stages and the element itself generates heat, so that the cooling capacity is increased by using an appropriate cooling means such as air cooling or water cooling. However, in the case of multiple stages, not only the efficiency is lowered because it is necessary to stack a large-capacity element sequentially, but also the heat control during steady heat conduction becomes difficult, and the temperature control capable of rapid cooling cannot be performed.

【0003】[0003]

【発明が解決しようとする課題】このような従来の冷却
装置は、サーモモジュールを薄くしてコンパクト化する
と素子内の熱伝導成分が増大して冷却性能が阻害され、
定常熱伝導時の設計上では小型化が難しく、急激で動的
な熱負荷変動に対応できなかった。そして、こうした問
題を解決するに適した物体の温度制御方法または温度制
御装置の提供が望まれていた。従って、本発明は上記欠
陥を解消するために提案されたものであり、新規かつ改
良された温度制御装置およびその方法の提供を目的とす
る。すなわち、非定常熱伝導時に高熱負荷を受ける物体
に対して、急速冷却を可能しかつ小型でコンパクトな電
子冷熱可能な温度制御装置であり、急激な動的熱負荷変
動にも即時対応しうる温度制御方法の提供を目的とす
る。
In such a conventional cooling device, when the thermo module is made thin and compact, the heat conduction component in the element increases and the cooling performance is impaired.
It was difficult to miniaturize the design during steady heat conduction, and it was not possible to cope with rapid and dynamic heat load fluctuations. It has been desired to provide a temperature control method for an object or a temperature control device that is suitable for solving these problems. Therefore, the present invention has been proposed in order to solve the above-mentioned deficiencies, and an object thereof is to provide a new and improved temperature control device and its method. In other words, it is a compact and compact electronic temperature control device that can rapidly cool an object that is subjected to a high heat load during unsteady heat conduction, and can immediately respond to sudden dynamic heat load fluctuations. The purpose is to provide a control method.

【0004】[0004]

【課題を解決するための手段】本発明によれば、被温度
制御物体が配置される一方の面とヒートシンク部材が熱
的接触配置される他方の面とを有するペルチェ素子と、
ヒートシンク部材を放熱または吸熱により周囲温度と異
なる温度に保持するサーモモジュールと、ペルチェ素子
への極性を反転させて通電し電子冷熱を促す電気制御回
路とを具備し、ヒートシンク部材の非定常熱伝導時に、
ペルチェ素子の電子冷熱により被温度制御物体の温度を
急速に変化させる温度制御装置が開示される。ここで、
サーモモジュールはヒートシンク部材を周囲温度から異
なる温度とするために別のペルチェ素子で構成すること
もでき、電気制御回路にはペルチェ素子や被温度制御物
体の温度を測定する温度センサを一方の面に配置しても
よい。この温度センサの検知信号は必要に応じて通電状
態を可変させる信号とすることができる。また、被温度
制御物体を予め定められた温度プロファイルに制御する
信号をコンピュータにより演算設定され、それにより所
望する電子冷熱を実現することもできる。換言すると、
ペルチェ素子に対して電気制御回路から極性を反転して
通電する際に、非定常熱伝導の大きな熱流束をヒートシ
ンク部材に生じさせ、被温度制御物体に短時間に急激な
冷却または加熱を生じさせることを特徴とする温度制御
装置を提供する。
According to the present invention, a Peltier element having one surface on which a temperature controlled object is arranged and the other surface on which a heat sink member is arranged in thermal contact,
It is equipped with a thermo module that keeps the heat sink member at a temperature different from the ambient temperature by radiating or absorbing heat, and an electric control circuit that reverses the polarity to the Peltier element and energizes it to electronic cold heat. ,
Disclosed is a temperature control device that rapidly changes the temperature of a temperature-controlled object by electronic cold heat of a Peltier element. here,
The thermo module can also be configured with another Peltier element to make the heat sink member a temperature different from the ambient temperature, and the electric control circuit has a temperature sensor for measuring the temperature of the Peltier element or the temperature controlled object on one surface. You may arrange. The detection signal of the temperature sensor can be a signal for changing the energized state as needed. Further, a signal for controlling the temperature controlled object to a predetermined temperature profile is calculated and set by a computer, and thereby desired electronic cooling / heating can be realized. In other words,
When the Peltier element is energized by reversing the polarity from the electric control circuit, a large heat flux with unsteady heat conduction is generated in the heat sink member, causing rapid cooling or heating of the temperature controlled object in a short time. A temperature control device is provided.

【0005】本発明の別の観点において、ペルチェ素子
はその一方の面に被温度制御物体を熱的に結合配置し、
他方の面にヒートシンク部材を熱的に結合配置し、この
サーモモジュールに電気制御回路からペルチェ素子に予
め決められた反転する通電電流を供給して電子冷熱を促
し、被温度制御物体の温度を短時間に急激に変化させる
ことを特徴とする温度制御方法が開示される。この場合
にヒートシンク部材は銅、アルミニウム、ダイアモンド
等の熱伝導率が大きい物質であり、ペルチェ素子と熱的
に接触配置する反対側にサーモモジュールを熱的に結合
配置し、このサーモモジュールによりヒートシンク部材
を周囲より異なる温度に保つ。また、ヒートシンク部材
は一方の面がペルチェ素子の加熱面であれば他方の面が
サーモモジュールの冷却面となるように配置され、ペル
チェ素子の電子冷熱効果を有効に利用して大きな熱流束
を発生させて急速冷熱を発生させる。さらに、サーモモ
ジュールの別の面には必要に応じて放熱・吸熱部材が配
置され、冷却モードであれば放熱機能を発揮させる。
In another aspect of the present invention, the Peltier device has a temperature controlled object thermally coupled to one surface thereof,
A heat sink member is thermally coupled and arranged on the other surface, and a predetermined reversing energizing current is supplied to the Peltier device from the electric control circuit to this thermo module to promote electronic cooling and to reduce the temperature of the temperature controlled object. A temperature control method is disclosed in which the temperature is rapidly changed. In this case, the heat sink member is a material having a large thermal conductivity such as copper, aluminum, or diamond, and the thermo module is thermally coupled and arranged on the side opposite to the thermal contact arrangement with the Peltier element. Keep it at a different temperature than the surroundings. Further, the heat sink member is arranged such that if one surface is the heating surface of the Peltier element, the other surface is the cooling surface of the thermo module, and a large heat flux is generated by effectively utilizing the electronic cooling effect of the Peltier element. To generate rapid cold heat. Further, a heat radiating / heat absorbing member is arranged on another surface of the thermo module as needed, and the heat radiating function is exerted in the cooling mode.

【0006】[0006]

【作用】上述する温度制御装置では、ヒートシンク部材
の熱拡散・熱伝導が利用されて大きな熱流束を生じ、短
時間の急激な冷熱作用を生じさせる。例えば、被温度制
御物体を急速冷却する場合、ペルチェ素子の冷却面に被
温度制御物体が、加熱面にヒートシンク部材がそれぞれ
熱的に接触配置されるが、電気制御回路からの通電は加
熱モードから冷却モードに極性反転して切り替えられ
る。これにより冷却開始後の数ミリ秒から数十秒の短時
間内にヒートシンク部材に大きな熱流束を生じ、非定常
熱伝導による熱拡散を発生する。この非定常熱伝導は定
常状態の熱伝導の数十倍であることが見い出され、瞬時
の冷却性能を数十倍に高めて発揮する。それ故に、本発
明はペルチェ素子を利用の電子冷熱による温度制御装置
として、短時間に高出力動作して温度変化する半導体デ
バイスや落下中の短時間の微重力または無重力下で反応
させる結晶成長セルの対象物質の温度制御に適用して有
効に機能する。
In the temperature control device described above, a large heat flux is generated by utilizing the heat diffusion / heat conduction of the heat sink member, and a rapid cooling action for a short time is generated. For example, in the case of rapidly cooling the temperature controlled object, the temperature controlled object is placed in thermal contact with the cooling surface of the Peltier element and the heat sink member is placed in thermal contact with the heating surface. The polarity is reversed and switched to the cooling mode. As a result, a large heat flux is generated in the heat sink member within a short time of several milliseconds to several tens of seconds after the start of cooling, and heat diffusion due to unsteady heat conduction occurs. This unsteady heat conduction is found to be several tens of times that of steady state heat conduction, and the instantaneous cooling performance is enhanced by several tens of times. Therefore, the present invention is a temperature control device using electronic Peltier device using electronic Peltier heat, a semiconductor device that operates at high power in a short time and changes in temperature, or a crystal growth cell that reacts under microgravity or zero gravity for a short time during falling. It effectively functions by being applied to the temperature control of the target substance.

【0007】一方、非定常熱伝導の短時間に処理する被
温度制御物体は予め定常状態に温度制御するべく所定の
温度プロファイルにしたがって操作される。例えば、被
温度制御物体を予め高温に保持した後に急速冷却する場
合、定常熱伝導状態に被温度制御物体をペルチェ素子で
加熱し、その後極性反転して大電流を供給することで短
時間の急速冷却を実現する。従って、ペルチェ素子とヒ
ートシンク部材の非定常熱伝導を利用した急速電子冷熱
によりコンパクトで精度が高く、任意で動的な温度制御
方法が実現される。なお、非定常熱伝導は定常状態の動
作プロセス時に対して用いる非定常状態を意味し、定常
熱伝導が時間的に温度の変化しない場合の熱伝導をいう
のに対し、変化する場合を非定常熱伝導と呼び、一般の
フィンは拡大伝熱面を形成して効果的に熱伝達する定常
熱伝導の例である。通常、熱伝導の法則として、物体内
の単位面積を単位時間に通過する熱量q(Kw/m2 )
を熱流束と呼び一般式で表わしている。
On the other hand, the temperature-controlled object to be processed in a short time due to unsteady heat conduction is operated according to a predetermined temperature profile in order to perform temperature control in a steady state in advance. For example, when the temperature controlled object is held at a high temperature in advance and then rapidly cooled, the Peltier element heats the temperature controlled object to a steady heat conduction state, and then the polarity is reversed to supply a large current for a short time. Achieve cooling. Therefore, the rapid electronic cooling utilizing the unsteady heat conduction between the Peltier element and the heat sink member realizes a compact, highly accurate, and optionally dynamic temperature control method. Note that unsteady heat conduction means the unsteady state used for the steady-state operation process.While steady heat conduction refers to heat conduction when the temperature does not change with time, it refers to unsteady heat conduction. It is called heat conduction, and a general fin is an example of steady heat conduction that forms an enlarged heat transfer surface and effectively transfers heat. Usually, as a law of heat conduction, the amount of heat that passes through a unit area in an object per unit time q (Kw / m2)
Is called heat flux and is expressed by a general formula.

【0008】[0008]

【実施例】図は本発明に係る電子デバイスの温度制御装
置を示し、複数個の高出力半導体レーザのアレイを被温
度制御物体とした温度制御の方法を開示する。この温度
制御装置はペルチェ素子1と、この素子の一方の電極面
4aにシリカ被膜2を介在して熱的に接触配置した半導
体レーザ3と、他方の電極面4bに熱的に接触させるよ
うシリカ被膜5を介在して熱的に接触配置した平板状銅
材のヒートシンク部材6により構成される。複数個の半
導体レーザ3はペルチェ素子1の一方の面に熱的結合状
態で配置されて高出力半導体レーザアレイを形成してい
る。加えて、サーモモジュル7が平板状で厚みのあるヒ
ートシンク部材6の裏面側に熱的に接触させるようにシ
リカ被膜8を介して配置される。このサーモモジュール
7は、ヒートシンク部材6を定常的に周囲温度と異なる
温度、例えば、定常熱伝導時に周囲温度より低温状態の
−10℃から0℃に保持するものであり、そのために、
このサーモモジュール7には放熱フィン9が装着され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The drawings show a temperature control device for an electronic device according to the present invention, and disclose a temperature control method in which an array of a plurality of high-power semiconductor lasers is used as a temperature controlled object. This temperature control device comprises a Peltier element 1, a semiconductor laser 3 arranged so as to be in thermal contact with one electrode surface 4a of the element with a silica coating 2 interposed therebetween, and a silica laser so as to make thermal contact with the other electrode surface 4b. The heat sink member 6 is made of a flat plate copper material and is arranged in thermal contact with the coating film 5 interposed therebetween. A plurality of semiconductor lasers 3 are arranged on one surface of the Peltier device 1 in a thermally coupled state to form a high power semiconductor laser array. In addition, the thermomodule 7 is arranged via the silica coating 8 so as to be in thermal contact with the back surface side of the heat sink member 6 which is flat and has a large thickness. This thermo module 7 is for keeping the heat sink member 6 at a temperature that is different from the ambient temperature constantly, for example, from -10 ° C to 0 ° C, which is a temperature lower than the ambient temperature, during steady heat conduction.
Radiating fins 9 are attached to the thermo module 7.

【0009】上述の温度制御装置は電子冷熱作用をする
ペルチェ素子と熱伝導・熱拡散率の大きいヒートシンク
部材とを外部雰囲気から熱的に遮断するよう断熱材10
により囲繞される。被温度制御物体の半導体レーザ3の
取付面には温度検知のために温度センサ11が個々に装
備され、ペルチェ素子1を駆動するために電気制御回路
12が設けられる。温度センサ11からの配線は個々に
電気制御回路に接続される。サーモモジュール7は通常
の水冷・空冷の冷却機構でもよいが、コンパクト化と効
率化のために別のペルチェ素子を使用して電気制御回路
12から通電駆動してもよい。なお、シリカ被膜は電気
的絶縁性に優れ、かつ熱伝導良好な物質であり、所望す
る電気的・熱的特性を有する物質であればよい。また、
ヒートシンク部材は銅の他に使用環境に応じてアルミニ
ウムやダイヤモンド等の熱伝導率の大きな物質を使用
し、熱的特性を配慮して材料が選択される。
The above-mentioned temperature control device uses the heat insulating material 10 so as to thermally insulate the Peltier element, which acts as an electronic cold, and the heat sink member, which has a large thermal conductivity and thermal diffusivity, from the external atmosphere.
Surrounded by. A temperature sensor 11 is individually mounted on the mounting surface of the semiconductor laser 3 of the temperature-controlled object for temperature detection, and an electric control circuit 12 is provided for driving the Peltier device 1. The wiring from the temperature sensor 11 is individually connected to the electric control circuit. The thermo module 7 may be a normal water-cooled / air-cooled cooling mechanism, but may be energized and driven by the electric control circuit 12 using another Peltier element for compactness and efficiency. It should be noted that the silica coating is a substance having excellent electrical insulation and good thermal conductivity, and may be any substance having desired electrical / thermal characteristics. Also,
In addition to copper, a material having a large thermal conductivity such as aluminum or diamond is used for the heat sink member according to the usage environment, and the material is selected in consideration of thermal characteristics.

【0010】次に、この温度制御装置による動作を説明
する。被温度制御物体である高出力半導体レーザ3は間
歇的に駆動されて急速加熱するが、これを安定駆動する
ために急速冷却で対応しなければならず、本発明の温度
制御装置が適用される。また、駆動しない場合は最適効
率の動作を行うために結露による不具合を避けるよう所
定温度に維持することが望まれペルチェ素子1を適度に
加熱している。従って、本発明の温度制御装置では、定
常状態に被温度制御物体のレーザ3を加熱するようにペ
ルチェ素子1を加熱モードで動作させる。電気制御回路
12からの通電制御はレーザ3の稼働状態に応じて行な
うほか、温度センサ11の検知温度により行なってもよ
い。極性反転を含む通電制御は、ペルチェ素子1に対し
その被温度制御物体の配置面を加熱してレーザ3を所定
の温度に維持する状態から動作開始で温度上昇するレー
ザ3を急速冷却する状態に変える。温度センサ11はこ
の制御物体の配置面の温度を検知する。必要により、こ
の信号で電気制御回路12の通電制御ができる。電気制
御回路12の極性反転と通電強化による冷却モードは瞬
間的で数ミリ秒から数十秒以内の短時間であるが、ペル
チェ素子1からヒートシンク部材6に向けて大きな熱流
束が発生する。この発生熱はヒートシンク部材6の非定
常熱伝導特性により速やかに熱拡散し、極めて効率的に
吸収され、急速冷却が達成される。この冷却性能は定常
状態に比べて数十倍に達し、レーザ3を効率的動作温度
に維持して動作させる。
Next, the operation of this temperature control device will be described. The high-power semiconductor laser 3 that is a temperature-controlled object is driven intermittently and rapidly heats, but in order to stably drive this, rapid cooling must be dealt with, and the temperature control device of the present invention is applied. . Further, when not driven, it is desired to maintain a predetermined temperature so as to avoid a problem due to dew condensation in order to perform an operation with optimum efficiency, and the Peltier element 1 is appropriately heated. Therefore, in the temperature control device of the present invention, the Peltier element 1 is operated in the heating mode so as to heat the laser 3 of the temperature controlled object to a steady state. The energization control from the electric control circuit 12 may be performed according to the operating state of the laser 3 or the temperature detected by the temperature sensor 11. The energization control including the polarity reversal is performed from a state in which the Peltier element 1 is heated on the surface on which the temperature-controlled object is arranged and the laser 3 is maintained at a predetermined temperature to a state in which the laser 3 whose temperature rises at the start of operation is rapidly cooled. Change. The temperature sensor 11 detects the temperature of the arrangement surface of the control object. If necessary, the energization control of the electric control circuit 12 can be performed by this signal. The cooling mode by polarity reversal and energization enhancement of the electric control circuit 12 is instantaneous and is a short time within a few milliseconds to tens of seconds, but a large heat flux is generated from the Peltier element 1 toward the heat sink member 6. This generated heat quickly diffuses due to the unsteady heat conduction characteristic of the heat sink member 6, is absorbed very efficiently, and rapid cooling is achieved. This cooling performance reaches several tens of times that in the steady state, and the laser 3 is operated while being maintained at an efficient operating temperature.

【0011】一方、ヒートシンク部材6は、サーモモジ
ュール7の働きにより適切な低い温度に保持され、ペル
チェ素子1に急激な変化で生じた熱を伝達し拡散して鎮
めさせる。その結果、ペルチェ素子1の冷却面側に熱的
に接触配置された半導体レーザ3の温度制御が極めて迅
速かつ正確に実行され、タイムラグなしに安定動作が実
現される。加えて、温度制御装置は全体を断熱材10に
より外部から熱的に遮断され、ペルチェ素子、ヒートシ
ンク部材およびサーモモジュル等の構成部品の熱損失増
加や結露の発生を阻止し信頼性を高めている。なお、電
子の運動は熱エネルギーの移動に比べて格段に高速であ
り、電子冷熱するペルチェ素子に対する電気的制御は、
メモリ回路やコンピュータ制御を含めて行うことで、よ
り知能的能動的に温度調節機能を達成する。
On the other hand, the heat sink member 6 is maintained at an appropriate low temperature by the action of the thermo module 7, and transfers the heat generated by the abrupt change to the Peltier element 1 to diffuse and suppress it. As a result, the temperature control of the semiconductor laser 3 thermally arranged in contact with the cooling surface of the Peltier element 1 is performed extremely quickly and accurately, and stable operation is realized without a time lag. In addition, the entire temperature control device is thermally insulated from the outside by the heat insulating material 10 to prevent an increase in heat loss and dew formation of components such as a Peltier element, a heat sink member and a thermomodule, thereby improving reliability. . The movement of electrons is much faster than the movement of thermal energy, and the electric control for the Peltier device that cools electrons is
By including the memory circuit and computer control, the temperature control function can be achieved more intelligently and actively.

【0012】上述の実施例は、ヒートシンク部材が比較
的厚みのある平板銅材で構成したが、円錐または角錐台
形部材で構成し、被温度制御物体のあるペルチェ素子側
を小面積側、サーモモジュール側を大面積側にして熱拡
散や熱伝達効率を高めることが好ましい。実験によれ
ば、これらの面積比率は、小面積側を1とするとき、大
面積側を2〜9の範囲で選定するのが好ましく、9を越
えると装置自体を大きくするので好ましくない。特に、
電子冷熱素子を用いることによる構成の簡素化と小型で
コンパクトな温度制御装置とするには、この比率を2〜
4の範囲に選定するのが望ましい。また、このような温
度制御装置は、高出力半導体レーザアレイのほかに短時
間に処理する結晶成長セルでの適用も可能であり、特に
落下中の無重力下での結晶成長を観察するための実験装
置に効果的である。この場合には、予め設定された温度
プロファイルに従って正確に温度制御可能となり、コン
パクトで小型の実験装置となる。
In the above-described embodiment, the heat sink member is made of a relatively thick flat plate copper material, but it is made of a conical or truncated pyramidal member, and the Peltier element side with the temperature controlled object is on the small area side and the thermo module. It is preferable to increase the heat diffusion and heat transfer efficiency by setting the side to the large area side. According to experiments, it is preferable to select a large area side in the range of 2 to 9 when the small area side is set to 1, and it is not preferable to exceed 9 since the apparatus itself becomes large. In particular,
In order to simplify the configuration by using the electronic cooling / heating element and to make the temperature control device compact and compact, this ratio should be set to 2
It is desirable to select within the range of 4. Further, such a temperature control device can be applied not only to a high-power semiconductor laser array, but also to a crystal growth cell that is processed in a short time. In particular, an experiment for observing crystal growth under weightlessness during falling is performed. Effective for equipment. In this case, the temperature can be accurately controlled according to the preset temperature profile, and the experimental apparatus becomes compact and small.

【0013】[0013]

【発明の効果】上述した実施例に示すように、本発明の
温度制御装置はペルチェ素子と熱流束の大きなヒートシ
ンク部材とを組合せ、極性反転による通電制御をして非
定常熱伝導時の熱拡散を利用したので短時間の急速冷熱
を実現する。特に電子冷熱作用が可動部分を持たないた
め振動や故障のない温度制御装置として、精密な実験や
製造設備に適用され、工業的利用面での価値が大きい。
加えて、定常状態の冷熱作用に比べて十数倍の冷却能力
を発揮できるので短時間で瞬時の温度制御に役立ち、プ
ログラム化された温度プロアイル制御方法に実用され
る。
As shown in the above embodiments, the temperature control device of the present invention is a combination of a Peltier element and a heat sink member having a large heat flux, and current control by polarity reversal is performed to perform heat diffusion during unsteady heat conduction. Because it uses, it realizes rapid cooling and heating for a short time. In particular, since the electronic cooling / heating function has no moving parts, it is applied to precise experiments and manufacturing equipment as a temperature control device without vibration or failure, and is of great value in terms of industrial use.
In addition, it is possible to exert more than ten times as much cooling capacity as the steady-state cooling action, which is useful for instantaneous temperature control in a short time, and is put to practical use in a programmed temperature profile control method.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の温度制御装置の実施例を示す主要部
分の断面図
FIG. 1 is a sectional view of a main part showing an embodiment of a temperature control device of the present invention.

【符号の説明】[Explanation of symbols]

1 ペルチェ素子 3 半導体レーザ(被温度制御物体) 6 ヒートシンク部材 7 サーモモジュール 11 温度センサ 12 電気制御回路 1 Peltier element 3 Semiconductor laser (temperature controlled object) 6 Heat sink member 7 Thermo module 11 Temperature sensor 12 Electric control circuit

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】被温度制御物体が配置される一方の面とヒ
ートシンク部材が熱的接触配置される他方の面とを有す
るペルチェ素子と、前記ヒートシンク部材を放熱または
吸熱により周囲温度と異なる温度に保持するサーモモジ
ュールと、前記ペルチェ素子への通電を極性反転させて
電子冷熱を促す電気制御回路とを具備し、前記ヒートシ
ンク部材の非定常熱伝導時に高熱流束を生じさせ、前記
ペルチェ素子の電子冷熱により前記被温度制御物体の温
度を急速変化させることを特徴とする温度制御装置。
1. A Peltier element having one surface on which a temperature controlled object is arranged and the other surface on which a heat sink member is arranged in thermal contact, and a temperature different from ambient temperature due to heat dissipation or heat absorption of the heat sink member. A thermo module for holding and an electric control circuit for reversing the polarity of electricity to the Peltier element to promote electronic cooling are provided, and a high heat flux is generated at the time of unsteady heat conduction of the heat sink member. A temperature control device characterized in that the temperature of the temperature controlled object is rapidly changed by cold heat.
【請求項2】前記サーモモジュールが第2ペルチェ素子
からなり、前記ヒートシンク部材を定常的に所定温度に
維持すると共に非定常熱伝導時に大きな熱流束を生じさ
せ、被温度制御物体に短時間に急激な冷却または加熱を
生じさせることを特徴とする請求項1記載の温度制御装
置。
2. The thermo module comprises a second Peltier element, which maintains the heat sink member at a predetermined temperature steadily and causes a large heat flux during unsteady heat conduction, so that the object to be temperature-controlled rapidly changes in a short time. The temperature control device according to claim 1, wherein the cooling or heating is generated.
【請求項3】前記電気制御回路はメモリ回路を具備し、
予め与えられる信号により通電状態を可変させ、前記被
温度制御物体を所定の温度プロファイルに制御すること
を特徴とする請求項1記載の温度制御装置。
3. The electrical control circuit comprises a memory circuit,
The temperature control apparatus according to claim 1, wherein the temperature controlled object is controlled to have a predetermined temperature profile by changing the energization state according to a signal given in advance.
【請求項4】前記電気制御回路が前記ペルチェ素子の一
方の面に温度センサを配置し、このセンサの検知信号に
応じて通電制御し、被温度制御物体に短時間に急激な冷
却または加熱を生じさせることを特徴とする請求項1記
載の温度制御装置。
4. The electric control circuit arranges a temperature sensor on one surface of the Peltier element, controls energization according to a detection signal of the sensor, and rapidly cools or heats a temperature-controlled object in a short time. The temperature control device according to claim 1, wherein the temperature control device is generated.
【請求項5】被温度制御物体が結晶成長セルの種結晶、
高出力型半導体デバイス、パルスレーダ波発振出力素子
等の短時間高熱負荷に曝される物体であり、前記ペルチ
ェ素子を前記電気制御回路に予め記録した温度プロファ
イルにより通電制御して急速冷却することを特徴とする
請求項3記載の温度制御装置。
5. The temperature controlled object is a seed crystal of a crystal growth cell,
It is an object that is exposed to a high heat load for a short time such as a high-power type semiconductor device and a pulse radar wave oscillation output element, and the Peltier element is energized by a temperature profile previously recorded in the electric control circuit to be rapidly cooled. The temperature control device according to claim 3, which is characterized in that.
【請求項6】ペルチェ素子の一方の面に被温度制御物体
を配置し、他方の面に定常的に周囲温度と異なる温度に
維持されたヒートシンク部材を熱的に結合配置し、この
ペルチェ素子に電気制御回路から極性反転する通電電流
を供給して電子冷熱を促し、前記ヒートシンク部材に高
熱流束を得る急激な温度変化を与えて前記被温度制御物
体を短時間に急激な加熱または冷却を生じさせる温度制
御方法。
6. A Peltier element is provided with a temperature controlled object on one surface thereof, and a heat sink member, which is constantly maintained at a temperature different from the ambient temperature, is thermally coupled and arranged on the other surface of the Peltier element. An electric current that reverses polarity is supplied from an electric control circuit to promote electronic cooling, and a rapid temperature change that gives a high heat flux to the heat sink member is given to rapidly heat or cool the temperature controlled object in a short time. Temperature control method.
【請求項7】前記ヒートシンク部材は前記ペルチェ素子
を配置した反対側にサーモモジュールを熱的に接触配置
し、このサーモモジュルにより定常的に周囲温度と異な
る温度に保持させることを特徴とする請求項6記載の温
度制御方法。
7. The heat sink member is arranged such that a thermo module is arranged in thermal contact on the side opposite to the side where the Peltier element is arranged, and the thermo module constantly maintains a temperature different from the ambient temperature. 6. The temperature control method according to 6.
JP06327399A 1994-12-28 1994-12-28 Temperature control device and method Expired - Fee Related JP3087813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06327399A JP3087813B2 (en) 1994-12-28 1994-12-28 Temperature control device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06327399A JP3087813B2 (en) 1994-12-28 1994-12-28 Temperature control device and method

Publications (2)

Publication Number Publication Date
JPH08186205A true JPH08186205A (en) 1996-07-16
JP3087813B2 JP3087813B2 (en) 2000-09-11

Family

ID=18198723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06327399A Expired - Fee Related JP3087813B2 (en) 1994-12-28 1994-12-28 Temperature control device and method

Country Status (1)

Country Link
JP (1) JP3087813B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000019706A (en) * 1998-09-15 2000-04-15 윤종용 Semiconductor device module having thermoelectric cooler and heat dissipating system
KR20030068633A (en) * 2002-02-15 2003-08-25 이엠씨테크(주) Integrated circuit cooler using thermoelectric element
JP2004526307A (en) * 2001-01-31 2004-08-26 ジェンテクス・コーポレーション High power radiation emitter device and heat dissipation package for electronic components
JP2007201285A (en) * 2006-01-27 2007-08-09 Sony Corp Light source device
JP2008263860A (en) * 2007-04-20 2008-11-06 Toppan Printing Co Ltd Temperature control device and temperature control method
US7489031B2 (en) 2001-01-31 2009-02-10 Gentex Corporation High power radiation emitter device and heat dissipating package for electronic components
US7921906B2 (en) 2005-04-28 2011-04-12 Fujitsu Semiconductor Limited Temperature control method and temperature control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857800B2 (en) * 2005-12-27 2012-01-18 凸版印刷株式会社 Temperature control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000019706A (en) * 1998-09-15 2000-04-15 윤종용 Semiconductor device module having thermoelectric cooler and heat dissipating system
JP2004526307A (en) * 2001-01-31 2004-08-26 ジェンテクス・コーポレーション High power radiation emitter device and heat dissipation package for electronic components
US7489031B2 (en) 2001-01-31 2009-02-10 Gentex Corporation High power radiation emitter device and heat dissipating package for electronic components
KR20030068633A (en) * 2002-02-15 2003-08-25 이엠씨테크(주) Integrated circuit cooler using thermoelectric element
US7921906B2 (en) 2005-04-28 2011-04-12 Fujitsu Semiconductor Limited Temperature control method and temperature control device
JP2007201285A (en) * 2006-01-27 2007-08-09 Sony Corp Light source device
JP2008263860A (en) * 2007-04-20 2008-11-06 Toppan Printing Co Ltd Temperature control device and temperature control method

Also Published As

Publication number Publication date
JP3087813B2 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
US7915516B2 (en) Thermoelectric power generator with built-in temperature adjustment
CN201152650Y (en) Cold-hot transformation apparatus having solid multi-lattice
JPH08148189A (en) Battery temperature adjustment device for electric vehicle
JP2011523510A (en) Steam chamber thermoelectric module assembly
JPH08186205A (en) Temperature control device and method
JP2924369B2 (en) Heat pump device
JP2005136211A (en) Cooling device
JPH0539966A (en) Heat pump device
US20060083273A1 (en) Temperature tuning the wavelength of a semiconductor laser using a variable thermal impedance
JP2954908B2 (en) Substrate temperature controller
JP2005136212A (en) Heat exchanger
JP2007097872A (en) Freezing method of straw tube and its freezing device
JPH09179078A (en) Optical delay device
JP3129409U (en) Energy efficient electronic refrigerator
JP3113531B2 (en) Crystal growth cell
JPH10275582A (en) Specimen heating and cooling device of electronic microscope or the like
JP2004356449A (en) Method for controlling peltier element and control circuit for peltier circuit
JP2004012091A (en) Heating and cooling device and method
JP2001053342A (en) Thermoelectric heater and cooler
JP2002267714A (en) Holder for aging test of semiconductor device
JPH0798881A (en) Optical pickup device
JPH05259668A (en) Method and apparatus for variable cooling
JP2003258324A (en) Multistage type electronic cooling unit and temperature control stage
CN112066592B (en) Transient refrigeration method of ultrathin thermoelectric film applied to chip
KR20100028911A (en) Cooling apparatus having thermistor-embedded thermoelectric module and method of operating the cooling apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080714

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080714

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees