JPH08186022A - Magnetic multilayer film, manufacture thereof and photomagnetic recording medium - Google Patents

Magnetic multilayer film, manufacture thereof and photomagnetic recording medium

Info

Publication number
JPH08186022A
JPH08186022A JP33918794A JP33918794A JPH08186022A JP H08186022 A JPH08186022 A JP H08186022A JP 33918794 A JP33918794 A JP 33918794A JP 33918794 A JP33918794 A JP 33918794A JP H08186022 A JPH08186022 A JP H08186022A
Authority
JP
Japan
Prior art keywords
multilayer film
film
magnetic multilayer
rotation angle
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33918794A
Other languages
Japanese (ja)
Other versions
JP3559332B2 (en
Inventor
Hiroyasu Fujimori
啓安 藤森
Koki Takanashi
弘毅 高梨
Seiji Mitani
誠司 三谷
Hideo Nakajima
英雄 中嶋
Masashi Sano
正志 佐野
Akira Osawa
明 大沢
Katsuaki Sato
勝昭 佐藤
Kiyoshi Noguchi
潔 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP33918794A priority Critical patent/JP3559332B2/en
Publication of JPH08186022A publication Critical patent/JPH08186022A/en
Application granted granted Critical
Publication of JP3559332B2 publication Critical patent/JP3559332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/325Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being noble metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE: To provide a magnetic multilayer film, which has a high vertical magnetic anisotropy, has a strong coersive force in the direction vertical to its film surface, has the squareness ratio of a Kerr loop to the multilayer film = 1.0 to 1.0 and moreover, has a large Kerr angle of rotation, and a photomagnetic recording medium using this magnetic multilayer film as a photomagnetic recording film. CONSTITUTION: A substrate is heated up to 500 deg.C or higher and Fe single atomic layers and Pt single atomic layers are alternately formed by a deposition method, whereby a magnetic multilayer film, which is an ordered alloy film of the orientation (001), is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気光学カー回転を示
す磁性多層膜およびその製造方法と、この磁性多層膜を
光磁気記録膜として有する光磁気記録媒体とに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic multilayer film exhibiting magneto-optical Kerr rotation, a method for manufacturing the same, and a magneto-optical recording medium having the magnetic multilayer film as a magneto-optical recording film.

【0002】[0002]

【従来の技術】異種金属を原子層レベルで交互に積層し
得る今日の薄膜作製技術により、熱平衡状態では存在し
ないような規則的積層構造をもつ多層膜、すなわち金属
人工格子の作製が可能となっている。一方、熱平衡状態
でL10 型規則合金となるFePt合金は、垂直磁気異
方性をもち、大きな磁気光学カー回転が得られるため、
注目されている。
2. Description of the Related Art Today's thin film forming technology capable of alternately laminating dissimilar metals at the atomic layer level makes it possible to produce a multilayer film having a regular laminated structure that does not exist in a thermal equilibrium state, that is, a metal artificial lattice. ing. On the other hand, the FePt alloy, which is an L1 0 type ordered alloy in a thermal equilibrium state, has perpendicular magnetic anisotropy and can obtain a large magneto-optical Kerr rotation.
Attention has been paid.

【0003】Appl.Phys.Lett.62,639(1993) (以下、文
献1)では、スパッタ法で100℃にて[Fe(16M
L)/Pt(15ML)]8 薄膜を作製し、475℃で
14時間アニールを施して正方晶FePt相を形成し、
垂直磁化膜としている。ここで、MLは単原子層を示
し、Fe(16ML)の厚さは23 A、Pt(15M
L)の厚さは30 Aである。この垂直磁化膜は、(00
1)優先配向のFePt規則相を有するものであり、膜
面に垂直な方向の保磁力Hc⊥が約1.8 kOe(FIG.
4)、実効的な垂直磁気異方性定数が8×106 erg/cm
3 以上であることが報告されている。
In Appl. Phys. Lett. 62, 639 (1993) (hereinafter referred to as reference 1), the sputtering method [Fe (16M
L) / Pt (15ML)] 8 thin film was prepared and annealed at 475 ° C. for 14 hours to form a tetragonal FePt phase,
It is a perpendicular magnetization film. Here, ML indicates a monoatomic layer, and the thickness of Fe (16ML) is 23 A and Pt (15M).
The thickness of L) is 30 A. This perpendicular magnetization film is (00
1) It has a FePt ordered phase with preferential orientation, and has a coercive force Hc⊥ in the direction perpendicular to the film surface of about 1.8 kOe (FIG.
4), effective perpendicular magnetic anisotropy constant is 8 × 10 6 erg / cm
It has been reported to be 3 or more.

【0004】しかし、文献1の膜では、X線回折チャー
ト(FIG.2)の2θ=47度の位置にPtFe(20
0)面のピークが認められ、十分な配向性が得られてい
るとはいえない。また、実効的な垂直磁気異方性定数も
十分に大きくはないので、磁化曲線の角形比(残留磁化
Mr/飽和磁化Ms)が低い。
However, in the film of Document 1, the PtFe (20) is formed at the position of 2θ = 47 degrees in the X-ray diffraction chart (FIG. 2).
A peak on the (0) plane is recognized, and it cannot be said that sufficient orientation is obtained. Moreover, since the effective perpendicular magnetic anisotropy constant is not sufficiently large, the squareness ratio (remanent magnetization Mr / saturation magnetization Ms) of the magnetization curve is low.

【0005】Appl.Phys.Lett.63,1438(1993)(以下、文
献2)では、厚さ23 AのFe(001)と厚さ29 A
のPt(001)とからなる積層膜を8層重ねた多層膜
を作製し、アニール後にカー回転角を測定している。こ
の結果を示すFIG.1(b)では、磁界強度と波長633
nmでのカー回転角との関係を表わすヒステリシス曲線に
おいて、保磁力(カー回転角が0度となる磁界強度)が
4 kOe、飽和カー回転角が0.6度、残留カー回転角
(磁界強度ゼロでのカー回転角)が0.5度となってい
る。また、この文献には、[Fe(1ML)/Pt(1
ML)]128 を作製したところ、均質で無秩序な合金と
なり、カー回転角がバルクのPtFe無秩序合金と同様
となったことが記載されている。
In Appl. Phys. Lett. 63, 1438 (1993) (hereinafter referred to as reference 2), Fe (001) having a thickness of 23 A and thickness 29 A are used.
8 layers of Pt (001) are stacked to form a multilayer film, and the Kerr rotation angle is measured after annealing. In FIG. 1 (b) showing this result, the magnetic field strength and the wavelength 633
In the hysteresis curve showing the relationship with the Kerr rotation angle in nm, the coercive force (magnetic field strength at which the Kerr rotation angle becomes 0 degree) is 4 kOe, the saturation Kerr rotation angle is 0.6 degree, and the residual Kerr rotation angle (magnetic field strength is The car rotation angle at zero) is 0.5 degrees. Further, in this document, [Fe (1ML) / Pt (1
ML)] 128 was produced, and it became a homogeneous and disordered alloy, and the Kerr rotation angle was similar to that of the bulk PtFe disordered alloy.

【0006】しかし、文献2の膜では、カーループの角
形比(残留カー回転角/飽和カー回転角)が約0.85
と小さく、カー回転角も十分に大きいとはいえない。ま
た、文献2の膜のX線回折チャート{FIG.1(a)}に
は、文献1の膜のX線回折チャート(FIG.2)と同様に
2θ=47度の位置にピークが認められる。これは、文
献1の膜と同様にPtFe(200)面のピークである
と考えられるので、やはり十分な配向性が得られている
とはいえない。
However, in the film of Document 2, the squareness ratio (residual Kerr rotation angle / saturated Kerr rotation angle) of the Kerr loop is about 0.85.
And the car rotation angle is not large enough. In addition, in the X-ray diffraction chart of the film of FIG. 1 (FIG. 1 (a)), a peak is observed at the position of 2θ = 47 degrees similarly to the X-ray diffraction chart of the film of FIG. 1 (FIG. 2). . It is considered that this is the peak of the PtFe (200) plane as in the film of Document 1, so that it cannot be said that sufficient orientation is obtained.

【0007】Phys.Rev.B.50,3419(1994)(以下、文献
3)では、FeとPtとを超高真空中で共蒸着すること
により、(001)高配向FePt規則相をもつ膜が得
られたことが報告されている。500℃で蒸着されたF
52Pt48膜では、光子エネルギー2eV(波長633n
m)におけるカー回転角が0.8度となっている。
Phys. Rev. B.50, 3419 (1994) (hereinafter referred to as Document 3), a film having a (001) highly oriented FePt ordered phase by co-evaporating Fe and Pt in an ultrahigh vacuum. It has been reported that F deposited at 500 ° C
With the e 52 Pt 48 film, the photon energy is 2 eV (wavelength 633 n
The car rotation angle at m) is 0.8 degrees.

【0008】しかし、文献3の膜では、X線回折チャー
トにFePt(111)面のピークおよびFePt(2
00)面のピークがあり、配向の乱れが認められる。ま
た、文献3では実効的な垂直磁気異方性定数を測定して
いないが、膜面に垂直な方向の保磁力Hc⊥は約1 kOe
(FIG.2)にすぎず、また、カーループの角形比は約
0.35(FIG.2)と小さいので、光磁気記録膜として
実用化するには特性が不十分である。
However, in the film of Document 3, the peak of FePt (111) plane and FePt (2
There is a peak of (00) plane, and disorder of orientation is recognized. Although the effective perpendicular magnetic anisotropy constant is not measured in Document 3, the coercive force Hc⊥ in the direction perpendicular to the film surface is about 1 kOe.
(FIG. 2) and the squareness ratio of the Kerr loop is as small as about 0.35 (FIG. 2), the characteristics are insufficient for practical use as a magneto-optical recording film.

【0009】上記のように、従来のFe/Pt磁性多層
膜では、大きなカー回転角と、カーループの高い角形比
(1.0)と、大きな垂直磁気異方性とを共に得ること
はできていない。また、従来のFe/Pt多層膜では、
層厚比Fe/Ptを1/4〜1/3としなければ、カー
ループの角形比が1.0である垂直磁化膜にはならなか
った。しかし、Fe層が薄いとカー回転角が小さくなっ
てしまうため、層厚比Fe/Ptをより大きくした場合
にも角形比が1.0となる垂直磁化膜が望まれている。
As described above, in the conventional Fe / Pt magnetic multilayer film, it is possible to obtain a large Kerr rotation angle, a high Kerr loop squareness ratio (1.0), and a large perpendicular magnetic anisotropy. Absent. Further, in the conventional Fe / Pt multilayer film,
Unless the layer thickness ratio Fe / Pt was set to 1/4 to 1/3, a perpendicular magnetization film having a Kerr loop squareness ratio of 1.0 could not be obtained. However, if the Fe layer is thin, the Kerr rotation angle becomes small. Therefore, even if the layer thickness ratio Fe / Pt is increased, a perpendicular magnetization film having a squareness ratio of 1.0 is desired.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、垂直
磁気異方性が大きく、膜面に垂直な方向の保磁力が大き
く、カーループの角形比が1.0であり、しかもカー回
転角の大きい磁性多層膜と、この磁性多層膜を光磁気記
録膜に用いた光磁気記録媒体とを提供することである。
The object of the present invention is to provide a large perpendicular magnetic anisotropy, a large coercive force in the direction perpendicular to the film surface, a Kerr loop squareness ratio of 1.0, and a Kerr rotation angle. And a magneto-optical recording medium using the magnetic multilayer film as a magneto-optical recording film.

【0011】[0011]

【課題を解決するための手段】このような目的は、下記
(1)〜(5)のいずれかの構成により達成される。 (1)Fe単原子層とPt単原子層とが1層づつ積層さ
れており、(001)面配向を有する磁性多層膜。 (2)X線回折チャートにおいて、(001)面配向を
示すピークだけが認められる上記(1)の磁性多層膜。 (3)基板温度を500℃以上とし、蒸着法によりFe
単原子層とPt単原子層とを交互に積層して規則合金膜
を形成する磁性多層膜の製造方法。 (4)上記(1)または(2)の磁性多層膜が形成され
る上記(3)の磁性多層膜の製造方法。 (5)上記(1)または(2)の磁性多層膜を光磁気記
録膜として有する光磁気記録媒体。
This object is achieved by any of the following constitutions (1) to (5). (1) A magnetic multilayer film in which a Fe monoatomic layer and a Pt monoatomic layer are laminated one by one and have a (001) plane orientation. (2) The magnetic multilayer film according to (1) above, in which only a peak showing the (001) plane orientation is observed in the X-ray diffraction chart. (3) The substrate temperature is set to 500 ° C. or higher and Fe is deposited by the vapor deposition method.
A method for producing a magnetic multilayer film, wherein monoatomic layers and Pt monoatomic layers are alternately laminated to form an ordered alloy film. (4) The method for producing a magnetic multilayer film according to (3), wherein the magnetic multilayer film according to (1) or (2) above is formed. (5) A magneto-optical recording medium having the magnetic multilayer film of (1) or (2) as a magneto-optical recording film.

【0012】[0012]

【作用および効果】本発明では、Fe単原子層とPt単
原子層とを交互に1層づつ積層し、(001)面配向を
有する規則合金と等価である磁性人工格子多層膜を得
る。この磁性多層膜は、超高真空蒸着法により形成する
ことが好ましい。蒸着時の基板温度は、500℃程度以
上とすることが好ましい。
In the present invention, Fe monoatomic layers and Pt monoatomic layers are alternately laminated one by one to obtain a magnetic artificial lattice multilayer film equivalent to an ordered alloy having a (001) plane orientation. This magnetic multilayer film is preferably formed by an ultra high vacuum vapor deposition method. The substrate temperature during vapor deposition is preferably about 500 ° C. or higher.

【0013】このようにして作製された多層膜は、垂直
磁気異方性、膜面に垂直な方向の保磁力Hc⊥およびカ
ー回転角がいずれも大きく、しかもカーループの角形比
が1.0であるため、光磁気記録膜として有用である。
The multilayer film thus produced has a large perpendicular magnetic anisotropy, a large coercive force Hc⊥ in the direction perpendicular to the film surface, and a large Kerr rotation angle, and a squareness ratio of the Kerr loop of 1.0. Therefore, it is useful as a magneto-optical recording film.

【0014】なお、上記した文献2記載の[Fe(1M
L)/Pt(1ML)]128 膜は、実際にはFe単原子
層とPt単原子層との積層膜ではなく、均質で無秩序な
合金であり、カー回転角がバルクのPtFe無秩序合金
と同様であるので、本発明の磁性多層膜とは全く異なる
ものである。
[Fe (1M
L) / Pt (1ML)] 128 film is not actually a laminated film of Fe monoatomic layer and Pt monoatomic layer, but is a homogeneous and disordered alloy, and the Kerr rotation angle is similar to that of bulk PtFe disordered alloy. Therefore, it is completely different from the magnetic multilayer film of the present invention.

【0015】[0015]

【実施例】以下、本発明の実施例を挙げ、本発明を詳細
に説明する。
The present invention will be described in detail below with reference to examples of the present invention.

【0016】到達真空度を3×10-10 Torrとし、Mg
O(001)基板上に、2×10-9Torr未満の圧力下で
厚さ250 AのPt(001)バッファ層を蒸着により
形成した。バッファ層形成時の基板温度(Ts)は50
0℃とした。基板としては、MgO(001)の他、G
aAs(001)、Si(001)等を用いてもよい。
バッファ層としては、Pt(001)の他、Au(00
1)、Ag(001)等を用いてもよい。バッファ層の
厚さは、150〜3000 A程度とすることが好まし
い。バッファ層形成時の基板温度は、通常、室温〜80
0℃とすることが好ましい。
The ultimate vacuum is set to 3 × 10 -10 Torr and Mg
A 250 A thick Pt (001) buffer layer was formed by vapor deposition on an O (001) substrate under a pressure of less than 2 × 10 −9 Torr. The substrate temperature (Ts) when forming the buffer layer is 50
It was set to 0 ° C. As the substrate, in addition to MgO (001), G
You may use aAs (001), Si (001), etc.
As the buffer layer, in addition to Pt (001), Au (00
1), Ag (001) or the like may be used. The thickness of the buffer layer is preferably about 150 to 3000 A. The substrate temperature during the formation of the buffer layer is usually room temperature to 80.
The temperature is preferably 0 ° C.

【0017】次いで、バッファ層の上に、前記圧力下で
[Fe(1ML)/Pt(1ML)]100 多層膜を形成
した。基板温度は500℃とした。蒸着装置には、2つ
の独立した電子銃をもつものを用いた。1MLは単原子
層を意味する。Fe(1ML)の厚さは1.4 A、Pt
(1ML)の厚さは2.0 Aであり、この多層膜は、F
e(1ML)+Pt(1ML)を1単位として100単
位積層したものである。蒸着レートは0.1 A/min と
した。蒸着中には、RHEED(Reflection High Ener
gy Electron Diffraction )パターンをモニターし、
(001)配向の単原子層が1層づつエピタキシャル成
長した膜が形成されていることを確認した。
Then, a [Fe (1ML) / Pt (1ML)] 100 multilayer film was formed on the buffer layer under the above-mentioned pressure. The substrate temperature was 500 ° C. The vapor deposition apparatus used had two independent electron guns. 1 ML means monoatomic layer. Fe (1ML) thickness is 1.4 A, Pt
The thickness of (1ML) is 2.0 A, and this multilayer film is F
One unit of e (1ML) + Pt (1ML) is a stack of 100 units. The vapor deposition rate was 0.1 A / min. During vapor deposition, RHEED (Reflection High Ener
gy Electron Diffraction)
It was confirmed that a film was formed by epitaxially growing each (001) -oriented monoatomic layer.

【0018】多層膜形成時の基板温度は、通常、250
〜800℃、好ましくは500〜800℃とする。ま
た、Fe(1ML)+Pt(1ML)を1単位としたと
きの積層単位数は特に限定されないが、通常、10〜3
00程度とすることが好ましい。なお、多層膜形成時の
圧力は、好ましくは1×10-8Torr以下とし、より好ま
しくは1×10-10 〜3×10-9Torr程度とする。
The substrate temperature during formation of the multilayer film is usually 250.
-800 degreeC, Preferably it is 500-800 degreeC. The number of laminated units is not particularly limited when Fe (1ML) + Pt (1ML) is one unit, but is usually 10 to 3
It is preferably about 00. The pressure at the time of forming the multilayer film is preferably 1 × 10 −8 Torr or less, more preferably about 1 × 10 −10 to 3 × 10 −9 Torr.

【0019】図1(a)に、この多層膜の最上層である
Pt層のRHEEDパターンを示す。縞状のパターン
は、この多層膜の表面が、原子スケールでかなり平坦で
あることを意味する。基板温度500℃で蒸着したため
に、Fe単原子層およびPt単原子層は表面拡散によっ
て一層づつエピタキシャル成長したと考えられる。図2
に、この多層膜のX線回折チャートを示す。図2中に
は、一部のピークを拡大して示してある。このX線回折
チャートには、図1(a)のRHEEDパターンから期
待されるように、(001)面配向を示すピークが認め
られ、しかも他の配向を示すピークは認められない。こ
のことから、原子レベルで規則構造をもつ膜が形成され
ていることがわかる。
FIG. 1A shows the RHEED pattern of the Pt layer which is the uppermost layer of this multilayer film. The striped pattern means that the surface of this multilayer film is fairly flat on the atomic scale. It is considered that the Fe monoatomic layer and the Pt monoatomic layer were epitaxially grown one by one due to surface diffusion because of the vapor deposition at the substrate temperature of 500 ° C. Figure 2
An X-ray diffraction chart of this multilayer film is shown in FIG. In FIG. 2, a part of the peaks is shown enlarged. In this X-ray diffraction chart, as expected from the RHEED pattern of FIG. 1 (a), a peak showing the (001) plane orientation was observed, and no peaks showing other orientations were observed. From this, it can be seen that a film having an ordered structure at the atomic level is formed.

【0020】これに対し、基板温度を室温(R.T.)
とした以外は上記と同様にして形成した多層膜では、図
1(b)に示されるようにRHEEDパターンが斑点状
であった。これは、室温では島状成長が生じたことを示
す。なお、図1は、すべて[110]入射のものであ
る。また、このRHEEDパターンに一致して、X線回
折では、FePt(001)面配向を示すピークは室温
で成長させたこのFe/Pt多層膜では認められなかっ
た。
On the other hand, the substrate temperature is room temperature (RT).
In the multilayer film formed in the same manner as above except that the RHEED pattern was speckled as shown in FIG. 1 (b). This indicates that island-shaped growth occurred at room temperature. It should be noted that all of FIG. 1 are for [110] incidence. Further, in agreement with this RHEED pattern, a peak showing FePt (001) plane orientation was not observed in this Fe / Pt multilayer film grown at room temperature by X-ray diffraction.

【0021】多層膜の磁気異方性を、室温でSQUID 磁気
メータにより測定した。図3に、500℃で成長させた
[Fe(1ML)/Pt(1ML)]100 膜の、膜面に
対して平行(H//)および垂直(H⊥)方向の磁化カー
ブを示す。55 kOeにおいても飽和していない膜面内
(H//)の磁化カーブは、この多層膜の大きな垂直磁気
異方性を示す。
The magnetic anisotropy of the multilayer film was measured with a SQUID magnetometer at room temperature. FIG. 3 shows magnetization curves of the [Fe (1ML) / Pt (1ML)] 100 film grown at 500 ° C. in the directions parallel (H //) and perpendicular (H⊥) to the film surface. The in-plane (H //) magnetization curve which is not saturated even at 55 kOe shows a large perpendicular magnetic anisotropy of this multilayer film.

【0022】多層膜の波長(λ)633nmでの磁気光学
カー回転角(θk )を、室温で測定した。図4に、磁界
強度とカー回転角との関係を示すカーループを示す。同
図に示されるように、500℃で成長させた[Fe(1
ML)/Pt(1ML)]10 0 膜の633nmでの飽和カ
ー回転角は0.69度と大きい。また、このカーループ
では、残留カー回転角(磁界強度ゼロでのカー回転角)
が飽和カー回転角と同じで角形比が1.0であり、保磁
力(カー回転角がゼロとなる磁界強度)が3 kOeと大き
い。したがって、この多層膜では、光磁気磁気記録膜と
しての実用的な特性が得られていることがわかる。
The magneto-optical Kerr rotation angle (θ k ) of the multilayer film at a wavelength (λ) of 633 nm was measured at room temperature. FIG. 4 shows a Kerr loop showing the relationship between the magnetic field strength and the Kerr rotation angle. As shown in the figure, [Fe (1
ML) / Pt (1ML)] 10 0 film saturation Kerr rotation angle at 633nm of as large as 0.69 degrees. In this car loop, the residual Kerr rotation angle (Kerr rotation angle at zero magnetic field strength)
Is the same as the saturated Kerr rotation angle, the squareness ratio is 1.0, and the coercive force (the magnetic field strength at which the Kerr rotation angle becomes zero) is as large as 3 kOe. Therefore, it is understood that this multilayer film has practical characteristics as a magneto-optical recording film.

【0023】これに対し、室温で成長させた[Fe(1
ML)/Pt(1ML)]100 多層膜の垂直磁気異方性
およびカー回転角は、500℃で成長させたものに比べ
非常に小さかった。
On the contrary, [Fe (1
The perpendicular magnetic anisotropy and Kerr rotation angle of the ML) / Pt (1ML)] 100 multilayer film were much smaller than those grown at 500 ° C.

【0024】垂直磁気異方性および633nmでのカー回
転角は、[Fe(1ML)/Pt(1ML)]100 多層
膜の規則度の増大に伴なって増大する。この規則度は、
X線回折チャートのピーク強度比I001 /I002 によっ
て評価される。I001 およびI002 は、それぞれFeP
t(001)面のピーク強度および(002)面のピー
ク強度である。I001 /I002 が0.1以上であれば、
実用上十分な垂直磁気異方性およびカー回転角が得られ
る。
The perpendicular magnetic anisotropy and the Kerr rotation angle at 633 nm increase with increasing order of the [Fe (1ML) / Pt (1ML)] 100 multilayer film. This regularity is
It is evaluated by the peak intensity ratio I 001 / I 002 of the X-ray diffraction chart. I 001 and I 002 are FeP, respectively.
It is the peak intensity of the t (001) plane and the peak intensity of the (002) plane. If I 001 / I 002 is 0.1 or more,
Practically sufficient perpendicular magnetic anisotropy and Kerr rotation angle can be obtained.

【0025】図5に、[Fe(1ML)/Pt(1M
L)]100 膜のI001 /I002 と、実効的な垂直磁気異
方性定数Ku、このKuに形状異方性2πMs2 を加え
た本質的な垂直磁気異方性定数K⊥および633nmでの
カー回転角との関係を示す。なお、Msは飽和磁化であ
る。この実施例では、K⊥=5.5×107 erg/cm3
Ku=4.7×107 erg/cm3 、Ms=1160emu/cc
が得られている。なお、前記文献1における実効的な垂
直磁気異方性定数(8×106 erg/cm3 以上)は、この
実施例におけるKuと比較されるものである。したがっ
て、明らかに本発明において大きな値が得られているこ
とがわかる。
In FIG. 5, [Fe (1ML) / Pt (1M
L)] I 001 / I 002 of 100 film, effective perpendicular magnetic anisotropy constant Ku, and essential perpendicular magnetic anisotropy constant K ⊥ and 633 nm obtained by adding shape anisotropy 2πMs 2 to this Ku. Shows the relationship with the car rotation angle. Note that Ms is saturation magnetization. In this example, K⊥ = 5.5 × 10 7 erg / cm 3 ,
Ku = 4.7 × 10 7 erg / cm 3 , Ms = 1160 emu / cc
Has been obtained. The effective perpendicular magnetic anisotropy constant (8 × 10 6 erg / cm 3 or more) in Document 1 is to be compared with Ku in this example. Therefore, it is apparent that a large value is obtained in the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)および(b)は、それぞれ基板温度50
0℃および室温で形成された[Fe(1ML)/Pt
(1ML)]100 多層膜の最上層であるPt層のRHE
EDパターンである。
1A and 1B show a substrate temperature of 50, respectively.
[Fe (1ML) / Pt formed at 0 ° C. and room temperature
(1ML)] RHE of Pt layer which is the uppermost layer of 100 multilayer film
It is an ED pattern.

【図2】基板温度500℃で形成された[Fe(1M
L)/Pt(1ML)]100 多層膜のX線回折チャート
である。
[FIG. 2] [Fe (1M
L) / Pt (1ML)] 100 is an X-ray diffraction chart of a multilayer film.

【図3】基板温度500℃で形成された[Fe(1M
L)/Pt(1ML)]100 多層膜の磁化ループであ
る。
FIG. 3 shows [Fe (1M
L) / Pt (1ML)] 100 Magnetization loop of a multilayer film.

【図4】基板温度500℃で形成された[Fe(1M
L)/Pt(1ML)]100 多層膜のカーループであ
る。
FIG. 4 shows [Fe (1M
L) / Pt (1ML)] 100 Kerr loop of a multilayer film.

【図5】[Fe(1ML)/Pt(1ML)]100 多層
膜のI001 /I002 と、実効的な垂直磁気異方性定数K
u、本質的な垂直磁気異方性定数K⊥および633nmで
のカー回転角との関係を示すグラフである。
FIG. 5 shows I 001 / I 002 of [Fe (1ML) / Pt (1ML)] 100 multilayer film and effective perpendicular magnetic anisotropy constant K.
3 is a graph showing the relationship between u, the essential perpendicular magnetic anisotropy constant K⊥, and the Kerr rotation angle at 633 nm.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年6月30日[Submission date] June 30, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】結晶構造を表わす図面代用写真であって、
(a)および(b)は、それぞれ基板温度500℃およ
び室温で形成された[Fe(1ML)/Pt(1M
L)]10。多層膜の最上層であるPt層のRHEED
パターンである。
FIG. 1 is a drawing-substitute photograph showing a crystal structure,
(A) and (b) show [Fe (1ML) / Pt (1M) formed at a substrate temperature of 500 ° C. and room temperature, respectively.
L)] 10 . RHEED of Pt layer which is the uppermost layer of multilayer film
It is a pattern.

【図2】基板温度500℃で形成された[Fe(1M
L)/Pt(1ML)]100多層膜のX線回折チャー
トである。
[FIG. 2] [Fe (1M
L) / Pt (1ML)] 100 multilayer film X-ray diffraction chart.

【図3】基板温度500℃で形成された[Fe(1M
L)/Pt(1ML)]100多層膜の磁化ループであ
る。
FIG. 3 shows [Fe (1M
L) / Pt (1ML)] 100 is a magnetization loop of a multilayer film.

【図4】基板温度500℃で形成された[Fe(1M
L)/Pt(1ML)]100多層膜のカーループであ
る。
FIG. 4 shows [Fe (1M
L) / Pt (1ML)] 100 multi-layer car loop.

【図5】[Fe(1ML)/Pt(1ML)]100
層膜のI001/I002と、実効的な垂直磁気異方性
定数Ku、本質的な垂直磁気異方性定数K⊥および63
3nmでのカー回転角との関係を示すグラフである。
FIG. 5 shows I 001 / I 002 of [Fe (1ML) / Pt (1ML)] 100 multilayer film, effective perpendicular magnetic anisotropy constant Ku, and essential perpendicular magnetic anisotropy constants K⊥ and 63.
It is a graph which shows the relationship with the Kerr rotation angle in 3 nm.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三谷 誠司 宮城県仙台市太白区八木山緑町7番41− 305号 (72)発明者 中嶋 英雄 岩手県盛岡市緑が丘4丁目11番40号 (72)発明者 佐野 正志 宮城県仙台市泉区東黒松5−36 高梨方 (72)発明者 大沢 明 岩手県盛岡市緑が丘1丁目11番19号 (72)発明者 佐藤 勝昭 神奈川県川崎市麻生区上麻生1087−169 (72)発明者 野口 潔 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seiji Mitani 7-41-305 Yagiyama Midori-cho, Taishiro-ku, Sendai City, Miyagi Prefecture (72) Hideo Nakajima 4--11-40 Midorigaoka, Morioka City, Iwate Prefecture (72) Inventor Masashi Sano 5-36 Takanashi, Higashikuromatsu, Izumi-ku, Sendai-shi, Miyagi (72) Inventor Akira Osawa 1-11-19 Midorigaoka, Morioka-shi, Iwate (72) Katsuaki Sato 1087 Kamioo, Aso-ku, Kawasaki-shi, Kanagawa −169 (72) Inventor Kiyoshi Noguchi 1-13-1, Nihonbashi, Chuo-ku, Tokyo Within TDK Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Fe単原子層とPt単原子層とが1層づ
つ積層されており、(001)面配向を有する磁性多層
膜。
1. A magnetic multi-layered film in which an Fe monoatomic layer and a Pt monoatomic layer are laminated one by one, and which has a (001) plane orientation.
【請求項2】 X線回折チャートにおいて、(001)
面配向を示すピークだけが認められる請求項1の磁性多
層膜。
2. In the X-ray diffraction chart, (001)
The magnetic multilayer film according to claim 1, wherein only peaks showing plane orientation are recognized.
【請求項3】 基板温度を500℃以上とし、蒸着法に
よりFe単原子層とPt単原子層とを交互に積層して規
則合金膜を形成する磁性多層膜の製造方法。
3. A method for producing a magnetic multilayer film, wherein a substrate temperature is 500 ° C. or higher and Fe monoatomic layers and Pt monoatomic layers are alternately laminated by a vapor deposition method to form an ordered alloy film.
【請求項4】 請求項1または2の磁性多層膜が形成さ
れる請求項3の磁性多層膜の製造方法。
4. The method for producing a magnetic multilayer film according to claim 3, wherein the magnetic multilayer film according to claim 1 or 2 is formed.
【請求項5】 請求項1または2の磁性多層膜を光磁気
記録膜として有する光磁気記録媒体。
5. A magneto-optical recording medium having the magnetic multilayer film according to claim 1 or 2 as a magneto-optical recording film.
JP33918794A 1994-12-28 1994-12-28 Magnetic multilayer film, method of manufacturing the same, and magneto-optical recording medium Expired - Lifetime JP3559332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33918794A JP3559332B2 (en) 1994-12-28 1994-12-28 Magnetic multilayer film, method of manufacturing the same, and magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33918794A JP3559332B2 (en) 1994-12-28 1994-12-28 Magnetic multilayer film, method of manufacturing the same, and magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPH08186022A true JPH08186022A (en) 1996-07-16
JP3559332B2 JP3559332B2 (en) 2004-09-02

Family

ID=18325064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33918794A Expired - Lifetime JP3559332B2 (en) 1994-12-28 1994-12-28 Magnetic multilayer film, method of manufacturing the same, and magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JP3559332B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824817B2 (en) 2002-03-14 2004-11-30 Tdk Corporation Method of manufacturing magnetic multilayer film, method of manufacturing magnetic recording medium, magnetic multilayer film and magnetic recording medium
WO2008134075A1 (en) * 2007-04-30 2008-11-06 Micron Technology, Inc. Magnetic floating gate flash memory structures
JP2010021580A (en) * 2005-10-19 2010-01-28 Toshiba Corp Magneto-resistance effect device, magnetic random access memory, electronic card, electronic apparatus, production process of magneto-resistance effect device, and production process of magnetic random access memory
US7663197B2 (en) 2005-10-19 2010-02-16 Kabushiki Kaisha Toshiba Magnetoresistive element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824817B2 (en) 2002-03-14 2004-11-30 Tdk Corporation Method of manufacturing magnetic multilayer film, method of manufacturing magnetic recording medium, magnetic multilayer film and magnetic recording medium
JP2010021580A (en) * 2005-10-19 2010-01-28 Toshiba Corp Magneto-resistance effect device, magnetic random access memory, electronic card, electronic apparatus, production process of magneto-resistance effect device, and production process of magnetic random access memory
US7663197B2 (en) 2005-10-19 2010-02-16 Kabushiki Kaisha Toshiba Magnetoresistive element
US8036025B2 (en) 2005-10-19 2011-10-11 Kabushiki Kaisha Toshiba Magnetoresistive element
US8363462B2 (en) 2005-10-19 2013-01-29 Kabushiki Kaisha Toshiba Magnetoresistive element
WO2008134075A1 (en) * 2007-04-30 2008-11-06 Micron Technology, Inc. Magnetic floating gate flash memory structures

Also Published As

Publication number Publication date
JP3559332B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US9899050B2 (en) Multiple layer FePt structure
JP2003272944A (en) Method of manufacturing magnetic multilayered film, method of manufacturing magnetic recording medium, magnetic multilayered film, and magnetic recording medium
Chen et al. Controlling the crystallographic orientation and the axis of magnetic anisotropy in L1 FePt films
Sato Crystallographic structure and magnetism of Co‐Pd and Co‐Pt films with an artificially layered structure
JPS60157715A (en) Magnetic recording medium
JP3318204B2 (en) Perpendicular magnetic film, method of manufacturing the same, and perpendicular magnetic recording medium
Barmak et al. Stoichiometry–anisotropy connections in epitaxial L1 0 FePt (001) films
Carcia et al. Sputtered Pt/Co multilayers for magneto-optical recording
EP0304927B1 (en) Perpendicular magnetic recording medium
Kato et al. The Effects of Underlayers for SmCo $ _5 $ Thin Films With Perpendicular Magnetic Anisotropy
JPH08186022A (en) Magnetic multilayer film, manufacture thereof and photomagnetic recording medium
JPH0797665A (en) Soft magnetic material, production thereof and magnetic head
US4698273A (en) Multi-layered ferromagnetic film and method of manufacturing the same
JPS6082638A (en) Thin film of ternary ni-co-fe alloy and its manufacture
US6649254B1 (en) Compensated crystalline superlattice ferrimagnets
JPH0814889B2 (en) Perpendicular magnetic recording media
Nakagawa et al. Low temperature deposition of c-axis oriented Sr-ferrite thin films prepared by facing targets sputtering with mixture gas of Ar and Kr
JP2710441B2 (en) Soft magnetic laminated film
JP2610376B2 (en) Magnetoresistance effect element
JPH11329882A (en) Manufacture of exchange coupling film and magnetoresistive effect device
JP3559333B2 (en) Magnetic multilayer film, method of manufacturing the same, and magneto-optical recording medium
Takei et al. Effect of Sm–Co layer thickness on magnetic properties of crystallized Sm–Co/Cr films
JPH09129445A (en) Magnetoresistive effect head
JP2003036514A (en) Perpendicular magnetizing film and its manufacturing, magnetic recording medium, and magnetic disk
Han Steep magnetoresistance change with low saturation fields in Co/Ni multilayer thin films

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040521

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

EXPY Cancellation because of completion of term