JPH08183953A - Organic electric field element using oxadiazole derivative - Google Patents

Organic electric field element using oxadiazole derivative

Info

Publication number
JPH08183953A
JPH08183953A JP6340308A JP34030894A JPH08183953A JP H08183953 A JPH08183953 A JP H08183953A JP 6340308 A JP6340308 A JP 6340308A JP 34030894 A JP34030894 A JP 34030894A JP H08183953 A JPH08183953 A JP H08183953A
Authority
JP
Japan
Prior art keywords
oxadiazole derivative
chemical
embedded image
formula
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6340308A
Other languages
Japanese (ja)
Other versions
JP3486994B2 (en
Inventor
Manabu Uchida
内田  学
Yusho Izumisawa
勇昇 泉澤
Kenji Furukawa
顕治 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP34030894A priority Critical patent/JP3486994B2/en
Publication of JPH08183953A publication Critical patent/JPH08183953A/en
Application granted granted Critical
Publication of JP3486994B2 publication Critical patent/JP3486994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE: To obtain the organic electric field light-emitting element high in durability, having a high light emission efficiency, and useful for high efficiency light-emitting elements such as full-color displays by using an oxadiazole derivative having a specific structure. CONSTITUTION: This electric field light-emitting element comprises an oxadiazole derivative of formula I [Ar1 is (1-6C alkyl-substituted) biphenyl, (1-6C alkyl- substituted) naphthyl; Ar2 is (1-6C alkyl-substituted) biphenyl or (1-6C alkyl- substituted) naphthyl different from the Ar1 ]. Preferably, an oxadiazole derivative of formula II (R1 -R16 are independently H, 1-6C alkyl), e.g. a derivative of formula III, etc., are used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機電界発光(EL)
素子に関するもので、詳しくはオキサジアゾール誘導体
を用いたEL素子に関するものである。
This invention relates to organic electroluminescence (EL).
More specifically, the present invention relates to an EL device using an oxadiazole derivative.

【0002】[0002]

【従来の技術】近年、これまでにない高輝度な平面ディ
スプレイの候補として有機EL素子が注目され、その研
究開発が活発化している。有機EL素子は有機発光層を
2つの電極で挟んだ構造であり、陽極から注入された正
孔と陰極から注入された電子とが発光層中で再結合して
光を発する。有機EL素子に用いられる有機材料には低
分子材料と高分子材料があり、どちらを用いても高輝度
のEL素子ができることが知られている。
2. Description of the Related Art In recent years, an organic EL element has been attracting attention as a candidate for an unprecedented high-luminance flat display, and its research and development has been activated. The organic EL element has a structure in which an organic light emitting layer is sandwiched between two electrodes, and holes injected from the anode and electrons injected from the cathode are recombined in the light emitting layer to emit light. Organic materials used for organic EL elements include low molecular weight materials and high molecular weight materials, and it is known that an EL element with high brightness can be obtained by using either of them.

【0003】このような有機EL素子には2つのタイプ
がある。1つは、タン(C.W.Tang)らによって発表され
た電荷輸送層中に蛍光色素を添加した有機EL素子(ジ
ャーナルオブジアプライドフィジックス(J.Appl.Phy
s.),65,3610(1989))、もう1つは、蛍光色素を単独で
用いた有機EL素子である(例えば、ジャパニーズジャ
ーナルオブジアプライドフィジックス(Jpn.J.Appl.Phy
s.),27,L269(1988)に記載)。後者のEL素子では、蛍
光色素が電荷の1つである正孔のみを輸送する正孔輸送
層および/あるいは電子のみを輸送する電子輸送層と積
層しているような場合に発光効率が向上することが示さ
れている。しかしいずれも実用化するための充分な条件
を備えていない。例えば、前者では正孔輸送材料の薄膜
状態での物理的な耐久性が乏しく、また、蛍光色素を添
加するのに用いた電子輸送性のホスト材料自身が緑色に
発光するため、青色の発光を得るのが困難であり、後者
では用いた電子輸送材料の耐久性および電荷輸送能が低
く、実用上充分な性能が出せないという問題点があっ
た。
There are two types of such organic EL devices. One is an organic EL device (J.Appl.Phys (J.Appl.Phys), which was published by CWTang et al.) In which a fluorescent dye is added to a charge transport layer.
s.), 65,3610 (1989)), and the other is an organic EL device using a fluorescent dye alone (for example, Japanese Journal of the Applied Physics (Jpn.J.Appl.Phy).
s.), 27, L269 (1988)). In the latter EL element, the luminous efficiency is improved when the fluorescent dye is laminated with a hole transport layer that transports only holes, which is one of the charges, and / or an electron transport layer that transports only electrons. Is shown. However, none of them have sufficient conditions for practical use. For example, in the former case, the hole transport material has poor physical durability in a thin film state, and the electron transporting host material itself used for adding the fluorescent dye emits green light, so that it emits blue light. It is difficult to obtain the latter, and in the latter case, the electron transport material used has low durability and low charge transport ability, and there is a problem that sufficient performance cannot be obtained in practical use.

【0004】電子輸送材料の1つとして2−(4−ビフ
ェニルイル)−5−(4−tert−ブチルフェニル)−
1,3,4−オキサジアゾール(PBD)が知られてい
る。このPBDを電子輸送層として用いた例として前記
の有機EL素子(Jpn.J.Appl.Phys.,27,L269(1988))が
ある。しかし、PBDは結晶化を起こしやすいなど、薄
膜形成後の安定性に乏しいことが指摘され、オキサジア
ゾール環を複数持つ化合物が開発された(日本化学会
誌,11,1540(1991)、特開平6ー145658、特開平6
ー92947、特開平5ー152072、特開平5ー2
02011、特開平6ー136359)。しかしなが
ら、これらにおいても実用上充分な耐久性を有していな
かった。
2- (4-biphenylyl) -5- (4-tert-butylphenyl) -as one of electron transport materials
1,3,4-oxadiazole (PBD) is known. The above-mentioned organic EL device (Jpn. J. Appl. Phys., 27, L269 (1988)) is an example of using this PBD as an electron transport layer. However, it was pointed out that PBD is poor in stability after thin film formation because it is easy to crystallize, and a compound having a plurality of oxadiazole rings was developed (Journal of the Chemical Society of Japan, 11, 1540 (1991), Japanese Patent Laid-Open Publication No. Hei 10 (1999) -58) 6-145658, Japanese Unexamined Patent Publication No.
-92947, JP-A-5-152072, JP-A-5-22
02011, JP-A-6-136359). However, even in these, practically sufficient durability was not obtained.

【0005】一方、結晶化が起こり難く薄膜の安定性を
向上させた素子として正孔輸送性ポリマーなどの高分子
媒体に発光材料および電子輸送材料を混合させた素子が
報告されている(特開平4−212286)。しかしな
がら、駆動電圧が高く、耐久性の向上も実用上十分でな
い。この原因として、これまで用いられてきた混合させ
る電子輸送材料は、正孔輸送性ポリマーに対して溶解度
が低く、適量混合させることが困難であり、薄膜形成
後、放置すると晶出するという問題点に加え、電子輸送
能が低く、大量に必要なため膜の安定性が低下するなど
の欠点が考えられる。
On the other hand, an element in which a light-emitting material and an electron-transporting material are mixed with a polymer medium such as a hole-transporting polymer has been reported as an element in which crystallization is less likely to occur and stability of a thin film is improved (Japanese Patent Laid-Open No. Hei 10-1999) 4-212286). However, the driving voltage is high, and the improvement in durability is not practically sufficient. As a cause for this, the electron-transporting materials to be mixed, which have been used so far, have a low solubility in the hole-transporting polymer, and it is difficult to mix them in an appropriate amount. In addition, the electron transporting ability is low, and a large amount of the electron transporting ability is required.

【0006】有機EL素子に用いられる電子輸送材料の
特性としては、同時に用いられる正孔輸送材料あるいは
/および発光材料と励起錯体や電荷移動錯体等とのコン
プレックスを形成しないことが望まれる。加えて、薄膜
状態での物理的、化学的安定性が高い必要がある。有機
EL素子の電荷輸送層あるいは発光層に用いられる薄膜
はアモルファス状態にあるものが多く、この薄膜のガラ
ス転移点が低いとアモルファス状態から徐々に結晶化が
進み、均一な状態を保つことができなくなる。結果とし
て、電流が流れにくくなり最後には絶縁破壊を引き起こ
し素子が崩壊する。さらに、可視領域全般の発光を取り
出す必要があるので、電子輸送材料自身の発光が短波長
(450nm以下)にある必要がある。
As a characteristic of the electron transport material used in the organic EL device, it is desired that the hole transport material and / or the light emitting material used at the same time do not form a complex with an exciplex or a charge transfer complex. In addition, the physical and chemical stability in the thin film state must be high. Many of the thin films used for the charge transport layer or the light emitting layer of the organic EL device are in an amorphous state. If the glass transition point of this thin film is low, crystallization gradually progresses from the amorphous state and a uniform state can be maintained. Disappear. As a result, it becomes difficult for current to flow, and eventually dielectric breakdown occurs, causing the device to collapse. Further, since it is necessary to take out light emission in the entire visible region, it is necessary that the light emission of the electron transport material itself has a short wavelength (450 nm or less).

【0007】[0007]

【発明が解決しようとする課題】上記の問題点を解決す
る有機EL素子を見いだすべく鋭意検討した結果、本発
明のオキサジアゾール誘導体を用いた有機EL素子が耐
久性が高く、高発光効率であることを見いだし本発明を
完成した。すなわち、本発明は耐久性が高く、高発光効
率の有機EL素子を提供することを目的とする。
As a result of extensive studies to find an organic EL device that solves the above problems, the organic EL device using the oxadiazole derivative of the present invention has high durability and high luminous efficiency. The present invention has been completed by discovering a certain thing. That is, an object of the present invention is to provide an organic EL element having high durability and high luminous efficiency.

【0008】[0008]

【課題を解決するための手段】本発明は、下記(1)〜
(5)項の各構成を有する。 (1)化5で表されるオキサジアゾール誘導体を用いた
電界発光素子。
Means for Solving the Problems The present invention includes the following (1) to
It has each configuration of the item (5). (1) An electroluminescent device using an oxadiazole derivative represented by Chemical formula 5.

【化5】 [式中、Ar1は無置換あるいは炭素数1から6までの
アルキル基で置換されたビフェニル基、または無置換あ
るいは炭素数1から6までのアルキル基で置換されたナ
フチル基を示す。Ar2はAr1とは異なった、無置換あ
るいは炭素数1から6までのアルキル基で置換されたビ
フェニル基、または無置換あるいは炭素数1から6まで
のアルキル基で置換されたナフチル基を示す。] (2) 化6で表されるオキサジアゾール誘導体を用い
た電界発光素子。
Embedded image [In the formula, Ar 1 represents an unsubstituted or biphenyl group substituted with an alkyl group having 1 to 6 carbon atoms, or an unsubstituted or a naphthyl group substituted with an alkyl group having 1 to 6 carbon atoms. Ar 2 is different from Ar 1 and represents an unsubstituted or substituted biphenyl group having an alkyl group having 1 to 6 carbon atoms, or an unsubstituted or a naphthyl group substituted by an alkyl group having 1 to 6 carbon atoms. . (2) An electroluminescent device using the oxadiazole derivative represented by Chemical formula 6.

【化6】 [式中、R1〜R16はそれぞれ独立に水素あるいは炭素
数1から6までのアルキル基を示す。] (3)化7で表されるオキサジアゾール誘導体を用いた
電界発光素子。
[Chemical 6] [In the formula, R 1 to R 16 each independently represent hydrogen or an alkyl group having 1 to 6 carbon atoms. ] (3) An electroluminescent device using the oxadiazole derivative represented by Chemical formula 7.

【化7】 [式中、R1〜R16はそれぞれ独立に水素あるいは炭素
数1から6までのアルキル基を示す。] (4)化8で表されるオキサジアゾール誘導体を用いた
電界発光素子。
[Chemical 7] [In the formula, R 1 to R 16 each independently represent hydrogen or an alkyl group having 1 to 6 carbon atoms. ] (4) An electroluminescent device using the oxadiazole derivative represented by Chemical formula 8.

【化8】 [式中、R1〜R14はそれぞれ独立に水素あるいは炭素
数1から6までのアルキル基を示す。] (5) 前記第1項に示されたオキサジアゾール誘導体
と正孔輸送材料とを混合した層を有することを特徴とす
る電界発光素子。
Embedded image [In the formula, R 1 to R 14 each independently represent hydrogen or an alkyl group having 1 to 6 carbon atoms. (5) An electroluminescent device having a layer in which the oxadiazole derivative shown in the above item 1 and a hole transport material are mixed.

【0009】本発明の構成と効果につき以下に詳述す
る。上述した本発明で使用されるオキサジアゾール誘導
体は、以下のようにして製造できる。まず、反応式化9
に従い、ヒドラジド誘導体を得る。
The structure and effect of the present invention will be described in detail below. The oxadiazole derivative used in the present invention described above can be produced as follows. First, reaction formula 9
According to, a hydrazide derivative is obtained.

【化9】 [式中、Ar1およびAr2はそれぞれ独立に無置換ある
いは炭素数1から6までのアルキル基で置換されたビフ
ェニル基、または無置換あるいは炭素数1から6までの
アルキル基で置換されたナフチル基を示す。] この際の溶媒としては、ピリジン、ジメチルホルムアル
デヒド(DMF)、ジメチルアニリン、トリエチルアミ
ンなどの塩基性の溶媒を単独で用いるか、または塩基性
の試薬の存在下にテトラヒドロフラン(THF)、エー
テルなどのエーテル系、トルエン、キシレンなどの芳香
族系、クロロフォルム、ジクロロメタンなどのハロゲン
系等を用いる。
[Chemical 9] [Wherein Ar 1 and Ar 2 are each independently a biphenyl group which is unsubstituted or substituted with an alkyl group having 1 to 6 carbon atoms, or naphthyl which is unsubstituted or substituted with an alkyl group having 1 to 6 carbon atoms Indicates a group. As the solvent at this time, a basic solvent such as pyridine, dimethylformaldehyde (DMF), dimethylaniline, or triethylamine is used alone, or an ether such as tetrahydrofuran (THF) or ether is used in the presence of a basic reagent. A system, an aromatic system such as toluene and xylene, and a halogen system such as chloroform and dichloromethane are used.

【0010】次に、反応式化10に従い、分子内環化脱
水反応を行うことによりオキサジアゾール誘導体を得る
ことができる。
Then, an oxadiazole derivative can be obtained by performing an intramolecular cyclization dehydration reaction according to the reaction formula 10.

【化10】 [式中、Ar1およびAr2はそれぞれ独立に無置換ある
いは炭素数1から6までのアルキル基で置換されたビフ
ェニル基、または無置換あるいは炭素数1から6までの
アルキル基で置換されたナフチル基を示す。] この際の溶媒としては、不活性な溶媒であるなら特に制
限はない。好ましいものとしては、トルエン、キシレン
等の芳香族系があげられる。上記オキサジアゾール誘導
体の具体例としては、下記の化合物を挙げる事ができ
る。
[Chemical 10] [Wherein Ar 1 and Ar 2 are each independently a biphenyl group which is unsubstituted or substituted with an alkyl group having 1 to 6 carbon atoms, or naphthyl which is unsubstituted or substituted with an alkyl group having 1 to 6 carbon atoms Indicates a group. The solvent at this time is not particularly limited as long as it is an inert solvent. Aromatic compounds such as toluene and xylene are preferred. Specific examples of the oxadiazole derivative include the following compounds.

【0011】[0011]

【化11】 [Chemical 11]

【0012】[0012]

【化12】 [Chemical 12]

【0013】[0013]

【化13】 [Chemical 13]

【0014】[0014]

【化14】 Embedded image

【0015】[0015]

【化15】 [Chemical 15]

【0016】[0016]

【化16】 Embedded image

【0017】[0017]

【化17】 [Chemical 17]

【0018】[0018]

【化18】 Embedded image

【0019】[0019]

【化19】 [Chemical 19]

【0020】[0020]

【化20】 Embedded image

【0021】[0021]

【化21】 [Chemical 21]

【0022】[0022]

【化22】 [Chemical formula 22]

【0023】[0023]

【化23】 [Chemical formula 23]

【0024】[0024]

【化24】 [Chemical formula 24]

【0025】[0025]

【化25】 [Chemical 25]

【0026】[0026]

【化26】 [Chemical formula 26]

【0027】[0027]

【化27】 [Chemical 27]

【0028】[0028]

【化28】 [Chemical 28]

【0029】[0029]

【化29】 [Chemical 29]

【0030】[0030]

【化30】 Embedded image

【0031】[0031]

【化31】 [Chemical 31]

【0032】[0032]

【化32】 Embedded image

【0033】[0033]

【化33】 [Chemical 33]

【0034】[0034]

【化34】 Embedded image

【0035】[0035]

【化35】 Embedded image

【0036】[0036]

【化36】 Embedded image

【0037】[0037]

【化37】 Embedded image

【0038】[0038]

【化38】 [Chemical 38]

【0039】[0039]

【化39】 [Chemical Formula 39]

【0040】[0040]

【化40】 [Chemical 40]

【0041】[0041]

【化41】 Embedded image

【0042】[0042]

【化42】 Embedded image

【0043】[0043]

【化43】 [Chemical 43]

【0044】[0044]

【化44】 [Chemical 44]

【0045】[0045]

【化45】 Embedded image

【0046】[0046]

【化46】 Embedded image

【0047】[0047]

【化47】 [Chemical 47]

【0048】[0048]

【化48】 Embedded image

【0049】[0049]

【化49】 [Chemical 49]

【0050】[0050]

【化50】 Embedded image

【0051】[0051]

【化51】 [Chemical 51]

【0052】[0052]

【化52】 Embedded image

【0053】[0053]

【化53】 Embedded image

【0054】[0054]

【化54】 [Chemical 54]

【0055】[0055]

【化55】 [Chemical 55]

【0056】[0056]

【化56】 [Chemical 56]

【0057】[0057]

【化57】 [Chemical 57]

【0058】[0058]

【化58】 Embedded image

【0059】[0059]

【化59】 Embedded image

【0060】[0060]

【化60】 Embedded image

【0061】[0061]

【化61】 [Chemical formula 61]

【0062】[0062]

【化62】 Embedded image

【0063】[0063]

【化63】 [Chemical formula 63]

【0064】[0064]

【化64】 [Chemical 64]

【0065】[0065]

【化65】 Embedded image

【0066】[0066]

【化66】 [Chemical formula 66]

【0067】[0067]

【化67】 Embedded image

【0068】[0068]

【化68】 [Chemical 68]

【0069】[0069]

【化69】 [Chemical 69]

【0070】[0070]

【化70】 Embedded image

【0071】[0071]

【化71】 Embedded image

【0072】[0072]

【化72】 Embedded image

【0073】[0073]

【化73】 Embedded image

【0074】[0074]

【化74】 [Chemical 74]

【0075】これらのオキサジアゾール誘導体は、正孔
輸送材料と励起錯体あるいは電荷移動錯体などを形成し
難く、EL素子としたときに発光効率を落とさない利点
を有し、EL素子の電子輸送材料として有用である。ま
た、薄膜状態における安定性がPBDに比べ増加してお
り、単独でも安定な電子輸送層を形成できる。これは、
オキサジアゾール誘導体のガラス転移点がPBDにくら
べ高いことによる。さらに、オキサジアゾール誘導体は
非対称な構造をしているため溶解性が高いので、ポリビ
ニルカルバゾールのような正孔輸送性高分子に混合して
使用する場合に好都合である。さらに、これらのオキサ
ジアゾール誘導体は、それ自身強い蛍光を示すのでEL
素子の発光材料としても有用である。
These oxadiazole derivatives have the advantage that it is difficult to form an exciplex or charge transfer complex with the hole transport material and the luminous efficiency is not reduced when the EL device is used. Is useful as In addition, the stability in the thin film state is higher than that of PBD, and a stable electron transport layer can be formed by itself. this is,
This is because the glass transition point of the oxadiazole derivative is higher than that of PBD. Further, since the oxadiazole derivative has an asymmetric structure and thus has high solubility, it is convenient when it is used as a mixture with a hole transporting polymer such as polyvinylcarbazole. In addition, these oxadiazole derivatives show strong fluorescence by themselves, and thus EL
It is also useful as a light emitting material for the device.

【0076】本発明のEL素子の構成は、各種の態様が
あるが、基本的には一対の電極(陽極と陰極)間に、前
記オキサジアゾール誘導体を挟持した構成とし、これに
必要に応じて、正孔輸送材料、発光材料および電子輸送
材料を加える、もしくは別の層として正孔輸送層、発光
層等を積層すればよい。構成の具体例としては、陽極/
オキサジアゾール誘導体層/陰極、陽極/正孔輸送層/
オキサジアゾール誘導体層/陰極、陽極/正孔輸送層/
発光層/オキサジアゾール誘導体層/陰極、陽極/正孔
輸送材料+発光材料+オキサジアゾール誘導体層/陰極
などが挙げられる。また、本発明の素子は、いずれも基
板に支持されていることが好ましく、該基板に付いては
特に制限はなく、従来EL素子に慣用されているもの、
例えばガラス、透明プラスチック、導電性高分子あるい
は石英などから成るものを用いることができる。
The EL element of the present invention may have various modes, but basically, the oxadiazole derivative is sandwiched between a pair of electrodes (anode and cathode), and if necessary, Then, a hole-transporting material, a light-emitting material, and an electron-transporting material may be added, or a hole-transporting layer, a light-emitting layer, or the like may be stacked as another layer. A concrete example of the structure is an anode /
Oxadiazole derivative layer / cathode, anode / hole transport layer /
Oxadiazole derivative layer / cathode, anode / hole transport layer /
Examples include a light emitting layer / oxadiazole derivative layer / cathode, an anode / hole transport material + light emitting material + oxadiazole derivative layer / cathode, and the like. In addition, the element of the present invention is preferably supported by a substrate, the substrate is not particularly limited, those conventionally used in EL elements,
For example, glass, transparent plastic, conductive polymer, quartz, or the like can be used.

【0077】本発明で使用される各層は、例えば蒸着
法、塗布法等の公知の方法によって、薄膜化する事によ
り形成することができる。前記オキサジアゾール誘導体
を用いた層は、薄膜状態の安定性が高いために樹脂など
の結着剤を必要とせず、蒸着法などにより薄膜化し形成
することができるので工業的に有利である。このように
して形成された各層の薄膜の厚みについては特に制限は
なく、適宜状況に応じて選ぶことができるが、通常2n
mないし5000nmの範囲で選定される。
Each layer used in the present invention can be formed by thinning it by a known method such as a vapor deposition method or a coating method. The layer using the oxadiazole derivative does not require a binder such as a resin because it is highly stable in a thin film state, and can be formed into a thin film by a vapor deposition method or the like, which is industrially advantageous. The thickness of the thin film of each layer thus formed is not particularly limited and can be appropriately selected depending on the situation, but is usually 2n.
It is selected in the range of m to 5000 nm.

【0078】本発明のEL素子における陽極としては、
仕事関数の大きい(4eV以上)金属、合金、電気伝導
性化合物またはこれらの混合物を電極物質とするものが
好ましく用いられる。このような電極物質の具体例とし
てはAuなどの金属、CuI、ITO(インジウム−ス
ズ酸化物)、SnO2、ZnOなどの誘電性透明材料が
挙げられる。上記陽極は、これらの電極物質を蒸着やス
パッタリングなどの方法により、薄膜を形成させて作製
することができる。膜厚は、通常10nmないし1μ
m、好ましくは10〜200nmの範囲で選ばれる。ま
た、電極としてのシート抵抗は数百Ω/square以下が好
ましい。
As the anode in the EL device of the present invention,
A material having a high work function (4 eV or more), an alloy, an electrically conductive compound or a mixture thereof as an electrode material is preferably used. Specific examples of such an electrode substance include a dielectric transparent material such as a metal such as Au, CuI, ITO (indium-tin oxide), SnO 2 , and ZnO. The above anode can be produced by forming a thin film of these electrode substances by a method such as vapor deposition or sputtering. The film thickness is usually 10nm to 1μ
m, preferably 10 to 200 nm. The sheet resistance of the electrode is preferably several hundred Ω / square or less.

【0079】一方、陰極としては、仕事関数の小さい
(4.3eV以下)金属、合金、電気伝導性化合物また
はこれらの混合物を電極物質とするものが用いられる。
このような電極物質の具体例としては、カルシウム、マ
グネシウム、リチウム、アルミニウム、マグネシウム合
金、リチウム合金、アルミニウム合金、アルミニウム/
リチウム混合物、マグネシウム/銀混合物、インジウム
などが挙げられる。上記陰極は、これらの電極物質を蒸
着やスパッタリングなどの方法により、薄膜を形成させ
て作製することができる。膜厚は通常10nmないし1
μm、好ましくは50〜200nmの範囲で選ばれる。
また、電極としてのシート抵抗は数百Ω/square以下が
好ましい。陽極および陰極として用いる材料のうち少な
くとも一方は素子の発光波長領域において十分透明であ
ることが望ましい。具体的には10%以上の光透過率を
有することが望ましい。
On the other hand, as the cathode, a material having a low work function (4.3 eV or less) metal, alloy, electrically conductive compound or a mixture thereof as an electrode substance is used.
Specific examples of such electrode materials include calcium, magnesium, lithium, aluminum, magnesium alloys, lithium alloys, aluminum alloys, and aluminum /
Examples include lithium mixtures, magnesium / silver mixtures, indium and the like. The cathode can be produced by forming a thin film of these electrode substances by a method such as vapor deposition or sputtering. The film thickness is usually 10 nm to 1
μm, preferably 50 to 200 nm.
The sheet resistance of the electrode is preferably several hundred Ω / square or less. At least one of the materials used for the anode and the cathode is preferably sufficiently transparent in the emission wavelength region of the device. Specifically, it is desirable to have a light transmittance of 10% or more.

【0080】本発明のEL素子の構成は、前記のように
各種の態様があるが、正孔輸送層を設けると発光効率が
向上する。正孔輸送層に用いられる正孔輸送材料として
は、電界を与えられた2個の電極間に配置されて陽極か
ら正孔が注入された場合、この正孔を適切に発光層へ伝
達しうる化合物であって、例えば、104〜106V/c
mの電界印加時に、少なくとも10-6cm2/V・秒以
上の正孔移動度をもつものが好適である。このような正
孔輸送材料については、前記の好ましい性質を有する物
質であれば特に制限はなく、従来、光導電材料におい
て、正孔の電荷輸送材として慣用されている物質やEL
素子の正孔輸送層に使用される公知の物質の中から任意
の物質を選択して用いることができる。
The EL device of the present invention has various configurations as described above, but the provision of the hole transport layer improves the luminous efficiency. The hole transport material used for the hole transport layer is arranged between two electrodes to which an electric field is applied, and when holes are injected from the anode, the holes can be appropriately transferred to the light emitting layer. A compound, for example, 10 4 to 10 6 V / c
Those having a hole mobility of at least 10 −6 cm 2 / V · sec or more when an electric field of m is applied are preferable. Such a hole transport material is not particularly limited as long as it is a substance having the above-mentioned preferable properties, and a substance or EL conventionally used as a hole charge transport material in photoconductive materials is conventionally used.
Any substance can be selected and used from known substances used for the hole transport layer of the device.

【0081】上記正孔輸送材料としては、例えばNーフ
ェニルカルバゾール、ポリビニルカルバゾールなどのカ
ルバゾール誘導体、N,N’−ジフェニル−N,N’−
ジ(3−メチルフェニル)−4,4’−ジアミノビフェ
ニル(TPD)、芳香族第3級アミンを主鎖あるいは側
鎖に持つポリマー、1,1−ビス(4−ジ−p−トリル
アミノフェニル)シクロヘキサン、N,N’−ジフェニ
ル−N,N’−ジナフチル−4,4’−ジアミノビフェ
ニルなどのトリアリールアミン誘導体、無金属、銅フタ
ロシアニンなどのフタロシアニン誘導体、ポリシランな
どがあげられる。
Examples of the hole transport material include carbazole derivatives such as N-phenylcarbazole and polyvinylcarbazole, and N, N'-diphenyl-N, N'-.
Di (3-methylphenyl) -4,4'-diaminobiphenyl (TPD), a polymer having an aromatic tertiary amine in its main chain or side chain, 1,1-bis (4-di-p-tolylaminophenyl) ) Cyclohexane, N, N'-diphenyl-N, N'-dinaphthyl-4,4'-diaminobiphenyl, and other triarylamine derivatives, metal-free, phthalocyanine derivatives such as copper phthalocyanine, and polysilane.

【0082】本発明のEL素子の電子輸送層に用いられ
る電子輸送材料については特に制限はなく、従来公知の
化合物の中から任意のものを選択して用いる事ができ
る。この電子輸送材料の好ましい例としては、化74な
どのジフェニルキノン誘導体(電子写真学会誌、30,3(1
991)などに記載のもの)、あるいは化75、化76など
の化合物(J.Apply.Phys.,27,269(1988)などに記載のも
の)や、オキサジアゾール誘導体(前記文献、Jpn.J.App
l.Phys.,27,L713(1988), アプライドフィジックスレタ
ー(Appl.Phys.Lett.),55,1489(1989)などに記載のも
の)、チオフェン誘導体(特開平4−212286号公
報などに記載のもの)、トリアゾール誘導体(Jpn.J.Ap
pl.Phys.,32,L917(1993)などに記載のもの)、チアジア
ゾール誘導体(第43回高分子学会予稿集、IIIP1a
007などに記載のもの)、オキシン誘導体の金属錯体
(電子情報通信学会技術研究報告、92(311),43(1992)な
どに記載のもの)、キノキサリン誘導体のポリマー(Jp
n.J.Appl.Phys.,33,L250(1994)などに記載のもの)、フ
ェナントロリン誘導体(第43回高分子討論会予稿集、
14J07などに記載のもの)などを挙げることがで
き、単独もしくは複数を組み合わせて使用することがで
きる。
The electron-transporting material used in the electron-transporting layer of the EL device of the present invention is not particularly limited, and any one of conventionally known compounds can be selected and used. Preferred examples of this electron transport material include diphenylquinone derivatives such as Chemical formula 74 (Journal of the Electrophotographic Society, 30, 3 (1
991)), or compounds such as chemical formulas 75 and 76 (described in J. Apply. Phys., 27, 269 (1988) etc.) and oxadiazole derivatives (the above-mentioned document, Jpn. J. App
l.Phys., 27, L713 (1988), Applied Physics Letter (Appl.Phys.Lett.), 55,1489 (1989) and the like, thiophene derivative (JP-A-4-212286, etc.) , Triazole derivatives (Jpn.J.Ap
pl.Phys., 32, L917 (1993), etc.), thiadiazole derivatives (Proceedings of the 43rd Japan Society for Polymer Science, IIIP1a)
007), metal complexes of oxine derivatives (described in Technical Report of IEICE Technical Report, 92 (311), 43 (1992), etc.), polymers of quinoxaline derivatives (Jp.
nJAppl.Phys., 33, L250 (1994) etc.), phenanthroline derivative (Proceedings of the 43rd Symposium on Macromolecules,
14J07 etc.) and the like, and can be used alone or in combination.

【0083】[0083]

【化75】 [Chemical 75]

【0084】[0084]

【化76】 [Chemical 76]

【0085】[0085]

【化77】 Embedded image

【0086】本発明に用いる発光材料には、高分子学会
編 高分子機能材料シリーズ”光機能材料”、共立出版
(1991)、P236 に記載されているような昼光蛍光材料、蛍
光増白剤、レーザー色素、有機シンチレータ、各種の蛍
光分析試薬などの公知の発光材料を用いることができる
が、具体的には、アントラセン、フェナントレン、ピレ
ン、クリセン、ペリレン、コロネン、ルブレン、キナク
リドンなどの多環縮合化合物、クオーターフェニルなど
のオリゴフェニレン系化合物、1,4−ビス(2−メチ
ルスチリル)ベンゼン、1,4−ビス(4−メチルスチ
リル)ベンゼン、1,4−ビス(4−メチル−5−フェ
ニル−2−オキザゾリル)ベンゼン、1,4−ビス(5
−フェニル−2−オキサゾリル)ベンゼン、2,5−ビ
ス(5−タシャリー−ブチル−2−ベンズオキサゾリ
ル)チオフェン、1,4−ジフェニル−1,3−ブタジ
エン、1,6−ジフェニル−1,3,5−ヘキサトリエ
ン、1,1,4,4−テトラフェニル−1,3,−ブタ
ジエンなどの液体シンチレーション用シンチレータ、特
開昭63-264692 号公報記載のオキシン誘導体の金属錯
体、クマリン染料、ジシアノメチレンピラン染料、ジシ
アノメチレンチオピラン染料、ポリメチン染料、オキソ
ベンズアントラセン染料、キサンテン染料、カルボスチ
リル染料およびペリレン染料、独国特許2534713 号公報
に記載のオキサジン系化合物、第40回応用物理学関係
連合講演会講演予稿集、1146(1993)に記載のスチルベン
誘導体および特開平4-363891号公報記載のオキサジアゾ
ール系化合物が好ましい。
The light-emitting material used in the present invention is a polymer functional material series “Optical functional material” edited by The Society of Polymer Science, Kyoritsu Shuppan.
(1991), daylight fluorescent materials as described in P236, fluorescent brighteners, laser dyes, organic scintillators, known fluorescent materials such as various fluorescent analysis reagents can be used, but specifically, , Polycyclic condensed compounds such as anthracene, phenanthrene, pyrene, chrysene, perylene, coronene, rubrene, quinacridone, oligophenylene compounds such as quarterphenyl, 1,4-bis (2-methylstyryl) benzene, 1,4-bis (4-Methylstyryl) benzene, 1,4-bis (4-methyl-5-phenyl-2-oxazolyl) benzene, 1,4-bis (5
-Phenyl-2-oxazolyl) benzene, 2,5-bis (5-tachary-butyl-2-benzoxazolyl) thiophene, 1,4-diphenyl-1,3-butadiene, 1,6-diphenyl-1, Scintillators for liquid scintillation such as 3,5-hexatriene and 1,1,4,4-tetraphenyl-1,3, -butadiene, metal complexes of oxine derivatives described in JP-A-63-264692, coumarin dyes, Dicyanomethylenepyran dye, dicyanomethylenethiopyran dye, polymethine dye, oxobenzanthracene dye, xanthene dye, carbostyryl dye and perylene dye, oxazine compounds described in German Patent 2534713, 40th Union of Applied Physics Relations Lecture Lecture Proceedings, Stilbene derivatives described in 1146 (1993) and JP-A-4-363891 Oxadiazole-based compounds of the mounting is preferred.

【0087】本発明のEL素子の作製方法を、陽極/該
オキサジアゾール誘導体層/陰極からなるEL素子の例
によって説明する。まず適当な基板上に、陽極用物質か
らなる薄膜を、1μm以下、好ましくは10〜200n
mの範囲の膜厚になるように、蒸着やスパッタリングな
どの方法により形成させ、陽極を作製したのち、この上
にオキサジアゾール誘導体の薄膜を形成させる。薄膜化
の方法としては、例えば、浸せき塗工法、スピンコート
法、キャスト法、蒸着法などがあるが、均質な膜が得ら
れやすく、不純物が混ざり難くかつピンホールが生成し
にくいなどの点から蒸着法が好ましい。
The method for producing the EL device of the present invention will be described with reference to an EL device comprising an anode / the oxadiazole derivative layer / cathode. First, a thin film made of a material for an anode is formed on a suitable substrate and has a thickness of 1 μm or less, preferably 10 to 200 n.
A film is formed by a method such as vapor deposition or sputtering so as to have a film thickness in the range of m, an anode is prepared, and then a thin film of an oxadiazole derivative is formed thereon. Examples of thinning methods include a dip coating method, a spin coating method, a casting method, and a vapor deposition method. However, a uniform film is easily obtained, impurities are less likely to mix, and pinholes are less likely to be generated. The vapor deposition method is preferred.

【0088】次に、このオキサジアゾール誘導体層の形
成後、その上に陰極用物質からなる薄膜を、1μm以
下、例えば蒸着やスパッタリング等の方法により形成さ
せ、陰極を設けることにより、所望のEL素子が得られ
る。なお、このEL素子の作製においては、作製順序を
逆にして、陰極、該オキサジアゾール誘導体層、陽極の
順に作製することも可能である。このようにして得られ
たEL素子に、直流電圧を印加する場合には、3〜40
V程度の直流電圧を印加すると、発光が透明または半透
明の電極側より観測できる。また、交流電圧を印加する
ことによっても発光する。なお印加する交流の波形は任
意でよい。
Next, after the formation of this oxadiazole derivative layer, a thin film of a substance for the cathode is formed thereon by a method of 1 μm or less, for example, vapor deposition or sputtering, and a cathode is provided to obtain a desired EL. The device is obtained. In the production of this EL element, it is possible to reverse the production order and produce the cathode, the oxadiazole derivative layer and the anode in this order. When a direct current voltage is applied to the EL device thus obtained, it is 3-40.
When a DC voltage of about V is applied, light emission can be observed from the transparent or semitransparent electrode side. Also, it emits light by applying an AC voltage. The waveform of the alternating current applied may be arbitrary.

【0089】[0089]

【実施例】次に本発明を実施例に基づいて更に詳しく説
明する。 実施例1 25mm×75mm×1.1mmのガラス基板上にIT
Oを蒸着法にて50nmの厚さで製膜したもの(東京三
容真空(株)製)を透明支持基板とした。この透明支持
基板を市販のスピンナー(協栄セミコンダクター(株)
製)に固定し、ポリビニルカルバゾール50重量部、化
12で表されるオキサジアゾール誘導体50重量部およ
びクマリン6(Kodak製)1重量部をトルエンに溶解し
たものを6000rpmで塗布した。その後、この基板
を10-1Paの減圧下50℃にて乾燥後、市販の蒸着装
置(真空機工(株)製)の基板ホルダーに固定し、上記
発光層の上にアルミニウム製のマスクを設置し、トリス
(8−キノリノラート)アルミニウムを電子輸送層とし
て50nm蒸着した。蒸着速度は0.1〜0.2nm/
秒であった。
EXAMPLES The present invention will be described in more detail based on examples. Example 1 IT on a glass substrate of 25 mm × 75 mm × 1.1 mm
A transparent support substrate was prepared by forming a film of O to a thickness of 50 nm (manufactured by Tokyo Sanyo Vacuum Co., Ltd.). This transparent support substrate is a commercially available spinner (Kyoei Semiconductor Co., Ltd.)
Manufactured by dissolving 50 parts by weight of polyvinylcarbazole, 50 parts by weight of the oxadiazole derivative represented by Chemical formula 12 and 1 part by weight of coumarin 6 (manufactured by Kodak) in toluene and coating at 6000 rpm. Then, this substrate was dried at 50 ° C. under a reduced pressure of 10 −1 Pa, fixed to a substrate holder of a commercially available vapor deposition device (manufactured by Vacuum Kiko Co., Ltd.), and an aluminum mask was placed on the light emitting layer. Then, tris (8-quinolinolato) aluminum was deposited as an electron transport layer to a thickness of 50 nm. Deposition rate is 0.1-0.2 nm /
It was seconds.

【0090】その後真空槽を2×10-4Paまで減圧し
てから、グラファイト性のるつぼから、マグネシウムを
1.2〜2.4nm/秒の蒸着速度で、同時にもう一方
のるつぼから銀を0.1〜0.2nm/秒の蒸着速度で
蒸着した。上記条件でマグネシウムと銀の混合金属電極
を発光層の上に200nm積層蒸着して対向電極とし、
素子を形成した。ITO電極を陽極、マグネシウムと銀
の混合電極を陰極として、得られた素子に、直流電圧
7.0Vを印加すると100mA/cm2の電流が流
れ、630cd/m2の緑色の発光を得た。この素子
は、500時間駆動後も安定に発光した。
Then, the vacuum chamber was evacuated to 2 × 10 -4 Pa, and then magnesium was removed from the graphite crucible at a deposition rate of 1.2 to 2.4 nm / sec and silver was removed from the other crucible at the same time. Deposition was performed at a deposition rate of 0.1 to 0.2 nm / sec. Under the above conditions, a mixed metal electrode of magnesium and silver was laminated on the light emitting layer to a thickness of 200 nm to form a counter electrode,
The device was formed. When a DC voltage of 7.0 V was applied to the resulting device using the ITO electrode as an anode and the mixed electrode of magnesium and silver as a cathode, a current of 100 mA / cm 2 flowed and a green light emission of 630 cd / m 2 was obtained. This device stably emitted light after being driven for 500 hours.

【0091】実施例2 実施例1で用いたオキサジアゾール誘導体を化35で表
される化合物に代えた以外は実施例1に準拠して素子を
作成した。得られた素子に、直流電圧7.9Vを印加す
ると100mA/cm2の電流が流れ、780cd/m2
の緑色の発光を得た。この素子は、500時間駆動後も
安定に発光した。
Example 2 A device was prepared in the same manner as in Example 1 except that the oxadiazole derivative used in Example 1 was replaced with the compound represented by Chemical formula 35. When a direct current voltage of 7.9 V was applied to the obtained device, a current of 100 mA / cm 2 flowed, and 780 cd / m 2
Green light emission was obtained. This device stably emitted light after being driven for 500 hours.

【0092】実施例3 実施例1で用いたオキサジアゾール誘導体を化61で表
される化合物に代えた以外は実施例1に準拠して素子を
作成した。得られた素子に、直流電圧8.8Vを印加す
ると100mA/cm2の電流が流れ、670cd/m2
の緑色の発光を得た。この素子は、500時間駆動後も
安定に発光した。
Example 3 A device was prepared in accordance with Example 1 except that the oxadiazole derivative used in Example 1 was replaced with the compound represented by Chemical formula 61. When a direct current voltage of 8.8 V was applied to the obtained device, a current of 100 mA / cm 2 flowed and 670 cd / m 2
Green light emission was obtained. This device stably emitted light after being driven for 500 hours.

【0093】比較例1 実施例1で用いたオキサジアゾール誘導体をPBDに代
えて実施例1に準拠して素子を作成した。得られた素子
に、直流電圧9.0Vを印加すると100mA/cm2
の電流が流れ、730cd/m2の緑色の発光を得た。
しかし、この素子は、10時間駆動後に非発光部位が生
じ、発光輝度が約1/10に低下した。
Comparative Example 1 A device was prepared according to Example 1 by replacing PBD with the oxadiazole derivative used in Example 1. When a direct current voltage of 9.0 V is applied to the obtained device, 100 mA / cm 2
Current flowed, and green light emission of 730 cd / m 2 was obtained.
However, in this device, a non-light emitting site was generated after driving for 10 hours, and the light emission luminance was reduced to about 1/10.

【0094】実施例4 実施例1で用いたクマリン6をナイルレッドに代え、実
施例1に準拠して素子を作成した。電圧を印加すると電
流が流れ赤色の発光が見られた。 実施例5 実施例1で用いたクマリン6をペリレンに代え、実施例
1に準拠して素子を作成した。電圧を印加すると電流が
流れ青色の発光が見られた。
Example 4 A device was prepared according to Example 1 except that Coumarin 6 used in Example 1 was replaced with Nile Red. When a voltage was applied, a current flowed and red light emission was observed. Example 5 Coumarin 6 used in Example 1 was replaced with perylene, and an element was prepared according to Example 1. When a voltage was applied, a current flowed and blue light emission was observed.

【0095】実施例6 25mm×75mm×1.1mmのガラス基板上にIT
Oを蒸着法にて50nmの厚さで製膜したもの(東京三
容真空(株)製)を透明支持基板とした。この透明支持
基板を市販の蒸着装置(真空機工(株)製)の基板ホル
ダーに固定し、石英製のるつぼにTPDをいれ、別のる
つぼに1,3−ジ(9−アンスリル)−2−(9−カル
バゾリルメチル)−プロパン(AnCz)をいれ、もう
1つのるつぼに化10で表される化合物を入れて真空槽
を1X10-4Paまで減圧した。TPD入りのるつぼを
加熱し、膜厚50nmになるように蒸着した。次に、こ
の上にAnCz入りのるつぼを加熱して、膜厚50nm
になるように蒸着した。最後に、化10で表される化合
物を入れたるつぼを加熱して膜厚50nmになるように
蒸着した。蒸着速度は0.1〜0.2nm/秒であっ
た。その後真空槽を2×10-4Paまで減圧してから、
グラファイト性のるつぼから、マグネシウムを1.2〜
2.4nm/秒の蒸着速度で、同時にもう一方のるつぼ
から銀を0.1〜0.2nm/秒の蒸着速度で蒸着し
た。上記条件でマグネシウムと銀の混合金属電極を発光
層の上に200nm積層蒸着して対向電極とし、素子を
形成した。ITO電極を陽極、マグネシウムと銀の混合
電極を陰極として、得られた素子に、直流電圧13Vを
印加すると100mA/cm2の電流が流れ、3000
cd/m2の緑色の発光を得た。この素子は、2時間駆
動後も安定に発光した。
Example 6 IT on a glass substrate of 25 mm × 75 mm × 1.1 mm
A transparent support substrate was prepared by forming a film of O to a thickness of 50 nm (manufactured by Tokyo Sanyo Vacuum Co., Ltd.). This transparent support substrate was fixed to a substrate holder of a commercially available vapor deposition device (manufactured by Vacuum Kiko Co., Ltd.), a TPD was placed in a quartz crucible, and 1,3-di (9-anthryl) -2- was placed in another crucible. (9-Carbazolylmethyl) -propane (AnCz) was charged, the compound represented by Chemical formula 10 was put in another crucible, and the pressure in the vacuum chamber was reduced to 1 × 10 −4 Pa. The crucible containing TPD was heated and vapor-deposited so as to have a film thickness of 50 nm. Next, a crucible containing AnCz is heated on this to form a film having a thickness of 50 nm.
It was vapor-deposited so that. Finally, the crucible containing the compound represented by Chemical formula 10 was heated and vapor-deposited to a film thickness of 50 nm. The vapor deposition rate was 0.1 to 0.2 nm / sec. Then depressurize the vacuum chamber to 2 × 10 -4 Pa,
From the graphite crucible, 1.2 ~ magnesium
Silver was deposited from the other crucible at a deposition rate of 0.1 nm to 0.2 nm / sec, simultaneously with a deposition rate of 2.4 nm / sec. Under the above conditions, a mixed metal electrode of magnesium and silver was laminated and vapor-deposited to a thickness of 200 nm on the light emitting layer to form a counter electrode, thereby forming an element. Using a ITO electrode as an anode and a mixed electrode of magnesium and silver as a cathode, a DC voltage of 13 V was applied to the obtained device, and a current of 100 mA / cm 2 was flowed to 3000.
Green light emission of cd / m 2 was obtained. This device stably emitted light even after being driven for 2 hours.

【0096】比較例2 実施例6で用いたオキサジアゾール誘導体をPBDに代
えた以外は同様な方法で素子を作成した。得られた素子
に、直流電圧16Vを印加すると50mA/cm2の電
流が流れ、900cd/m2の緑色の発光を得た。この
素子は、5分駆動後に非発光部位が生じ、発光輝度が約
1/3に低下した。
Comparative Example 2 A device was prepared in the same manner except that PBD was used instead of the oxadiazole derivative used in Example 6. When a direct current voltage of 16 V was applied to the obtained device, a current of 50 mA / cm 2 flowed and a green light emission of 900 cd / m 2 was obtained. In this device, a non-light emitting portion was generated after driving for 5 minutes, and the light emission luminance was reduced to about 1/3.

【0097】[0097]

【発明の効果】本発明のEL素子は、融点およびガラス
転移点が高く、正孔輸送材料あるいは発光材料と励起錯
体または電荷移動錯体のようなコンプレックスを形成し
ないオキサジアゾール誘導体を電子輸送材料として用い
ているので、発光効率が高く、耐久性に富む。これらを
用いることにより、フルカラーディスプレー等の高効率
な発光素子が作成できる。
INDUSTRIAL APPLICABILITY The EL device of the present invention uses an oxadiazole derivative which has a high melting point and a high glass transition point and does not form a complex such as an exciplex or a charge transfer complex with a hole transport material or a light emitting material as an electron transport material. Since it is used, it has high luminous efficiency and excellent durability. By using these, a highly efficient light emitting device such as a full color display can be produced.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】化1で表されるオキサジアゾール誘導体を
用いた電界発光素子。 【化1】 [式中、Ar1は無置換あるいは炭素数1から6までの
アルキル基で置換されたビフェニル基、または無置換あ
るいは炭素数1から6までのアルキル基で置換されたナ
フチル基を示す。Ar2はAr1とは異なった、無置換あ
るいは炭素数1から6までのアルキル基で置換されたビ
フェニル基、または無置換あるいは炭素数1から6まで
のアルキル基で置換されたナフチル基を示す。]
1. An electroluminescent device using an oxadiazole derivative represented by Chemical formula 1. Embedded image [In the formula, Ar 1 represents an unsubstituted or biphenyl group substituted with an alkyl group having 1 to 6 carbon atoms, or an unsubstituted or a naphthyl group substituted with an alkyl group having 1 to 6 carbon atoms. Ar 2 is different from Ar 1 and represents an unsubstituted or substituted biphenyl group having an alkyl group having 1 to 6 carbon atoms, or an unsubstituted or a naphthyl group substituted by an alkyl group having 1 to 6 carbon atoms. . ]
【請求項2】化2で表されるオキサジアゾール誘導体を
用いた電界発光素子。 【化2】 [式中、R1〜R16はそれぞれ独立に水素あるいは炭素
数1から6までのアルキル基を示す。]
2. An electroluminescent device using an oxadiazole derivative represented by Chemical formula 2. Embedded image [In the formula, R 1 to R 16 each independently represent hydrogen or an alkyl group having 1 to 6 carbon atoms. ]
【請求項3】化3で表されるオキサジアゾール誘導体を
用いた電界発光素子。 【化3】 [式中、R1〜R16はそれぞれ独立に水素あるいは炭素
数1から6までのアルキル基を示す。]
3. An electroluminescent device using an oxadiazole derivative represented by Chemical formula 3. Embedded image [In the formula, R 1 to R 16 each independently represent hydrogen or an alkyl group having 1 to 6 carbon atoms. ]
【請求項4】化4で表されるオキサジアゾール誘導体を
用いた電界発光素子。 【化4】 [式中、R1〜R14はそれぞれ独立に水素あるいは炭素
数1から6までのアルキル基を示す。]
4. An electroluminescent device using an oxadiazole derivative represented by Chemical formula 4. [Chemical 4] [In the formula, R 1 to R 14 each independently represent hydrogen or an alkyl group having 1 to 6 carbon atoms. ]
【請求項5】請求項1に示されたオキサジアゾール誘導
体と正孔輸送材料とを混合した層を有することを特徴と
する電界発光素子。
5. An electroluminescent device comprising a layer in which the oxadiazole derivative shown in claim 1 and a hole transport material are mixed.
JP34030894A 1994-12-27 1994-12-27 Organic electroluminescent device using oxadiazole derivative Expired - Lifetime JP3486994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34030894A JP3486994B2 (en) 1994-12-27 1994-12-27 Organic electroluminescent device using oxadiazole derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34030894A JP3486994B2 (en) 1994-12-27 1994-12-27 Organic electroluminescent device using oxadiazole derivative

Publications (2)

Publication Number Publication Date
JPH08183953A true JPH08183953A (en) 1996-07-16
JP3486994B2 JP3486994B2 (en) 2004-01-13

Family

ID=18335708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34030894A Expired - Lifetime JP3486994B2 (en) 1994-12-27 1994-12-27 Organic electroluminescent device using oxadiazole derivative

Country Status (1)

Country Link
JP (1) JP3486994B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1764401A1 (en) * 1998-12-25 2007-03-21 Konica Corporation Electroluminescent material and electroluminescent element
US7871713B2 (en) 1998-12-25 2011-01-18 Konica Corporation Electroluminescent material, electroluminescent element and color conversion filter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092888A1 (en) 2004-03-25 2005-10-06 Hodogaya Chemical Co., Ltd. Compound having oxadiazole ring structure substituted with pyridyl group, and organic electroluminescent device
JP5203935B2 (en) 2006-03-24 2013-06-05 保土谷化学工業株式会社 Compound having thiadiazole ring structure substituted with pyridyl group and organic electroluminescence device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223188A (en) * 1989-02-22 1990-09-05 Ricoh Co Ltd Manufacture of electroluminescent device
JPH042096A (en) * 1989-10-20 1992-01-07 Asahi Chem Ind Co Ltd Coating type organic el element
JPH0446350A (en) * 1990-06-14 1992-02-17 Minolta Camera Co Ltd Photosensitive body
JPH04212286A (en) * 1990-03-16 1992-08-03 Asahi Chem Ind Co Ltd Distributed type electric field luminous element
JPH05222362A (en) * 1992-02-14 1993-08-31 Mitsubishi Kasei Corp Organic electroluminescent element
JPH061972A (en) * 1991-06-05 1994-01-11 Sumitomo Chem Co Ltd Organic electroluminescent element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223188A (en) * 1989-02-22 1990-09-05 Ricoh Co Ltd Manufacture of electroluminescent device
JPH042096A (en) * 1989-10-20 1992-01-07 Asahi Chem Ind Co Ltd Coating type organic el element
JPH04212286A (en) * 1990-03-16 1992-08-03 Asahi Chem Ind Co Ltd Distributed type electric field luminous element
JPH0446350A (en) * 1990-06-14 1992-02-17 Minolta Camera Co Ltd Photosensitive body
JPH061972A (en) * 1991-06-05 1994-01-11 Sumitomo Chem Co Ltd Organic electroluminescent element
JPH05222362A (en) * 1992-02-14 1993-08-31 Mitsubishi Kasei Corp Organic electroluminescent element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1764401A1 (en) * 1998-12-25 2007-03-21 Konica Corporation Electroluminescent material and electroluminescent element
US7264890B2 (en) 1998-12-25 2007-09-04 Konica Corporation Electroluminescent material, electroluminescent element and color conversion filter
US7316851B2 (en) 1998-12-25 2008-01-08 Konica Corporation Electroluminescent material, electroluminescent element and color conversion filter
US7871713B2 (en) 1998-12-25 2011-01-18 Konica Corporation Electroluminescent material, electroluminescent element and color conversion filter

Also Published As

Publication number Publication date
JP3486994B2 (en) 2004-01-13

Similar Documents

Publication Publication Date Title
JP3755196B2 (en) Electroluminescent device using cyclopentadiene derivative
JP3834954B2 (en) Hole transport material having silacyclopentadiene ring
JP4055363B2 (en) Borane derivatives and organic electroluminescent devices
JP3965800B2 (en) Organic electroluminescent device using triarylamine derivative
KR100825211B1 (en) Cyclic tertiary amine compound and organic electroluminescent device containing the compound
KR100806059B1 (en) Organic electroluminescent device comprising dipyridylthiophene derivative
JP3769933B2 (en) Luminescent material and organic thin film EL device
JP2918150B2 (en) Organic electroluminescent device using silacyclopentadiene derivative
JP4545243B2 (en) Diaminonaphthalene derivative and organic electroluminescence device using the same
JP3985311B2 (en) Amine derivative and organic electroluminescence device using the same
WO2000002886A1 (en) Silole derivatives and organic electroluminescent element containing the same
JP3579730B2 (en) Organic electroluminescent device using quinoxaline derivative
JPH11338172A (en) Naphthalene derivative and organic electroluminescent element using same
JP4604312B2 (en) Benzothiophene derivative and organic electroluminescence device using the same
JP2000178548A (en) Luminescent material
JP4069505B2 (en) Trinaphthylbenzene derivative and organic electroluminescence device using the same
JPH08176148A (en) Hetero ring-containing oxadiazole derivative
JP3569993B2 (en) Oxadiazole polymer
JP3486994B2 (en) Organic electroluminescent device using oxadiazole derivative
JP3726316B2 (en) Electroluminescent device
JP4792687B2 (en) Charge transport material, light-emitting material containing diazapentacene derivative, and organic electroluminescent device using the same
JP3555271B2 (en) Blue light emitting element
JP2006137956A (en) Luminescent material and organic thin film el element
JPH1154280A (en) Organic electroluminescent element using naphthylamine derivative
JP3858278B2 (en) Electroluminescent device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term