JPH08183622A - Silica glass and its production - Google Patents

Silica glass and its production

Info

Publication number
JPH08183622A
JPH08183622A JP32771994A JP32771994A JPH08183622A JP H08183622 A JPH08183622 A JP H08183622A JP 32771994 A JP32771994 A JP 32771994A JP 32771994 A JP32771994 A JP 32771994A JP H08183622 A JPH08183622 A JP H08183622A
Authority
JP
Japan
Prior art keywords
glass
silica
refractive index
light
silica glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32771994A
Other languages
Japanese (ja)
Other versions
JP3787850B2 (en
Inventor
Hiroyuki Nakaishi
博之 中石
Yuichi Oga
裕一 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP32771994A priority Critical patent/JP3787850B2/en
Publication of JPH08183622A publication Critical patent/JPH08183622A/en
Application granted granted Critical
Publication of JP3787850B2 publication Critical patent/JP3787850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE: To obtain silica glass ensuring a high refractive index variation by irradiation with light in a short treatment time through a reduced number of processes by making a glass porous body made of SiO2 transparent by heating in an inert gaseous atmosphere contg. gaseous Cl2 . CONSTITUTION: A glass porous body made of SiO2 is held at >=1,000 deg.C in an inert gaseous atmosphere contg. >=20vol.% gaseous Cl2 or SiCl4 and then it is made transparent by heating in the atmosphere to obtain the objective silica glass as a transparent glass body having >=1cm<-1> light absorption coefft. at 165nm wavelength. Since this silica glass easily ensures a high refractive index variation without requiring doping with hydrogen, treatment time can be considerably shortened as compared with the conventional process for producing waveguide type optical parts. Since the silica glass can be efficiently mass-produced, it has very high industrial utility value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は新規なシリカ系ガラス及
びその製造方法に関する。本発明によるシリカ系ガラス
は光通信用機器等に用いられる導波路型光部品作成用シ
リカ系ガラスとして有利である。
FIELD OF THE INVENTION The present invention relates to a novel silica-based glass and a method for producing the same. The silica-based glass according to the present invention is advantageous as a silica-based glass for producing a waveguide type optical component used in optical communication equipment and the like.

【0002】[0002]

【従来の技術】光導波路作成技術としては、従来、微細
加工技術によるもの(文献:西原浩、春名正光、栖原敏
明共著「光集積回路」(オーム社)1985年刊)、イ
オンの拡散を用いたもの(文献:同上)、及び光照射に
よる局所的な屈折率変化を利用したもの(文献:V.Mizr
ahi et al. Appl. Phys. Lett. 63, 13 (1993) p.172
7)が知られている。
2. Description of the Related Art Conventionally, as a technique for producing an optical waveguide, a technique based on a microfabrication technique (reference: Hiroshi Nishihara, Masamitsu Haruna, Toshiaki Suhara, "Optical Integrated Circuits" (Ohm Co., Ltd., 1985)), and ion diffusion were used. (Reference: Ibid.) And that utilizing local change in refractive index due to light irradiation (Reference: V. Mizr
ahi et al. Appl. Phys. Lett. 63, 13 (1993) p.172
7) is known.

【0003】[0003]

【発明が解決しようとする課題】従来の光導波路作成技
術のうち、微細加工技術を用いたものは、高精度に屈折
率の制御された透明な多層薄膜の作成と、さらに高精度
の微細加工技術を必要としているため、工程数が多く、
そのため、製品の安定性も良くないという問題があっ
た。また、イオンの拡散を利用した方法は、溶液中から
固体内部への拡散現象を利用することから、プロセス速
度が非常に遅く、大量の工業生産には向かない。上記第
三番目の方法は、シリカ系ガラスには光照射すると屈折
率が変化するものがあることを利用しており、この現象
はまだ完全には解明されていないが、導波路型の光部品
を大量に生産する方法として期待されている。しかし、
現時点では、高屈折率変化を得るためにシリカ系ガラス
中への欠陥導入や、高圧の水素ガス中に長時間暴露して
水素ガスを拡散させる必要があり、処理に約20日間も
かかっているので、工業プロセスとしては極めて効率が
悪いものに留まっている。本発明は、光照射を用いて従
来より工程が少なく、処理時間も短く、しかも高屈折率
変化を得られる新規なシリカ系ガラス及びその製造方法
を提供することを課題としている。
Among the conventional optical waveguide fabrication techniques, one using a fine processing technique is to produce a transparent multilayer thin film whose refractive index is controlled with high precision, and to perform fine processing with higher precision. Since it requires technology, there are many processes,
Therefore, there is a problem that the stability of the product is not good. Further, the method utilizing the diffusion of ions utilizes the diffusion phenomenon from the solution to the inside of the solid, and therefore has a very slow process speed and is not suitable for mass production. The third method utilizes the fact that some silica-based glasses change their refractive index when irradiated with light. Although this phenomenon has not been completely clarified, it is a waveguide type optical component. Is expected as a method of mass-producing. But,
At present, in order to obtain a high refractive index change, it is necessary to introduce defects into the silica-based glass and to diffuse the hydrogen gas by exposing it to high-pressure hydrogen gas for a long time, and the treatment takes about 20 days. Therefore, it is an extremely inefficient industrial process. It is an object of the present invention to provide a novel silica-based glass that uses light irradiation, has fewer steps than conventional methods, a shorter processing time, and can obtain a high refractive index change, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

【0005】上記課題を解決する手段として本発明は、
SiO2 又はSiO2 とGeO2 からなるガラス多孔質
体を、少なくとも20容量%以上のCl2 ガス又はSi
Cl 4 ガスを含有する不活性ガス雰囲気中で温度100
0℃以上に保持し、次に不活性ガス雰囲気中で加熱透明
化することにより波長165nmでの光の吸収係数を1
cm-1以上の透明ガラス体を得ることを特徴とするシリ
カ系ガラスの製造方法を提供する。また本発明は、上記
不活性ガス雰囲気中での加熱透明化の後、1000℃ま
で冷却されたガラスを常温まで急冷することを特徴とす
る上記のシリカ系ガラスの製造方法を提供する。また本
発明は、上記SiO2 又はSiO2 とGeO2 からなる
ガラスにはSi、Ge、O以外の元素を導入しないこと
を特徴とする上記シリカ系ガラスの製造方法を提供す
る。さらに本発明は、波長165nmでの光の吸収係数
が1cm-1以上であることを特徴とするシリカ系ガラス
を提供する。なお、光の吸収係数とは光が長さtcmの
物質(この場合はガラス)を通過する際にその強さがI
0 からIになったとすると、吸収係数αは下記数1
As a means for solving the above problems, the present invention provides
SiO2Or SiO2And GeO2Made of glass porous
The body should contain at least 20% by volume of Cl2Gas or Si
Cl FourTemperature 100 in an inert gas atmosphere containing gas
Keep at 0 ℃ or higher, then heat transparent in an inert gas atmosphere
The absorption coefficient of light at a wavelength of 165 nm is reduced to 1
cm-1Siri characterized by obtaining the above transparent glass body
A method for producing mosquito-based glass is provided. The present invention also provides the above
After clearing by heating in an inert gas atmosphere, heat up to 1000 ° C.
Characterized by rapidly cooling glass cooled to room temperature
A method for producing the above silica-based glass is provided. Book again
The invention is the above-mentioned SiO2Or SiO2And GeO2Consists of
Do not introduce elements other than Si, Ge and O into the glass
A method for producing the above silica-based glass is provided.
It Furthermore, the present invention provides an absorption coefficient of light at a wavelength of 165 nm.
Is 1 cm-1Silica-based glass characterized by the above
I will provide a. The absorption coefficient of light means that the length of light is tcm.
When passing through a substance (in this case glass) its strength is I
0If I is changed to I, the absorption coefficient α is

【数1】 で定義される。[Equation 1] Is defined by

【作用】本発明者らは、従来の水素雰囲気中での長時間
暴露を必要とせずに、光照射により高屈折率変化できる
シリカ系ガラスを得る手段を見いだした。以下に本発明
のシリカ系ガラスとその製造方法を具体的に説明する。
本発明の原材料シリカ系ガラス多孔質体としては、S
i,Ge、O以外の元素を含有しないものが好ましい。
これは、光照射により屈折率を変化させるために必要な
元素はSi、O、Geのみであり、その他の元素の存在
は光の透過率を低減させてしまうという理由から好まし
くない。このようなガラスとしては高純度石英ガラス
(SiO2 99.9999%以上含有)、GeO2 含有
の高純度石英ガラス(GeO2 −SiO2 )等が挙げら
れ、製法としては特に限定されるところはないが、例え
ばゾル−ゲル法、VAD法等の気相法によるものが挙げ
られる。多孔質体のカサ密度範囲は多孔質体として存在
できて、かつ以下に説明する第一の加熱処理によりガラ
ス内にCl2 を取り込める範囲にあれば特に限定されな
い。
The present inventors have found a means for obtaining a silica-based glass capable of changing a high refractive index by light irradiation without requiring long-time exposure in a conventional hydrogen atmosphere. The silica-based glass of the present invention and the method for producing the same will be specifically described below.
The raw material silica-based glass porous body of the present invention includes S
Those containing no elements other than i, Ge and O are preferable.
This is not preferable because the elements necessary for changing the refractive index by light irradiation are only Si, O, and Ge, and the presence of other elements reduces the light transmittance. As such a glass of high purity quartz glass (containing SiO 2 99.9999% or higher), include such as a high-purity quartz glass GeO 2 content (GeO 2 -SiO 2) is about to be particularly limited method is However, examples thereof include vapor phase methods such as sol-gel method and VAD method. The bulk density range of the porous body is not particularly limited as long as it can exist as the porous body and Cl 2 can be taken into the glass by the first heat treatment described below.

【0006】該ガラス多孔質体を少なくとも20容量%
以上のCl2 ガス又はSiCl4 ガスを含有する不活性
ガス雰囲気中、特に好ましくは20容量%以上のCl2
ガス又はSiCl4 ガスを含有するHeガス雰囲気中、
1000℃以上、好ましくは1000〜1200℃、特
に好ましくは1150〜1200℃で加熱処理する。1
000℃未満では所期の効果を得難く、また1200℃
を越えると一部透明化する場合がある。この処理により
脱水及びガラス中へのCl2 取り込みが行われる。当該
混合ガス雰囲気中のCl2 ガス又はSiCl4 ガスの濃
度は20容量%〜100容量%であり、処理時間は〜3
0分が一般的である。
At least 20% by volume of the glass porous body
In an inert gas atmosphere containing the above Cl 2 gas or SiCl 4 gas, particularly preferably 20% by volume or more of Cl 2
Gas or He gas atmosphere containing SiCl 4 gas,
The heat treatment is performed at 1000 ° C or higher, preferably 1000 to 1200 ° C, particularly preferably 1150 to 1200 ° C. 1
If it is less than 000 ℃, it is difficult to obtain the desired effect.
If it exceeds, it may become partially transparent. By this treatment, dehydration and Cl 2 incorporation into glass are performed. The concentration of Cl 2 gas or SiCl 4 gas in the mixed gas atmosphere is 20% by volume to 100% by volume, and the treatment time is up to 3%.
0 minutes is common.

【0007】上記の第一の加熱処理が終了した後、更に
高温で加熱し透明ガラス化する。この第二の加熱処理の
際の雰囲気は不活性ガスのみが好ましく、特に好ましく
はHe100%雰囲気中、温度1500〜1650℃に
加熱する。透明ガラス化が終了した後、当該ガラス体を
1000℃までHe雰囲気中でゆっくり冷却する。10
00℃迄冷却した透明ガラス体を次に常温まで急冷す
る。具体的には例えば常温の液体中に投入して急冷す
る。該液体としては水が好適である。なお、本発明にい
う常温とは10〜30℃である。以上で得られたガラス
体を部品作成用に切断研磨した後、光回路を描画後、匡
体に組み込み製品を完成する。
After the above first heat treatment is completed, it is further heated at a higher temperature to form a transparent glass. The atmosphere at the time of the second heat treatment is preferably only an inert gas, and particularly preferably, the heating is performed at a temperature of 1500 to 1650 ° C. in a 100% He atmosphere. After the transparent vitrification is completed, the glass body is slowly cooled to 1000 ° C. in a He atmosphere. 10
The transparent glass body cooled to 00 ° C. is then rapidly cooled to room temperature. Specifically, for example, it is put into a liquid at room temperature and rapidly cooled. Water is suitable as the liquid. The normal temperature referred to in the present invention is 10 to 30 ° C. The glass body obtained above is cut and polished for making parts, an optical circuit is drawn, and then the product is incorporated into a case to complete a product.

【0008】本発明の作用は次のとおりである。 (1)処理の雰囲気ガスとして20容量%以上のCl2
又はSiCl4 を用いるのでガラス内へのCl2 の取り
込み率が高く、光照射に対して高感度化させるのに必要
な欠陥、すなわち波長165nmにおける吸収を有する
−Si−Si−欠陥、を高濃度でガラス中に導入するこ
とが可能となる。このような SiSi欠陥を高濃度に
有するガラスは、波長165nmの光の照射により高屈
折率に変化し、この変化は永久的である。 (2)加熱透明化の後1000℃までは比較的ゆっくり
と冷却することによりガラス中の仮想温度を設定する効
果が得られる。なお、ガラスが高温状態から急冷される
とその構造を維持したまま固化する、つまり、ガラスは
元の状態を記憶しいてることになり、この温度を仮想温
度という。 (3) 冷却の際に、1000℃から急冷することによ
り、ガラス中の仮想温度を固定でき、得られる透明ガラ
ス体の初期屈折率を低く抑えることができ、光照射によ
る大きな屈折率変化を達成することが可能になる。 (4) 水素ドープ等の処理が不必要なので処理時間を
大幅に短縮することができる。 (5) 本発明による波長165nmでの光の吸収係数
が1cm-1以上というSiSi欠陥が高濃度であるガラス
は、光の照射に対する屈折率変化を大きくすることがで
きる。このようなガラスは従来得られていないものであ
る。
The operation of the present invention is as follows. (1) 20% by volume or more of Cl 2 as an atmosphere gas for processing
Alternatively, since SiCl 4 is used, the rate of incorporation of Cl 2 into the glass is high, and a defect necessary for increasing the sensitivity to light irradiation, that is, a -Si-Si-defect having absorption at a wavelength of 165 nm, is highly concentrated. Can be introduced into the glass. Glass having such a high concentration of SiSi defects changes to a high refractive index by irradiation with light having a wavelength of 165 nm, and this change is permanent. (2) The effect of setting the fictive temperature in the glass can be obtained by relatively slowly cooling to 1000 ° C. after heating and transparentization. When the glass is rapidly cooled from a high temperature state, it solidifies while maintaining its structure, that is, the glass remembers the original state, and this temperature is called a fictive temperature. (3) By cooling from 1000 ° C during cooling, the fictive temperature in the glass can be fixed, the initial refractive index of the obtained transparent glass body can be suppressed low, and a large change in refractive index due to light irradiation is achieved. It becomes possible to do. (4) Since processing such as hydrogen doping is unnecessary, the processing time can be greatly shortened. (5) The glass according to the present invention, which has a high concentration of SiSi defects having a light absorption coefficient of 1 cm −1 or more at a wavelength of 165 nm, can have a large change in refractive index due to light irradiation. Such glass has never been obtained.

【0009】[0009]

【実施例】以下、本発明を実施例を挙げて具体的に説明
するが、本発明はこれに限定されるものではない。 〔実施例1〕シリカ系ガラスの母材を図2に示すような
構成のVAD法により作成した図1において、6はガラ
ス多孔質体、7は反応容器、8はガラス多孔質体合成用
バーナに導入されるガラス原料ガスと燃焼ガスおよび助
燃ガスの混合ガス、9は排気を意味する。原料ガスとし
ては、SiCl4 を用いた。得られた多孔質ガラス体
を、石英製の炉中で、温度1100℃にてSiCl4
He (1:1)雰囲気中で60分間脱水処理した。次
に、炉温を1600℃に上昇し、He ガス(100%)
雰囲気中で60分間保持して透明なガラスとした。その
後、1000℃まで3℃/分の速度でゆっくり1000
℃まで降温し、該透明ガラス体を炉から取り出し、常温
(27℃)に保たれた水中に投入し急冷した。得られた
ガラスの波長165nmでの光の吸収係数は30cm-1
であった。また、このガラスの初期屈折率は1.459
8であったが、波長165nmのSR光〔Synchr
otron Radiation:シンクロトロン放射
光〕、小型SRリングNIJI−II号のアンジュレータ
光、を30分間照射したところ、屈折率は1.4602
に変化することを確認した。また、光照射後の165n
mでの光の吸収係数は25cm-1であった。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. [Example 1] In FIG. 1 in which a base material of silica-based glass was prepared by the VAD method having a structure as shown in FIG. A mixed gas of a glass raw material gas, a combustion gas, and an auxiliary combustion gas, which is introduced into, and 9 means exhaust gas. SiCl 4 was used as the source gas. The obtained porous glass body was subjected to SiCl 4 in a quartz furnace at a temperature of 1100 ° C .:
It was dehydrated for 60 minutes in a He (1: 1) atmosphere. Next, the furnace temperature was raised to 1600 ° C and He gas (100%)
It was kept in the atmosphere for 60 minutes to obtain transparent glass. Then slowly increase to 1000 ° C at a rate of 3 ° C / min.
The temperature was lowered to 0 ° C, the transparent glass body was taken out of the furnace, put into water kept at room temperature (27 ° C), and rapidly cooled. The absorption coefficient of light of the obtained glass at a wavelength of 165 nm is 30 cm -1.
Met. The initial refractive index of this glass is 1.459.
Although it was 8, SR light with a wavelength of 165 nm [Synchr
Otron Radiation: Synchrotron radiation], and the small SR ring NIJI-II undulator light was irradiated for 30 minutes, the refractive index was 1.4602.
It was confirmed to change to. Also, 165n after light irradiation
The absorption coefficient of light at m was 25 cm -1 .

【0010】実施例1で得られたシリカガラス(光照射
していないもの)を部品作製用に切断研磨した。図1の
(a)に示すように、実施例1で得た屈折率が1.45
98のシリカガラス2の上にパターン形成用マスク3を
被せ、上記した波長165nmのSR光1を照射するこ
とにより、屈折率を1.4602以上に変化させた部分
4を形成して光回路を描画した後、図1の(b)に示す
ように屈折率1.4598のシリカガラスからなる被覆
部5をクラッドとして火炎堆積法により形成した。得ら
れた光部品を匡体に組み込み製品とした。
The silica glass (not irradiated with light) obtained in Example 1 was cut and polished for making parts. As shown in FIG. 1A, the refractive index obtained in Example 1 was 1.45.
By covering the silica glass 2 of 98 with the pattern forming mask 3 and irradiating the SR light 1 having a wavelength of 165 nm, a portion 4 having a refractive index of 1.4602 or more is formed to form an optical circuit. After drawing, as shown in FIG. 1B, the coating portion 5 made of silica glass having a refractive index of 1.4598 was formed as a clad by the flame deposition method. The obtained optical component was incorporated into a case to make a product.

【0011】〔実施例2〕実施例1において温度110
0℃での脱水処理の雰囲気をSiCl4 :Cl2:He
(1:1:1)とした以外は同様にして、急冷後の初期
屈折率1.4578、波長165nmでの光吸収係数が
20cm-1のシリカ系ガラスを得た。また、波長165
nmのSR光を30分間照射することにより、屈折率
1.4582、光吸収係数が18cm-1に変化した。
[Embodiment 2] In Embodiment 1, the temperature is 110.
The atmosphere of dehydration treatment at 0 ° C. was changed to SiCl 4 : Cl 2 : He.
A silica glass having an initial refractive index of 1.4578 after quenching and a light absorption coefficient of 20 cm −1 at a wavelength of 165 nm was obtained in the same manner except that the ratio was (1: 1: 1). Also, the wavelength 165
By irradiating SR light of nm for 30 minutes, the refractive index changed to 1.4582 and the light absorption coefficient changed to 18 cm −1 .

【0012】[0012]

【発明の効果】以上説明したように、本発明のシリカ系
ガラス及びその製法は、水素ドープの必要はなく、しか
も容易に高屈折率変化を得られるので、従来の導波型光
部品作製プロセスに比較して処理時間を大幅に短縮する
ことが可能であり、効率良く大量生産できるため、産業
上非常に利用価値が大きい。
As described above, the silica-based glass of the present invention and the method for producing the same do not require hydrogen doping and can easily obtain a high refractive index change. It is possible to significantly reduce the processing time as compared with, and it is possible to mass-produce efficiently, so it is very useful in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】は本発明のシリカ系ガラスを用いた光部品の作
成工程を説明する概略断面図である。
FIG. 1 is a schematic cross-sectional view illustrating a process of manufacturing an optical component using the silica-based glass of the present invention.

【図2】は本発明の製法に用いるガラス多孔質体の製造
の一具体例を説明する概略図である。
FIG. 2 is a schematic view illustrating one specific example of the production of the glass porous body used in the production method of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 SiO2 又はSiO2 とGeO2 からな
るガラス多孔質体を、少なくとも20容量%以上のCl
2 ガス又はSiCl4 ガスを含有する不活性ガス雰囲気
中で温度1000℃以上に保持し、次に不活性ガス雰囲
気中で加熱透明化することにより波長165nmでの光
の吸収係数を1cm-1以上の透明ガラス体を得ることを
特徴とするシリカ系ガラスの製造方法。
1. A glass porous body comprising SiO 2 or SiO 2 and GeO 2 is added with at least 20% by volume of Cl.
The absorption coefficient of light at a wavelength of 165 nm is 1 cm -1 or more by keeping the temperature at 1000 ° C or higher in an inert gas atmosphere containing 2 gas or SiCl 4 gas, and then heating and making transparent in an inert gas atmosphere. 1. A method for producing a silica-based glass, which comprises:
【請求項2】 上記不活性ガス雰囲気中での加熱透明化
の後、1000℃まで冷却されたガラスを常温まで急冷
することを特徴とする請求項1記載のシリカ系ガラスの
製造方法。
2. The method for producing a silica-based glass according to claim 1, wherein the glass cooled to 1000 ° C. is rapidly cooled to room temperature after heating and transparentizing in the inert gas atmosphere.
【請求項3】 上記SiO2 又はSiO2 とGeO2
らなるガラスにはSi、Ge、O以外の元素を導入しな
いことを特徴とする請求項1又は請求項2記載のシリカ
系ガラスの製造方法。
3. The method for producing a silica-based glass according to claim 1, wherein elements other than Si, Ge and O are not introduced into the glass composed of SiO 2 or SiO 2 and GeO 2. .
【請求項4】 波長165nmでの光の吸収係数が1c
-1以上であることを特徴とするシリカ系ガラス。
4. The absorption coefficient of light at a wavelength of 165 nm is 1c.
Silica-based glass characterized by having m −1 or more.
JP32771994A 1994-12-28 1994-12-28 Silica glass and method for producing the same Expired - Fee Related JP3787850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32771994A JP3787850B2 (en) 1994-12-28 1994-12-28 Silica glass and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32771994A JP3787850B2 (en) 1994-12-28 1994-12-28 Silica glass and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08183622A true JPH08183622A (en) 1996-07-16
JP3787850B2 JP3787850B2 (en) 2006-06-21

Family

ID=18202230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32771994A Expired - Fee Related JP3787850B2 (en) 1994-12-28 1994-12-28 Silica glass and method for producing the same

Country Status (1)

Country Link
JP (1) JP3787850B2 (en)

Also Published As

Publication number Publication date
JP3787850B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
EP2178804B1 (en) Method of making fused silica having low oh and od levels
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
JP2003246641A (en) Quartz glass bland for optical member, manufacturing method thereof and application for the same
JP2588447B2 (en) Method of manufacturing quartz glass member for excimer laser
JP4778138B2 (en) Quartz glass body for optical components and its manufacturing method
JP2000264650A (en) Production of optical quartz glass for excimer laser and vertical type heating furnace
Izawa Early days of VAD process
JP2001247318A (en) Synthesized silica glass optical member ahd method for producing the same
JP2000191329A (en) Production of optical quartz glass for excimer laser
JPH08183622A (en) Silica glass and its production
JPH05178632A (en) Optical quartz glass having high heat resistance and its production
JP2835540B2 (en) Method of manufacturing quartz glass member for excimer laser
JPH08133753A (en) Optical synthetic quartz glass, its production and application thereof
JPH0558668A (en) Synthetic quartz glass optical member for uv ray laser
JPS61158303A (en) Formation of quartz optical waveguide
JP2002255577A (en) Synthetic quartz glass member and method for manufacturing the same
JPH0952723A (en) Optical synthetic quartz glass preform and its production
JP3433540B2 (en) Silica-based optical component and method of manufacturing the same
JPH03232732A (en) Production of glass preform for hydrogen-resistant optical fiber
JPH1059730A (en) Production of synthetic quartz glass
JP3126188B2 (en) Quartz glass substrate for photomask
JP2002053326A (en) Method for manufacturing fluorinated glass product
JP2001342027A (en) Method of manufacturing quartz glass
JP4219741B2 (en) Method for producing quartz glass
JPS62143834A (en) Production of preform for optical fiber

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040331

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees