JPH0818110A - Superconductor - Google Patents
SuperconductorInfo
- Publication number
- JPH0818110A JPH0818110A JP7117659A JP11765995A JPH0818110A JP H0818110 A JPH0818110 A JP H0818110A JP 7117659 A JP7117659 A JP 7117659A JP 11765995 A JP11765995 A JP 11765995A JP H0818110 A JPH0818110 A JP H0818110A
- Authority
- JP
- Japan
- Prior art keywords
- current
- superconductor
- current lead
- lead
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 28
- 239000004020 conductor Substances 0.000 claims abstract description 14
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 4
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 4
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 4
- 229910052765 Lutetium Inorganic materials 0.000 claims abstract description 4
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 4
- 229910052771 Terbium Inorganic materials 0.000 claims abstract description 4
- 229910052769 Ytterbium Inorganic materials 0.000 claims abstract description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 4
- 229910052692 Dysprosium Inorganic materials 0.000 claims abstract description 3
- 229910052689 Holmium Inorganic materials 0.000 claims abstract description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 3
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 3
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 3
- 241000954177 Bangana ariza Species 0.000 claims description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 18
- 229910052775 Thulium Inorganic materials 0.000 abstract description 3
- 229910052691 Erbium Inorganic materials 0.000 abstract description 2
- 239000010949 copper Substances 0.000 description 38
- 239000007788 liquid Substances 0.000 description 31
- 239000001307 helium Substances 0.000 description 25
- 229910052734 helium Inorganic materials 0.000 description 25
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 25
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 22
- 238000000034 method Methods 0.000 description 18
- 229910052802 copper Inorganic materials 0.000 description 13
- 230000008020 evaporation Effects 0.000 description 8
- 238000001704 evaporation Methods 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 239000013078 crystal Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- QJGQUHMNIGDVPM-OUBTZVSYSA-N nitrogen-15 Chemical compound [15N] QJGQUHMNIGDVPM-OUBTZVSYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910002480 Cu-O Inorganic materials 0.000 description 1
- 229910000570 Cupronickel Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、液体ヘリウムあるいは
冷凍機で冷却して使用する超電導機器に使用される電流
リードや限流器に利用される。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in current leads and current limiting devices used in superconducting equipment which is cooled by liquid helium or a refrigerator.
【0002】[0002]
【従来の技術】現在、ほとんどすべての超電導機器は液
体ヘリウム温度(4.2K)近くにまで冷却され使用さ
れている。これらの機器の大きな問題点の1つは、室温
からの熱侵入である。熱は様々な部分から侵入してくる
が、とりわけ超電導機器に電流を供給する導線からの熱
侵入が最も大きい。電流リードは、電流を供給するため
の断面積を確保しながら、液体ヘリウムからのガス潜熱
を利用できるよう形状を最適化するなどの工夫がなされ
ている導体である。2. Description of the Related Art At present, almost all superconducting devices are cooled to a liquid helium temperature (4.2K) and used. One of the major problems with these devices is heat ingress from room temperature. Heat enters from various parts, but the heat is most intruded from the lead wire that supplies current to the superconducting device. The current lead is a conductor that has been devised such that its shape is optimized so that the latent heat of gas from liquid helium can be used while ensuring a cross-sectional area for supplying current.
【0003】これまで利用されている電流リードは主と
して銅が用いられてきたが、最近これを酸化物超電導材
料で置き換える試みがなされている。酸化物超電導材料
の中には、YBa2 Cu3 OX 系、Bi2 Sr2 Ca2
Cu3 O10系、Tl2 Ba2Ca2 Cu3 O10あるい
は、Hg2 Sr2 Ca2 Cu3 O8 系等、臨界温度が液
体窒素温度(77K)を超えるものが発見され、液体窒
素温度から液体ヘリウム温度の空間にこれらを利用しよ
うとする試みである。電流リードが酸化物超電導体に置
きかわることは次の2つの利点がある。1つは超電導状
態では電気抵抗がゼロであるためにジュール熱が生じな
いことであり、もう1つは銅に比較して熱伝導率が極め
て低いことにある。The current lead used so far has mainly been made of copper, but recently, attempts have been made to replace it with an oxide superconducting material. Among the oxide superconducting materials, YBa 2 Cu 3 O x system, Bi 2 Sr 2 Ca 2
It was discovered that the critical temperature exceeds the liquid nitrogen temperature (77K), such as Cu 3 O 10 series, Tl 2 Ba 2 Ca 2 Cu 3 O 10 or Hg 2 Sr 2 Ca 2 Cu 3 O 8 series, and the liquid nitrogen temperature. It is an attempt to utilize these in the space of liquid helium temperature. Replacing the current leads with oxide superconductors has two advantages. One is that Joule heat does not occur in the superconducting state because the electric resistance is zero, and the other is that the thermal conductivity is extremely low as compared with copper.
【0004】酸化物超電導体の別の応用例に限流器があ
る。これは、超電導−常電導転移を利用したスイッチで
ある。この装置は、通常は電気抵抗ゼロの超電導部分を
電流が流れるように設計されており、異常な大電流が流
れた時、超電導体が常電導状態に転移する性質を利用
し、超電導体に並列に接続したバイパス回路に電流を迂
回させ、バイパス回路の抵抗でエネルギーを発散させる
ことにより、末端の機器を保護するものである。現在、
金属超電導体を用いた研究がなされているが、将来これ
を酸化物超電導体に置き換える研究がなされている。酸
化物超電導体の利点は、寒剤が液体窒素ですむ点と常電
導状態の電気抵抗が金属超電導体に比較して大きいこと
である。超電導状態と常電導状態の抵抗差が大きいほど
スイッチの特性は向上する。Another application of oxide superconductors is in fault current limiters. This is a switch utilizing the superconducting-normal conducting transition. This device is designed so that the current normally flows through the superconducting part with zero electric resistance, and when the abnormally large current flows, the superconductor changes to the normal conducting state, and it is connected to the superconductor in parallel. The current is diverted to the bypass circuit connected to and the energy is dissipated by the resistance of the bypass circuit to protect the terminal equipment. Current,
Studies using metal superconductors have been made, but in the future, studies are being made to replace them with oxide superconductors. The advantages of oxide superconductors are that the cryogen needs only liquid nitrogen and that the electrical resistance in the normal conducting state is higher than that of metal superconductors. The larger the resistance difference between the superconducting state and the normal conducting state, the better the characteristics of the switch.
【0005】以上のように酸化物超電導体は電流リード
や限流器としては極めて有望な材料であるが、これらの
材料として用いられるためには、ある一定以上の臨界電
流密度および長さが必要である。特に、超電導電流リー
ドは電流リード自体からのジュール熱がないために、熱
侵入の観点から温度勾配の方向に対して電流経路は長い
ほうが有利になる。焼結法で作製されたBi2 Sr2 C
a2 Cu3 O10系材料はこれらの条件をある程度満たし
ており、冷凍機で動作する超電導マグネットに利用され
つつある。しかしながら、焼結体であることとピンニン
グ力があまり大きくないBi系材料を用いていることか
ら、導体断面積を大きくとらざるを得ず、また強磁場で
は臨界電流密度が著しく劣化することから、利用範囲が
限られるものと予想される。As described above, oxide superconductors are extremely promising materials for current leads and current limiting devices, but in order to be used as these materials, a certain critical current density and length are required. Is. In particular, since the superconducting current lead has no Joule heat from the current lead itself, it is advantageous that the current path is long in the direction of the temperature gradient from the viewpoint of heat penetration. Bi 2 Sr 2 C produced by sintering method
The a 2 Cu 3 O 10 material satisfies these conditions to some extent and is being used for a superconducting magnet that operates in a refrigerator. However, since it is a sintered body and a Bi-based material that does not have a large pinning force is used, the conductor cross-section area must be large, and the critical current density significantly deteriorates in a strong magnetic field. It is expected that the range of use will be limited.
【0006】臨界電流密度やその磁場中における特性を
考えた場合、YBa2 Cu3 OX 系超電導材料は優れた
特性を有する材料である。Yの位置は他のLa、Ce、
Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、H
o、Er、Tm、Yb、Luからなる群から選ばれた1
種以上の元素で置換してもよく、以下REBa2 Cu3
OX と表記する。ただし、この材料系の場合、結晶粒界
が著しく臨界電流密度を低下させるため、結晶粒が配向
している必要がある。現在の技術では、配向したREB
a2 Cu3 OX を製造する方法として、格子定数の近い
基盤上に成膜させる方法と溶融法が挙げられる。Considering the critical current density and its characteristics in a magnetic field, the YBa 2 Cu 3 O x superconducting material is a material having excellent characteristics. The position of Y is other La, Ce,
Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, H
1 selected from the group consisting of o, Er, Tm, Yb, and Lu
It may be substituted with one or more elements, and may be replaced by REBa 2 Cu 3
Notated as O X. However, in the case of this material system, the crystal grains must be oriented because the crystal grain boundaries significantly reduce the critical current density. With current technology, oriented REB
As a method for producing a 2 Cu 3 O x, there are a method of forming a film on a substrate having a close lattice constant and a melting method.
【0007】このうち、QMG法(特開昭63−261
607号公報、特願平2−402204)で代表される
ような、溶融法は臨界電流密度が高く、比較的大型の材
料が得られる方法である。溶融法は、一度RE2 BaC
uO5 相とBa−Cu−Oを主成分とした液相が共存す
る温度領域まで昇温し、これをREBa2 Cu3 OXが
生成する包晶温度直上まで冷却し、この温度から徐冷を
行なうことにより、結晶成長させ大きな結晶粒を得る手
法である。この手法により、現在、約20cm3 以上の
結晶粒をもったバルク超電導材料を作製することができ
る。この材料の臨界電流密度は77K、1Tで1000
0A/cm2 であり、バルクであるために臨界電流も大
きくとれる。Of these, the QMG method (JP-A-63-261)
The melting method, which is represented by Japanese Patent Application No. 607204/1990 and Japanese Patent Application No. 2-402204), has a high critical current density and is a method for obtaining a relatively large material. The melting method is once RE 2 BaC
heated to a temperature region where uO 5 phase and Ba-Cu-O main component and liquid phase coexist, it was cooled to peritectic temperature just above the REBa 2 Cu 3 O X is produced, slowly cooling from this temperature Is a method of growing crystals to obtain large crystal grains. By this method, at present, a bulk superconducting material having crystal grains of about 20 cm 3 or more can be produced. The critical current density of this material is 77K, 1000 at 1T
Since it is 0 A / cm 2 and is bulk, a large critical current can be obtained.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、現在の
技術では電流リードや限流器として用いるに充分な長さ
の導体を製造することは困難である。特に限流器に応用
の場合、薄膜に比較して電流値を大きくできる反面、1
次元(直線的)あるいは2次元的な電流経路を有する導
体では大きな常電導抵抗を得るための経路が充分にとれ
ない。そこで、本発明は長さが限定されているが臨界電
流の高いREBa2 Cu3 OX 系バルク超電導体を用
い、長い電流経路を付与された超電導導体を提供するこ
とを目的とする。However, it is difficult to manufacture a conductor having a length long enough to be used as a current lead or a current limiter with the current technology. Especially when applied to a fault current limiter, the current value can be increased compared to a thin film, but 1
A conductor having a dimensional (linear) or two-dimensional current path cannot have a sufficient path for obtaining a large normal resistance. Therefore, an object of the present invention is to provide a superconducting conductor provided with a long current path by using a REBa 2 Cu 3 O X type bulk superconductor having a limited critical length and a high critical current.
【0009】[0009]
【課題を解決するための手段】本発明は前記課題を解決
するものであって、ミアンダ構造が3次元的に接続さ
れ、3次元的な電流経路を有するREBa2 Cu3 OX
系バルク超電導体(REはY、La、Ce、Pr、N
d、Pm、Sm、Eu、Gd、Tb、Dy、Ho、E
r、Tm、Yb、Luからなる群から選ばれた1種以上
の元素)とその両端に接続された導線とにより構成され
ることを特徴とする超電導導体である。DISCLOSURE OF THE INVENTION The present invention is to solve the above-mentioned problems, and REBA 2 Cu 3 O X having a three-dimensional current path in which meander structures are three-dimensionally connected.
System bulk superconductor (RE is Y, La, Ce, Pr, N
d, Pm, Sm, Eu, Gd, Tb, Dy, Ho, E
A superconducting conductor comprising one or more elements selected from the group consisting of r, Tm, Yb, and Lu) and a lead wire connected to both ends thereof.
【0010】[0010]
【作用】本発明は上記の問題を解決するために、図1に
示すようにREBa2 Cu3 OX 系超電導体1に切り込
み加工2を施し、3次元のジグザグな電流経路をとらせ
る手段を設けたものである。これを立体ミアンダ構造と
呼ぶ。図1において(a)図は斜視図であり、(b)、
(c)、(d)図は(a)図では見えていない下面側、
奥側、左側から見た図をそれぞれ示している。なお図中
P、Qの符号は各図の相互の位置関係を示すためにつけ
た。In order to solve the above problem, the present invention provides a means for cutting the REBa 2 Cu 3 O x superconductor 1 as shown in FIG. 1 to form a three-dimensional zigzag current path. It is provided. This is called a three-dimensional meander structure. 1A is a perspective view, and FIG. 1B is a perspective view.
(C) and (d) are the lower surface side which is not visible in (a),
The figures are seen from the back and left sides, respectively. The symbols P and Q in the drawings are added to show the mutual positional relationship between the drawings.
【0011】3次元のミアンダ構造をとることにより、
限られた形状の超電導体から電流経路の長い超電導材料
を製造することができる。これは特に溶融法で作製され
たバルク超電導体の利用法として有用である。限流器と
しては、電流経路の長い構造のほうが、その分常電導状
態の電気抵抗が大きくなるため、限流動作の優れた限流
器の製造が可能になる。By taking a three-dimensional meander structure,
A superconducting material having a long current path can be manufactured from a superconductor having a limited shape. This is particularly useful as a method of using a bulk superconductor manufactured by the melting method. As a current limiting device, a structure having a long current path has a larger electric resistance in the normal conducting state by that amount, so that a current limiting device excellent in current limiting operation can be manufactured.
【0012】この構造は電流リード用の導体としても有
用である。これまでの電流リードの発想は蒸発ヘリウム
ガスを積極的に利用することにあり、ガスの温度勾配方
向に長い電流リードを設置する必要があった。しかし、
前述したような冷凍機で動作する超電導マグネットに用
いられる電流リードの場合必ずしも1方向に長くする必
要はない。このような超電導機器の場合、電流リードは
10K−80Kの真空空間に設置され、冷凍機からの伝
導冷却によって冷却されるために、温度勾配は電流リー
ド導体に沿ってつくため、ミアンダ構造のような構造を
有していても伝導経路が長くなることによる効果はあ
り、特に3次元的な構造は電流リードにとって有利であ
る。This structure is also useful as a conductor for current leads. The current idea of the current lead is to positively use the evaporated helium gas, and it was necessary to install a long current lead in the temperature gradient direction of the gas. But,
In the case of the current lead used for the superconducting magnet operating in the refrigerator as described above, it is not always necessary to lengthen it in one direction. In the case of such a superconducting device, the current lead is installed in a vacuum space of 10K-80K, and is cooled by conduction cooling from the refrigerator, so that a temperature gradient is formed along the current lead conductor. Even if it has such a structure, there is an effect due to the lengthening of the conduction path, and the three-dimensional structure is particularly advantageous for the current lead.
【0013】この構造には3つの利点がある。第1は、
隣合う電流経路を流れる電流は反対向きであるためにイ
ンダクタンスを小さくできる点である。第2はコンパク
ト化が可能であることである。特にQMG法で作製した
REBa2 Cu3 OX 系バルク超電導体は臨界電流密度
が高く、断面積を小さくでき、相当コンパクト化が図れ
る。そして、第3はすべて直線的な加工で済むことか
ら、形状付与が容易であることである。This structure has three advantages. The first is
Since the currents flowing through the adjacent current paths are in opposite directions, the inductance can be reduced. Secondly, it can be made compact. In particular, the REBa 2 Cu 3 O x type bulk superconductor produced by the QMG method has a high critical current density and can have a small cross-sectional area, and can be made considerably compact. And, thirdly, it is easy to give a shape because all of the processing is linear.
【0014】本発明の超電導導体は常に断面積が一定に
なっている必要はなく、電流が反転する部分や金属導体
との接続部分など、条件が厳しく常電導転移を起こしや
すい部分の幅を広くしてもよい。特に、この材料は異方
性が大きいので、3次元的に電流を流そうとした場合
に、臨界電流密度の小さいc軸方向の成分をもった電流
を流さなければならない。したがって、このような部分
の断面積は大きくせねばならない。また、機械的性質を
改善させるために、他の材料と複合化させてもよい。た
とえば限流器に応用する場合は、熱伝導のよい銀等をコ
ーティングする、張り付けるあるいは電流経路間の隙間
を埋めるなど、安定化を兼ねた方策がとられるべきであ
るし、電流リードに応用する場合は熱伝導の悪いエポキ
シ樹脂などが用いられるべきである。また、真空中にパ
ッケージングすると、電流経路間のガスによる熱のショ
ートがなくなるためいっそう効果が大きくなる。The superconducting conductor of the present invention does not need to have a constant cross-sectional area at all times, and the width of the portion where the current is reversed and the portion where the metal conductor is connected is strict and the transition to normal conduction is likely to occur is wide. You may. In particular, since this material has a large anisotropy, when an electric current is to be applied three-dimensionally, an electric current having a component in the c-axis direction having a small critical current density must be applied. Therefore, the cross-sectional area of such a portion must be large. It may also be compounded with other materials in order to improve its mechanical properties. For example, when applied to a current limiting device, measures such as stabilization should be taken by coating, pasting, or filling the gap between current paths such as silver with good thermal conductivity, and applying to current leads. In that case, an epoxy resin or the like having poor heat conductivity should be used. In addition, packaging in a vacuum further enhances the effect because heat short circuit due to gas between current paths is eliminated.
【0015】[0015]
(実施例1)QMG法で作製したYBa2 Cu3 OX 系
バルク超電導体から図2、図3で示されるような電流リ
ードを作製した。図中の矢印3は電流の流れる方向を示
している。これらをそれぞれ電流リードAおよび電流リ
ードBとする。それぞれの電流リードを構成している材
料は全体にわたって大傾角粒界がなく、マトリクスのY
Ba2 Cu3 OX 相内にY2 BaCuO5 相が平均2μ
m以下で均一に分散している組織を有する。また図に示
したように、試料の最も広い面がab面になっており、
電流は主としてab面に平行に流れるようにした。室温
における電流リードAと電流リードBのYBa2 Cu3
OX 両端の電気抵抗がそれぞれ0.6Ω、および1.8
Ωであった。また、この材料の臨界電流密度は77K、
1Tで25000A/cm2 であった。(Example 1) A current lead as shown in FIGS. 2 and 3 was produced from a YBa 2 Cu 3 O x type bulk superconductor produced by the QMG method. The arrow 3 in the figure indicates the direction of current flow. These are designated as current lead A and current lead B, respectively. The material forming each current lead has no large tilt grain boundaries throughout,
Y 2 BaCuO 5 phase has an average of 2μ in the Ba 2 Cu 3 O x phase.
It has a structure in which it is uniformly dispersed below m. Also, as shown in the figure, the widest surface of the sample is the ab surface,
The current was made to flow mainly parallel to the ab plane. YBa 2 Cu 3 for current lead A and current lead B at room temperature
The electrical resistance at both ends of O X is 0.6Ω and 1.8, respectively.
Ω. The critical current density of this material is 77K,
It was 25000 A / cm 2 at 1T.
【0016】これらの電流リードを液体ヘリウム中で超
電導体の臨界電流密度を測定するための臨界電流密度測
定ホルダーに適用した。臨界電流密度は図4に示したよ
うなクライオスタットを構成して測定される。図4は電
流リードBを挿入した時の図を示したもので(a)は全
体図、(b)はX部分の拡大図である。使用した試料ホ
ルダー11は6つの試料の測定が可能であり、プラス側
を共通にして2mm径の通電用銅線23が合計7本キュ
プロニッケルパイプの心棒16に沿って外部から測定部
まで入っている(拡大図以外の図の中では、銅線は省略
している)。この径の銅線であれば、通常200Aまで
の通電が可能である。These current leads were applied to a critical current density measuring holder for measuring the critical current density of a superconductor in liquid helium. The critical current density is measured by configuring a cryostat as shown in FIG. 4A and 4B are diagrams showing the state in which the current lead B is inserted. FIG. 4A is an overall view, and FIG. 4B is an enlarged view of an X portion. The sample holder 11 used is capable of measuring 6 samples, and a total of 7 current-carrying copper wires 23 having a diameter of 2 mm and having a common plus side are inserted along the mandrel 16 of the cupro-nickel pipe from the outside to the measurement part. (The copper wire is omitted in the figures other than the enlarged view). A copper wire of this diameter can normally be energized up to 200A.
【0017】試料ホルダー11は図に示されたようなス
テンレスデュワー12にフランジ13で固定され、試料
ホルダー11に設置した超電導試料に通電しながら、臨
界電流密度を測定する。デュワー12は真空17と液体
窒素14によって熱的にシールドされ、通電用銅線がな
い場合の液体ヘリウム15のレベルが200mmから0
mmになるまでの蒸発速度は、0.007リットル/分
である(以下、蒸発速度とは液体ヘリウムのレベルが2
00mmから0mmまでの平均の蒸発速度をいう)。こ
れに対して、2mm径の通電用銅線が7本をデュワーの
外から試料ホルダー11まで入った場合の液体ヘリウム
の蒸発量は、0.08リットル/分であった。したがっ
て、90%以上の熱が通電用銅線を通じての熱伝導によ
って侵入してくることがわかった。The sample holder 11 is fixed to a stainless dewar 12 as shown by a flange 13, and the critical current density is measured while energizing the superconducting sample placed in the sample holder 11. The dewar 12 is thermally shielded by the vacuum 17 and the liquid nitrogen 14, and the level of the liquid helium 15 in the case where there is no copper wire for electricity is from 200 mm to 0.
The evaporation rate up to mm is 0.007 liters / minute (hereinafter, the evaporation rate means that the level of liquid helium is 2
Refers to the average evaporation rate from 00 mm to 0 mm). On the other hand, the evaporation amount of liquid helium was 0.08 liters / minute when seven current-carrying copper wires having a diameter of 2 mm entered from outside the dewar to the sample holder 11. Therefore, it was found that 90% or more of the heat entered due to the heat conduction through the current-carrying copper wire.
【0018】この銅線の1本にそれぞれ電流リードA、
電流リードBを挿入・接続した場合の電流リード両端の
電圧および液体ヘリウムの蒸発量を測定した。接続方法
はYBa2 Cu3 Ox の電流リード18両端1cmの電
極部分19(ab面)にRFスパッタリング装置で銀を
1μm成膜させ、これを長さ5cmの銅編み線20を介
して通電用銅線23に半田づけすることによって行っ
た。銅線とYBa2 Cu3 Ox 電流リード18の間に銅
編み線20を介する理由は、間にフレキシブルな銅編み
線を入れることによって、冷却による熱収縮歪みを解放
するためである。Each of the copper wires is provided with a current lead A,
The voltage across the current lead and the evaporation amount of liquid helium when the current lead B was inserted and connected were measured. The connection method is as follows: YBa 2 Cu 3 O x current lead 18 1 cm on both ends of the electrode portion 19 (ab surface) is deposited with a RF sputtering device to form a silver film of 1 μm, and this is energized through a 5 cm long copper braided wire 20. It was performed by soldering to the copper wire 23. The reason for interposing the copper braided wire 20 between the copper wire and the YBa 2 Cu 3 O x current lead 18 is to release the heat shrinkage strain due to cooling by inserting the flexible copper braided wire therebetween.
【0019】液体ヘリウムのレベルがゼロの状態におい
ても、電流リードは銅線からの熱伝導と液体ヘリウムか
らの蒸発ガスによって50K以下に冷却された。図4に
おいて21が液体ヘリウムのレベルがゼロの位置であ
る。試料ホルダー11の試料設置部分を銅ブロック22
で短絡し、電流リードに200Aの直流電流を流した。
すべての電流リードの両端には電圧は検出されなかっ
た。Even when the level of liquid helium was zero, the current lead was cooled to less than 50K by heat conduction from the copper wire and vaporized gas from liquid helium. In FIG. 4, 21 is the position where the level of liquid helium is zero. The sample mounting portion of the sample holder 11 is replaced with a copper block 22.
, And a direct current of 200 A was passed through the current lead.
No voltage was detected across all current leads.
【0020】表1にそれぞれの電流リードを設置した場
合の液体ヘリウムの蒸発量を示した。表に示したとお
り、YBa2 Cu3 Ox の電流リードを挿入した場合
は、挿入しない場合に比較して熱侵入が抑えられ、電流
経路が長くなるにしたがってその効果が大きくなること
がわかった。Table 1 shows the evaporation amount of liquid helium when each current lead is installed. As shown in the table, in the case where the current lead of YBa 2 Cu 3 O x is inserted, the heat penetration is suppressed as compared with the case where the current lead is not inserted, and the effect becomes larger as the current path becomes longer. .
【0021】[0021]
【表1】 [Table 1]
【0022】(実施例2)次に、デュワー内を排気し
て、YBa2 Cu3 Ox 電流リードを用いなかった場合
と電流リードAを1本挿入した場合、電流リードBを1
本挿入した場合の液体ヘリウムの蒸発量を測定した。排
気をおこなうと、液体ヘリウムの温度は低下するので、
極低温での臨界電流密度の測定によく利用される。YB
a2 Cu3 Ox 電流リードを用いなかった場合、液体ヘ
リウムの蒸発量が大きく、2Kまで温度が低下したとこ
ろで液体ヘリウムの液面が0mmになってしまった。一
方、YBa2 Cu3 Ox 電流リードを用いた場合、減圧
の結果、液体ヘリウムの温度は1.8K以下に到達させ
ることが可能になった。温度が定常状態になったときの
液体ヘリウムの消費量を表2に示す。電流リードAを用
いた場合と電流リードBを用いた場合とで大きな差が認
められた。立体ミアンダ構造をとって電流経路を長くと
ったものは、液体ヘリウムの消費量は低減され、電流リ
ードからの熱侵入が大幅に低減されたことがわかった。(Embodiment 2) Next, the inside of the dewar is evacuated and the current lead B is set to 1 when the YBa 2 Cu 3 O x current lead is not used and when one current lead A is inserted.
The evaporation amount of liquid helium when the main insertion was performed was measured. When exhausting, the temperature of liquid helium drops, so
It is often used to measure critical current density at very low temperatures. YB
When the a 2 Cu 3 O x current lead was not used, the evaporation amount of liquid helium was large and the liquid level of liquid helium became 0 mm when the temperature dropped to 2K. On the other hand, when the YBa 2 Cu 3 O x current lead was used, the temperature of liquid helium was able to reach 1.8 K or less as a result of decompression. Table 2 shows the consumption of liquid helium when the temperature reaches a steady state. A large difference was observed between the case where the current lead A was used and the case where the current lead B was used. It was found that the three-dimensional meander structure with a long current path reduced the consumption of liquid helium and significantly reduced the heat intrusion from the current lead.
【0023】[0023]
【表2】 [Table 2]
【0024】[0024]
【発明の効果】以上説明したように、REBa2 Cu3
OX 系バルク超電導体に切り込み加工を施し、図1に示
されるようなジグザグな電流経路(立体ミアンダ構造)
をとらせることにより、電流経路が長く熱侵入量が小さ
い超電導導体が製造できる。これは、真空中あるいは減
圧下で使用される電流リードあるいは限流器として有用
である。As described above, REBa 2 Cu 3
O X system cuts giving the process the bulk superconductor, zigzag current path as shown in FIG. 1 (three-dimensional meandering structure)
By taking advantage of the above, it is possible to manufacture a superconducting conductor having a long current path and a small amount of heat penetration. It is useful as a current lead or current limiter used in vacuum or under reduced pressure.
【図1】立体ミアンダ構造を説明する図で、(a)図は
斜視図で、(b)図は下面、(c)図は奥側、(d)図
は左側から見た図FIG. 1 is a diagram illustrating a three-dimensional meander structure, in which (a) is a perspective view, (b) is a bottom view, (c) is a back side, and (d) is a left side view.
【図2】実施例における電流リードAを示す斜視図FIG. 2 is a perspective view showing a current lead A according to an embodiment.
【図3】実施例における電流リードBを示す斜視図FIG. 3 is a perspective view showing a current lead B in the example.
【図5】実施例における実験方法を示す図で、(a)は
全体図、(b)はXの部分の拡大図5A and 5B are diagrams showing an experimental method in Examples, in which FIG. 5A is an overall view and FIG. 5B is an enlarged view of a portion X.
1 REBa2 Cu3 OX 系バルク超電導体 2 切り込み 3 電流の流れる方向 11 試料ホルダー 12 クライオスタット 13 フランジ 14 液体窒素 15 液体ヘリウム 16 心棒 17 真空 18 電流リード 19 電極部分 20 銅編み線 21 液体ヘリウムのレベルがゼロの位置 22 銅ブロック 23 通電用銅線1 REBa 2 Cu 3 O X type bulk superconductor 2 Cut 3 Direction of current flow 11 Sample holder 12 Cryostat 13 Flange 14 Liquid nitrogen 15 Liquid helium 16 Mandrel 17 Vacuum 18 Current lead 19 Electrode part 20 Copper braid 21 Level of liquid helium Zero position 22 Copper block 23 Conductive copper wire
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成7年6月22日[Submission date] June 22, 1995
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図面の簡単な説明】[Brief description of drawings]
【図1】立体ミアンダ構造を説明する図で、(a)図は
斜視図で、(b)図は下面、(c)図は奥側、(d)図
は左側から見た図FIG. 1 is a diagram illustrating a three-dimensional meander structure, in which (a) is a perspective view, (b) is a bottom view, (c) is a back side, and (d) is a left side view.
【図2】実施例における電流リードAを示す斜視図FIG. 2 is a perspective view showing a current lead A according to an embodiment.
【図3】実施例における電流リードBを示す斜視図FIG. 3 is a perspective view showing a current lead B in the example.
【図4】実施例における実験方法を示す図で、(a)は
全体図、(b)はXの部分の拡大図[Figure 4] a view showing an experimental method in Example, (a) shows the overall view, (b) is an enlarged view of a portion of the X
【符号の説明】 1 REBa2Cu3Ox系バルク超電導体 2 切り込み 3 電流の流れる方向 11 試料ホルダー 12 クライオスタット 13 フランジ 14 液体窒素 15 液体ヘリウム 16 心棒 17 真空 18 電流リード 19 電極部分 20 銅編み線 21 液体ヘリウムのレベルがゼロの位置 22 銅ブロック 23 通電用銅線[Explanation of Codes] 1 REBa 2 Cu 3 O x type bulk superconductor 2 Cut 3 Direction of current flow 11 Sample holder 12 Cryostat 13 Flange 14 Liquid nitrogen 15 Liquid helium 16 Mandrel 17 Vacuum 18 Current lead 19 Electrode part 20 Copper braided wire 21 Position where liquid helium level is zero 22 Copper block 23 Conductive copper wire
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 12/16 ZAA H01F 6/00 ZAA H01L 39/16 ZAA ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01B 12/16 ZAA H01F 6/00 ZAA H01L 39/16 ZAA
Claims (1)
次元的な電流経路を有するREBa2 Cu3 OX 系バル
ク超電導体(REはY、La、Ce、Pr、Nd、P
m、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
m、Yb、Luからなる群から選ばれた1種以上の元
素)とその両端に接続された導線とにより構成されるこ
とを特徴とする超電導導体。1. The meander structure is three-dimensionally connected and 3
REBa 2 Cu 3 O x type bulk superconductor having a dimensional current path (RE is Y, La, Ce, Pr, Nd, P
m, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
A superconducting conductor comprising one or more elements selected from the group consisting of m, Yb, and Lu) and conductors connected to both ends thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7117659A JPH0818110A (en) | 1994-04-26 | 1995-04-20 | Superconductor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10919894 | 1994-04-26 | ||
JP6-109198 | 1994-04-26 | ||
JP7117659A JPH0818110A (en) | 1994-04-26 | 1995-04-20 | Superconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0818110A true JPH0818110A (en) | 1996-01-19 |
Family
ID=26448991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7117659A Withdrawn JPH0818110A (en) | 1994-04-26 | 1995-04-20 | Superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0818110A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006086112A (en) * | 2004-07-30 | 2006-03-30 | Nexans | Cylindrical superconducting component and resistive current limiter using it |
JP2006179872A (en) * | 2004-11-24 | 2006-07-06 | Yamaguchi Univ | Superconductor, superconducting rectifier, and rectifying circuit using same |
-
1995
- 1995-04-20 JP JP7117659A patent/JPH0818110A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006086112A (en) * | 2004-07-30 | 2006-03-30 | Nexans | Cylindrical superconducting component and resistive current limiter using it |
JP2006179872A (en) * | 2004-11-24 | 2006-07-06 | Yamaguchi Univ | Superconductor, superconducting rectifier, and rectifying circuit using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910002311B1 (en) | A superconductor device | |
Motohashi et al. | Systematic decrease of resistivity anisotropy in Bi 2 Sr 2 CaCu 2 O y by Pb doping | |
CN1029888C (en) | Superconductive apparatus | |
Park et al. | Analysis of a joint method between superconducting YBCO coated conductors | |
KR20150065694A (en) | Superconductive coil device and production method | |
US10062488B2 (en) | Superconducting current lead, superconducting current lead device, and superconducting magnet device | |
US6344956B1 (en) | Oxide bulk superconducting current limiting element current | |
JP2013175293A (en) | Superconductive current lead, current lead device, and superconducting magnet device | |
JP5675232B2 (en) | Superconducting current lead | |
JP4838199B2 (en) | Oxide superconducting current lead | |
Sato et al. | High field generation using silver-sheathed BSCCO conductor | |
JPH0818110A (en) | Superconductor | |
EP3511953B1 (en) | Low-temperature superconducting wire rod having low stabilizing matrix ratio, and superconducting coil having same | |
JP2009230912A (en) | Oxide superconductive current lead | |
Sohn et al. | Fabrication and characteristics of 2G HTS current leads | |
JP3766448B2 (en) | Superconducting current lead | |
JP2012064323A (en) | Superconductive current lead | |
JP2018055990A (en) | Superconductive current lead and oxide superconducting wire material | |
JP5614831B2 (en) | Oxide superconducting current lead | |
Teshima et al. | Critical current of Y-Ba-Cu-O bulk current leads | |
US20220393680A1 (en) | Persistent current switch and superconducting device | |
JP4589698B2 (en) | Superconducting bulk material | |
US10938128B2 (en) | Superconducting interconnects with ultra-low thermal conductivity | |
Ting et al. | Development of current leads using dip coated BSCCO-2212 tape | |
JP2014179526A (en) | Current lead |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020702 |