JPH08181041A - Electrolyte for electrolytic capacitor - Google Patents

Electrolyte for electrolytic capacitor

Info

Publication number
JPH08181041A
JPH08181041A JP6334985A JP33498594A JPH08181041A JP H08181041 A JPH08181041 A JP H08181041A JP 6334985 A JP6334985 A JP 6334985A JP 33498594 A JP33498594 A JP 33498594A JP H08181041 A JPH08181041 A JP H08181041A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
electrolytic
salt
tan
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6334985A
Other languages
Japanese (ja)
Inventor
Kenichi Iida
謙一 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP6334985A priority Critical patent/JPH08181041A/en
Publication of JPH08181041A publication Critical patent/JPH08181041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE: To reduce the loss of an electrolytic capacitor, to improve the reduction in the capacity, and to make progress at high and low temperature characteristics by providing a high spark voltage, a low specific resistance and excellent high and low temperature characteristics. CONSTITUTION: Electrolyte for an electrolytic capacitor contains ethylene glycol as a main ingredient of solvent, and comprises at least one type of 2,2,4- trimethyladipic acid or its salt, at least one type of 2,4,4-trimethyladipic acid or its salt to be dissolved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電解コンデンサ用電解液
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic solution for electrolytic capacitors.

【0002】[0002]

【従来の技術】アルミ電解コンデンサ等の電解コンデン
サはコンデンサ素子に電解液を含浸した構造になってい
る。そして中圧用及び高圧用の電解コンデンサには、エ
チレングリコールからなる溶媒に、硼酸アンモニウム、
アゼライン酸又はその塩、セバシン酸又はその塩、ブチ
ルオクタン二酸又はその塩等を溶解した電解液を用いて
いる。
2. Description of the Related Art An electrolytic capacitor such as an aluminum electrolytic capacitor has a structure in which a capacitor element is impregnated with an electrolytic solution. And for medium and high voltage electrolytic capacitors, a solvent consisting of ethylene glycol, ammonium borate,
An electrolytic solution in which azelaic acid or a salt thereof, sebacic acid or a salt thereof, butyloctanedioic acid or a salt thereof, or the like is used is used.

【0003】[0003]

【発明が解決しようとする課題】しかし、硼酸アンモニ
ウムを溶解した電解液は、火花電圧は高いが、比抵抗が
大きく、電解コンデンサの損失が大きくなる欠点があ
る。また、エステル化反応によって生成する水の影響に
より、高温において劣化し易い欠点がある。
However, the electrolytic solution in which ammonium borate is dissolved has a drawback that although the spark voltage is high, the specific resistance is large and the loss of the electrolytic capacitor is large. Further, there is a drawback that it is easily deteriorated at high temperature due to the influence of water generated by the esterification reaction.

【0004】そしてアゼライン酸やセバシン酸等を溶解
した電解液は、比抵抗が小さく、そのため電解コンデン
サの損失を小さくできるが、アゼライン酸等が直鎖のシ
カルボン酸であるため、低温において溶解度が小さく低
温特性に劣る欠点がある。
The electrolytic solution in which azelaic acid, sebacic acid, etc. are dissolved has a small specific resistance, and therefore the loss of the electrolytic capacitor can be reduced. However, since azelaic acid, etc. is a straight chain carboxylic acid, the solubility is low at low temperatures. It has the disadvantage of poor low temperature properties.

【0005】さらに、ブチルオクタン二酸等を溶解した
電解液は、ブチルオクタン二酸の溶解度が大きいため、
低温特性は良いが、このブチルオクタン二酸がアルミニ
ウムと反応して錯体を形成し易く、電解コンデンサの容
量が減少し易い欠点がある。
Further, since the electrolyte solution in which butyloctanedioic acid or the like is dissolved has a high solubility of butyloctanedioic acid,
Although the low-temperature characteristics are good, this butyloctanedioic acid has a drawback that it easily reacts with aluminum to form a complex and the capacity of the electrolytic capacitor is easily reduced.

【0006】本発明の目的は、以上の欠点を改良し、火
花電圧が高く、比抵抗が低く、高温特性及び低温特性に
優れていて、電解コンデンサの損失を小さくできるとと
もに容量の減少を改善でき、その高温特性や低温特性を
向上できる電解コンデンサ用電解液を提供するものであ
る。
The object of the present invention is to improve the above-mentioned drawbacks, to have a high spark voltage, a low specific resistance, excellent high temperature characteristics and low temperature characteristics, so that the loss of the electrolytic capacitor can be reduced and the reduction of the capacity can be improved. The present invention provides an electrolytic solution for an electrolytic capacitor, which can improve its high temperature characteristics and low temperature characteristics.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の目的を
達成するために、エチレングリコールを溶媒の主成分と
する電解コンデンサ用電解液において、2,2,4−ト
リメチルアジピン酸又はその塩のうち少なくとも一種類
と、2,4,4−トリメチルアジピン酸又はその塩のう
ち少なくとも一種類とを溶解することを特徴とする電解
コンデンサ用電解液を提供するものである。
In order to achieve the above-mentioned object, the present invention provides an electrolytic solution for an electrolytic capacitor containing ethylene glycol as a main component, which is 2,2,4-trimethyladipic acid or a salt thereof. The present invention provides an electrolytic solution for an electrolytic capacitor, which is characterized by dissolving at least one of them and at least one of 2,4,4-trimethyladipic acid or a salt thereof.

【0008】[0008]

【作用】本発明に用いる2,2,4−トリメチルアジピ
ン酸及びその塩並びに2,4,4−トリメチルアジピン
酸及びその塩は、各々〔化1〕〜〔化4〕に示す通りの
構造式になっている。
The 2,2,4-trimethyladipic acid and its salt and the 2,4,4-trimethyladipic acid and its salt used in the present invention have the structural formulas shown in [Chemical Formula 1] to [Chemical Formula 4], respectively. It has become.

【0009】〔化1〕[Chemical formula 1]

【0010】〔化2〕[Chemical formula 2]

【0011】〔化3〕[Chemical formula 3]

【0012】〔化4〕[Chemical formula 4]

【0013】上記の構成式から明らかな通り、これらの
物質は、メチレン基 (−CH2−)のα位にメチル基を
1つあるいは2つ有していて、そのため立体障害を生
じ、エチレングリコール等のグリコール類とエステル化
反応を生じ難くなる。従って、これらの物質を溶解した
電解液は、エステル化反応により生じる水を減少でき、
高温特性を向上できる。
As is clear from the above constitutive formula, these substances have one or two methyl groups at the α-position of the methylene group (-CH 2- ), which causes steric hindrance and causes ethylene glycol. It becomes difficult to cause an esterification reaction with glycols such as. Therefore, the electrolytic solution in which these substances are dissolved can reduce the water generated by the esterification reaction,
High temperature characteristics can be improved.

【0014】また、これらの物質は、側鎖を有するジカ
ルボン酸や塩であり、従来のアゼライン酸等の直鎖のジ
カルボン酸と比較して溶解性に優れていて低温特性を改
良でき、火花電圧を高くでき、比抵抗を低下できる。
Further, these substances are dicarboxylic acids or salts having a side chain, have excellent solubility as compared with conventional linear dicarboxylic acids such as azelaic acid, can improve low temperature characteristics, and have a spark voltage. Can be increased and the specific resistance can be reduced.

【0015】さらに、これらの物質は、特異な分子構造
のため錯体を形成する反応を生じ難く、しかも錯体を形
成してもエチレングリコールに溶解し易く、従って電解
コンデンサの容量が減少するのを防止できる。
Furthermore, these substances are unlikely to cause a reaction to form a complex due to the unique molecular structure, and moreover, even if a complex is formed, they are easily dissolved in ethylene glycol, thus preventing the capacity of the electrolytic capacitor from decreasing. it can.

【0016】そして、本発明では、2,2,4−トリメ
チルアジピン酸やその塩と、2,4,4−トリメチルア
ジピン酸やその塩とを混合することにより、個々の物質
を単独に用いる場合に比較して、より溶解度が増大す
る。そのため、比抵抗を低下でき、電解コンデンサ素子
の損失を小さくできる。
In the present invention, when each of the substances is used alone by mixing 2,2,4-trimethyladipic acid or a salt thereof with 2,4,4-trimethyladipic acid or a salt thereof. The solubility is further increased as compared with. Therefore, the specific resistance can be reduced and the loss of the electrolytic capacitor element can be reduced.

【0017】[0017]

【実施例】以下、本発明を実施例に基づいて説明する。
溶媒は、エチレングリコールを主成分とし、少量の水等
を含む組成とする。そして、この溶媒に2,2,4−ト
リメチルアジピン酸や2,2,4−トリメチルアジピン
酸アンモニウム、2,4,4−トリメチルアジピン酸、
2,4,4−トリメチルアジピン酸アンモニウムを溶解
する。さらに、必要に応じて、アンモニア水やアミン類
を添加する。なお、製造の際にアンモニアガスを液に送
り込んで液を中和させてもよい。
EXAMPLES The present invention will be described below based on examples.
The solvent has a composition containing ethylene glycol as a main component and a small amount of water or the like. Then, in this solvent, 2,2,4-trimethyl adipic acid, 2,2,4-trimethyl adipic acid ammonium, 2,4,4-trimethyl adipic acid,
Dissolve ammonium 2,4,4-trimethyl adipate. Furthermore, aqueous ammonia and amines are added if necessary. In addition, at the time of production, ammonia gas may be fed into the liquid to neutralize the liquid.

【0018】次に、本発明の実施例と従来例とにつき、
火花電圧と比抵抗とを測定したところ表1の通りになっ
た。この実施例と従来例とに用いた電解液の組成は、エ
チレングリコール91重量%と水1重量%とからなる溶
媒に、溶質を8重量%溶解したものとする。
Next, regarding the embodiment of the present invention and the conventional example,
When the spark voltage and the specific resistance were measured, the results are shown in Table 1. The composition of the electrolytic solution used in this example and the conventional example is 8% by weight of solute dissolved in a solvent consisting of 91% by weight of ethylene glycol and 1% by weight of water.

【0019】〔表1〕[Table 1]

【0020】この表1から明らかな通り、実施例1〜実
施例3は火花電圧が445V、比抵抗が316〜322
Ωcmである。これに対して、従来例1〜従来例6は火花
電圧が420〜440Vそして比抵抗が330〜846
Ωcmである。従って、実施例1〜実施例3による方が従
来例1〜従来例6に比較して、火花電圧が約1.01〜
1.06倍に上昇し、そして比抵抗が約0.37〜0.
98倍に低下している。
As is clear from Table 1, in Examples 1 to 3, the spark voltage was 445 V and the specific resistance was 316 to 322.
Ωcm. On the other hand, in Conventional Example 1 to Conventional Example 6, the spark voltage is 420 to 440 V and the specific resistance is 330 to 846.
Ωcm. Therefore, the spark voltage of Examples 1 to 3 is about 1.01 to 1.06 as compared with Conventional Examples 1 to 6.
1.06 times, and the specific resistance is about 0.37-0.
It is 98 times lower.

【0021】また、エチレングリコールのみからなる溶
媒を92wt%とし、これに表1に示した通りの溶質を8
wt%溶解した場合の溶解度を表2に示した。
Further, the solvent consisting only of ethylene glycol was set to 92 wt% and the solute as shown in Table 1 was added thereto.
Table 2 shows the solubilities when wt% was dissolved.

【0022】〔表2〕[Table 2]

【0023】表2から明らかな通り、実施例4〜実施例
6の溶解度は61〜64%そして従来例6〜従来例12
の溶解度は11〜58%となる。すなわち、実施例4〜
実施例6は従来例6〜従来例12に比較して約1.05
〜5.82倍以上溶けやすい。
As is apparent from Table 2, the solubilities of Examples 4 to 6 are 61 to 64% and Conventional Examples 6 to 12 are the same.
Has a solubility of 11 to 58%. That is, Example 4 to
Example 6 is about 1.05 as compared with Conventional Examples 6 to 12.
~ 5.82 times more soluble.

【0024】さらに、表3に示した組成からなる実施例
及び従来例の電解液を含浸した、定格400V、330
μFのアルミ電解コンデンサについて、初期特性を測定
するとともに、高温負荷試験を行ないその後の容量変化
率、tanδ 及び漏れ電流の各特性を測定し、表4に示し
た。試験条件は、周囲温度105℃、印加電圧400V
(定格電圧)、印加時間2000hrまでとする。試料
数は各々10個とする。また、測定結果は、各々平均値
とした。
Furthermore, a rated voltage of 400 V and 330 impregnated with the electrolytic solutions of Examples and Conventional Examples having the compositions shown in Table 3 was used.
Table 4 shows the initial characteristics of the μF aluminum electrolytic capacitor, the high-temperature load test, and the subsequent characteristics of capacitance change rate, tan δ, and leakage current. The test conditions are: ambient temperature 105 ° C, applied voltage 400V
(Rated voltage) and application time up to 2000 hr. The number of samples is 10, respectively. In addition, the measurement results are average values.

【0025】〔表3〕[Table 3]

【0026】〔表4〕[Table 4]

【0027】表4から明らかな通り、実施例A〜実施例
Eの電解液を含浸したNO1〜NO5の電解コンデンサ
は、初期の tanδが3.4〜4.0%そして漏れ電流が
12〜14μAである。これに対して、従来例A〜従来
例Fの電解液を含浸したNO6〜NO11の電解コンデ
ンサは、tanδ が3.6〜9.6であり、そして漏れ電
流が12〜136μAである。従って、NO1〜NO5
の電解コンデンサの方がNO6〜NO11のそれより
も、tanδ 及び漏れ電流とも全体的に低い値になってい
る。
As is clear from Table 4, the electrolytic capacitors NO1 to NO5 impregnated with the electrolytic solutions of Examples A to E had an initial tan δ of 3.4 to 4.0% and a leakage current of 12 to 14 μA. Is. On the other hand, the electrolytic capacitors NO6 to NO11 impregnated with the electrolytic solutions of Conventional Example A to Conventional Example F have tan δ of 3.6 to 9.6 and leakage current of 12 to 136 μA. Therefore, NO1 to NO5
The electrolytic capacitor of No. 6 is lower in overall tan δ and leakage current than those of NO 6 to NO 11.

【0028】そして高温負荷試験2000hr後におい
て、NO1〜NO5の電解コンデンサのtanδが4.2
〜4.8%、そしてNO7〜NO11の電解コンデンサ
のtanδが4.3〜12.4%になる。すなわち、NO
1〜NO5の電解コンデンサの方がNO7〜NO11の
それよりも全体的に tanδが低い値になっている。
After 2000 hours of the high temperature load test, tan δ of the electrolytic capacitors of NO1 to NO5 is 4.2.
˜4.8%, and the tan δ of the electrolytic capacitors of NO7 to NO11 is 4.3 to 12.4%. That is, NO
The tan δ of the electrolytic capacitors 1 to NO5 is lower than that of NO7 to NO11 as a whole.

【0029】また、2000hr後において、NO1〜
NO5の電解コンデンサの容量変化率が0.2〜0.3
%、NO7〜NO11の電解コンデンサが−15.2〜
0.3%となる。従って、、NO1〜NO5の電解コン
デンサの方が、容量変化率が低く、かつ静電容量の減少
を防止できることが明らかである。
After 2000 hours, NO1 ~
The capacity change rate of the NO5 electrolytic capacitor is 0.2 to 0.3.
%, NO7-NO11 electrolytic capacitors are -15.2-
It becomes 0.3%. Therefore, it is clear that the electrolytic capacitors of NO1 to NO5 have a lower capacity change rate and can prevent the decrease of the electrostatic capacity.

【0030】なお、NO6の電解コンデンサは、放置時
間が500hr以内で全部の試料の防爆弁が作動し、不
良品となった。
The NO6 electrolytic capacitors were defective because the explosion-proof valves of all the samples were activated within a standing time of 500 hours.

【0031】また、表3に示した組成からなる電解液を
含浸した、定格400V、330μFのアルミ電解コン
デンサについて、初期特性を測定し、かつ高温無負荷試
験を行ない、その後の静電容量変化率、tanδ 及び漏れ
電流を測定した。試験条件は、周囲温度105℃で、放
置時間2000hrまでとする。試料数は各々10個と
する。そして測定結果は、平均値とし、表5に示した。
Further, an aluminum electrolytic capacitor having a rating of 400 V and 330 μF, which is impregnated with the electrolytic solution having the composition shown in Table 3, is subjected to a high temperature no-load test after the initial characteristics are measured, and thereafter the capacitance change rate is measured. , Tan δ and leakage current were measured. The test conditions are an ambient temperature of 105 ° C. and a standing time of up to 2000 hours. The number of samples is 10, respectively. The measurement results are shown in Table 5 as average values.

【0032】〔表5〕[Table 5]

【0033】表5から明らかな通り、高温無負荷試験2
000hr後において、実施例A〜実施例Eの電解液を
含浸したNO12〜NO16の電解コンデンサの tanδ
が4.2〜4.8%、そして従来例B〜従来例Fの電解
液を含浸したNO18〜NO22の電解コンデンサの t
anδが4.3〜9.8%になる。従って、NO12〜N
O16の電解コンデンサの方がNO18〜NO22のそ
れよりも全体的に tanδが低い値になる。
As is clear from Table 5, the high temperature no-load test 2
After 000 hr, tan δ of NO12 to NO16 electrolytic capacitors impregnated with the electrolytic solutions of Examples A to E.
Of 4.2 to 4.8%, and t of the electrolytic capacitors NO18 to NO22 impregnated with the electrolytic solutions of Conventional Example B to Conventional Example F.
anδ is 4.3 to 9.8%. Therefore, NO12 ~ N
The electrolytic capacitor of O16 has an overall lower tan δ value than that of NO18 to NO22.

【0034】しかも、2000hr後において、NO1
2〜NO16の電解コンデンサの容量変化率が0.2〜
0.3%、NO18〜NO22の電解コンデンサが−1
0.3〜0.3%となる。すなわち、NO12〜NO1
6の電解コンデンサの方が容量変化率が低く、かつ静電
容量の減少を防止できる。
Moreover, after 2000 hours, NO1
2 to NO16, the capacitance change rate of the electrolytic capacitor is 0.2 to
0.3%, NO18 ~ NO22 electrolytic capacitor -1
It becomes 0.3 to 0.3%. That is, NO12 to NO1
The electrolytic capacitor of No. 6 has a lower rate of change in capacitance and can prevent a decrease in electrostatic capacitance.

【0035】なお、NO17の電解コンデンサは、放置
時間が1000hr以内で全部の試料の防爆弁が作動
し、不良品となった。
The NO17 electrolytic capacitors were defective because the explosion-proof valves of all the samples were activated within a standing time of 1000 hr.

【0036】さらに、表3に示した組成からなる電解液
を含浸した定格400V、330μFのアルミ電解コン
デンサについて、−40℃〜105℃の温度範囲で容量
変化率及び tanδの各特性を測定した。試料数は各々3
個とする。そして測定結果は、平均値とし、表6に示し
た。
Further, with respect to an aluminum electrolytic capacitor having a rating of 400 V and 330 μF impregnated with the electrolytic solution having the composition shown in Table 3, the rate of change in capacitance and the respective characteristics of tan δ were measured in the temperature range of −40 ° C. to 105 ° C. 3 samples each
To be individual. The measurement results are shown in Table 6 as average values.

【0037】〔表6〕[Table 6]

【0038】表6から明らかな通り、−40℃におい
て、実施例A〜実施例Eの電解液を含浸したNO23〜
NO27の電解コンデンサは、容量変化率が−29.0
〜−27.2%そして tanδが206〜242%であ
る。これに対して、従来例B〜従来例Fの電解液を含浸
したNO29〜NO33の電解コンデンサは、容量変化
率が−52.5〜−33.2%そして tanδが262〜
492%となる。従って、NO23〜NO27の電解コ
ンデンサの方がNO29〜NO33のそれに比較して、
容量変化率が約51.8〜87.3%にそして tanδが
約41.9〜92.4%に低下している。
As is clear from Table 6, NO23 impregnated with the electrolyte solutions of Examples A to E at -40 ° C.
The electrolytic capacitor of NO27 has a capacity change rate of −29.0.
.About.-27.2% and tan.delta. 206-242%. On the other hand, the electrolytic capacitors NO29 to NO33 impregnated with the electrolytic solutions of Conventional Example B to Conventional Example F have a capacity change rate of −52.5 to −33.2% and a tan δ of 262 to 262.
It becomes 492%. Therefore, the electrolytic capacitors of NO23 to NO27 are more
The rate of change in capacity is reduced to about 51.8 to 87.3% and the tan δ is reduced to about 41.9 to 92.4%.

【0039】また、105℃の温度において、NO23
〜NO27の電解コンデンサは、容量変化率が5.6〜
5.8%そして tanδが2.6%である。これに対し
て、NO28〜NO33の電解コンデンサは、容量変化
率が5.6〜9.8%そしてtanδ が2.6〜3.0%
となる。すなわち、NO23〜NO27の電解コンデン
サの方がNO28〜NO33のそれに比較して、容量変
化率及びtanδ とも全体的に低くなる。
At a temperature of 105 ° C., NO23
~ NO27 electrolytic capacitor has a capacity change rate of 5.6 ~
5.8% and tan δ is 2.6%. On the other hand, the electrolytic capacitors of NO28 to NO33 have a capacity change rate of 5.6 to 9.8% and a tan δ of 2.6 to 3.0%.
Becomes That is, the electrolytic capacitors of NO23 to NO27 are lower in overall capacity change rate and tan δ than those of NO28 to NO33.

【0040】[0040]

【発明の効果】以上の通り、本発明によれば、2,2,
4−トリメチルアジピン酸やその塩と、2,4,4−ト
リメチルアジピン酸やその塩とを混合して溶解している
ため、火花電圧が高く、比抵抗が低く、低温特性及び高
温特性に優れ、しかも電解コンデンサの損失を小さくで
きるとともに容量減少を防止でき、かつその高温特性及
び低温特性を向上できる電解コンデンサ用電解液が得ら
れる。
As described above, according to the present invention,
Since 4-trimethyladipic acid or its salt and 2,4,4-trimethyladipic acid or its salt are mixed and dissolved, the spark voltage is high, the specific resistance is low, and the low temperature characteristics and high temperature characteristics are excellent. Moreover, it is possible to obtain an electrolytic solution for an electrolytic capacitor, which can reduce the loss of the electrolytic capacitor, prevent the capacity from decreasing, and improve its high-temperature characteristics and low-temperature characteristics.

【化1】 Embedded image

【化2】 Embedded image

【化3】 Embedded image

【化4】 [Chemical 4]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【表6】 [Table 6]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エチレングリコールを溶媒の主成分とす
る電解コンデンサ用電解液において、2,2,4−トリ
メチルアジピン酸またはその塩のうち少なくとも一種類
と、2,4,4−トリメチルアジピン酸またはその塩の
うち少なくとも一種類とを溶解することを特徴とする電
解コンデンサ用電解液。
1. An electrolytic solution for an electrolytic capacitor containing ethylene glycol as a main component, wherein at least one of 2,2,4-trimethyladipic acid or a salt thereof and 2,4,4-trimethyladipic acid or An electrolytic solution for an electrolytic capacitor, which is characterized by dissolving at least one of the salts.
JP6334985A 1994-12-20 1994-12-20 Electrolyte for electrolytic capacitor Pending JPH08181041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6334985A JPH08181041A (en) 1994-12-20 1994-12-20 Electrolyte for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6334985A JPH08181041A (en) 1994-12-20 1994-12-20 Electrolyte for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH08181041A true JPH08181041A (en) 1996-07-12

Family

ID=18283437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6334985A Pending JPH08181041A (en) 1994-12-20 1994-12-20 Electrolyte for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH08181041A (en)

Similar Documents

Publication Publication Date Title
JP2921363B2 (en) Electrolyte for electrolytic capacitors
JP3254981B2 (en) Electrolyte for electrolytic capacitors
JPH08181041A (en) Electrolyte for electrolytic capacitor
JP3254983B2 (en) Electrolyte for electrolytic capacitors
JP4226123B2 (en) Electrolytic solution for driving aluminum electrolytic capacitors
JP2945699B2 (en) Electrolyte for driving electrolytic capacitors
JP2625464B2 (en) Electrolyte for driving electrolytic capacitors
JP3612671B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2731250B2 (en) Electrolyte for driving electrolytic capacitors
JP3172204B2 (en) Electrolyte for driving electrolytic capacitors
JP2627624B2 (en) Electrolyte for driving electrolytic capacitors
JP3310684B2 (en) Electrolytic solution for electrolytic capacitors
JP3749913B2 (en) Electrolytic solution for electrolytic capacitor drive
JPH01103820A (en) Electrolyte for driving electrolytic capacitor
JPH0451510A (en) Electrolyte for driving electrolytic capacitor
JP4612238B2 (en) Electrolytic solution for electrolytic capacitor drive
JP3169625B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JPH06151254A (en) Electrolyte for electrolytic capacitor
JP3657664B2 (en) Electrolytic solution for electrolytic capacitor drive
JP3347154B2 (en) Electrolyte for driving electrolytic capacitors
JP2002164260A (en) Electrolytic solution for driving electrolytic capacitor
JPH02194610A (en) Electrolyte for driving electrolytic capacitor
JPS6263416A (en) Electrolyte for driving aluminum electrolytic condenser
JPS62114207A (en) Electrolyte for driving electrolytic capacitor
JPH01171222A (en) Driving electrolyte for electrolytic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees