JPH08180400A - Magnetic recording medium and substrate - Google Patents

Magnetic recording medium and substrate

Info

Publication number
JPH08180400A
JPH08180400A JP32587194A JP32587194A JPH08180400A JP H08180400 A JPH08180400 A JP H08180400A JP 32587194 A JP32587194 A JP 32587194A JP 32587194 A JP32587194 A JP 32587194A JP H08180400 A JPH08180400 A JP H08180400A
Authority
JP
Japan
Prior art keywords
protrusion
recording medium
magnetic recording
area
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32587194A
Other languages
Japanese (ja)
Inventor
Yoji Arita
陽二 有田
Yuzo Seo
雄三 瀬尾
Toshihiko Kuriyama
俊彦 栗山
Junichi Kozu
順一 神津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP32587194A priority Critical patent/JPH08180400A/en
Priority to KR1019950019855A priority patent/KR960005459A/en
Priority to DE19524220A priority patent/DE19524220A1/en
Publication of JPH08180400A publication Critical patent/JPH08180400A/en
Priority to US08/937,045 priority patent/US5928759A/en
Priority to US09/306,909 priority patent/US6217970B1/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE: To lessen friction at the time of CSS by forming a surface shape controlled in the shape and height of projections and in the sectional area in the horizontal direction in their front end parts and the presence regions and density of the projections on the surface of a substrate or ground surface layer. CONSTITUTION: The height of projections is specified to be within a range of 1 to 40nm, the area of the graphic shape enclosed by the contour lines at the positions lower by 1nm from the tip ends of the projections is specified to <=0.5μm<2> , and the area of the graphic shape enclosed by the contour lines at the height of half the height of the projections is specified to <=3μm<2> on the front surface of the magnetic layer of the substrate or the ground surface layer. Further, the projections which are nearly circular in the shape of the section parallel with the surface of magnetic recording media are made to exist by 10 to 10<8> pieces per 1mm<2> . The height of the projections is specified to 1 to 30nm and further, preferably 10 to 25nm. Thereby, the contact area of the rear surface of the magnetic head with the surface of the magnetic recording medium is decreased. The sticking of the magnetic head on the medium surface is entirely obviated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録媒体および基
板に関し、詳しくは磁気ディスク装置に使用されるハー
ドティスク等の磁気記録媒体およびそのための基板に関
するものである。特に、良好なCSS(コンタクトスタ
ートアンドストップ)特性および磁気ヘッドの媒体表面
へのスティッキング特性向上と磁気ヘッドの低浮上化を
同時に可能にする薄膜型の磁気記録媒体およびその基板
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium and a substrate, and more particularly to a magnetic recording medium such as a hard disk used in a magnetic disk device and a substrate therefor. In particular, the present invention relates to a thin-film magnetic recording medium and a substrate thereof, which can both improve good CSS (contact start and stop) characteristics, improve sticking characteristics of the magnetic head on the medium surface, and lower the flying height of the magnetic head.

【0002】[0002]

【従来の技術】通常、ハードディスクは、その使用に際
し高速で回転して磁気ヘッドを浮上させ、ハードディス
クへの情報の書き込み/読み出し等をこの磁気ヘッドを
介して行っている。ハードディスクは、磁気特性の向上
のため、基板面上あるいは基板面上に設けられたNiP
メッキ等の非磁性体からなる下地層上に、磁気ディスク
の円周方向にほぼ同心円状に機械的研磨を行って加工痕
を残す加工(以下、機械的テキスチャという)が行われ
ている。
2. Description of the Related Art Normally, a hard disk is rotated at a high speed when it is used to levitate a magnetic head, and writing / reading of information to / from the hard disk is performed via the magnetic head. A hard disk is a NiP provided on the substrate surface or on the substrate surface in order to improve magnetic characteristics.
On an underlayer made of a non-magnetic material such as plating, mechanical polishing is performed in a substantially concentric shape in the circumferential direction of a magnetic disk to leave a processing mark (hereinafter referred to as mechanical texture).

【0003】近年の情報量の増大と装置の小型軽量化の
要求により、線記録密度およびトラック密度が高くな
り、1ビット当りの面積が小さくなってくると、従来の
ような機械的テキスチャによるスクラッチ傷は情報読み
出しの際にエラーとなる確率が高くなる。そのため、デ
ィスク内周部にある磁気ヘッドがCSSを行うCSS領
域のみに機械的テキスチャを施し、データ記録領域はそ
のままにする方法も提案されているが、データ記録領域
の面の高さがCSS領域の面の高さよりも高くなってし
まい、磁気ヘッドがシークする時にクラッシュするとい
う問題があった。
With the recent increase in the amount of information and the demand for smaller and lighter devices, the linear recording density and track density have increased, and the area per bit has decreased. The flaw has a high probability of causing an error when reading information. For this reason, a method has been proposed in which the magnetic head on the inner circumference of the disk provides mechanical texture only to the CSS area in which CSS is performed, and the data recording area is left as it is, but the height of the surface of the data recording area is the CSS area. There is a problem that the height of the magnetic head becomes higher than that of the magnetic head and the magnetic head crashes when seeking.

【0004】また、こうした機械的テキスチャに代え
て、レーザでテキスチャパターンを作る方法も提案され
ている。レーザによるテキスチャの例は、米国特許第
5,062,021号、同5,108,781号等に開
示されており、Nd−YAGの強パルスレーザ光により
NiP層を局所的に溶融し、溶融して形成された凹状の
穴部とその周囲の溶融したNiPが表面張力で盛り上が
って固化して形成された直径が2.5〜100μmのリ
ム部からなるクレータ状の凹凸を多数作り、円環状の凸
状リムによって磁気ヘッドとのCSS特性を改善する試
みが提案されている。しかし、この方法では磁気ヘッド
下面との接触面積が飛躍的には下がらず、磁気ヘッドと
ディスク間のスティッキングの問題は、機械的テキスチ
ャに較べて改善されているとは言い難い。
Also, a method of making a texture pattern by a laser has been proposed in place of such a mechanical texture. Examples of the texture by a laser are disclosed in US Pat. Nos. 5,062,021, 5,108,781, etc., and the NiP layer is locally melted and melted by the intense pulsed laser light of Nd-YAG. The concave hole formed by the above and the surrounding NiP melted up due to surface tension and solidified to form a large number of crater-like irregularities composed of a rim portion with a diameter of 2.5 to 100 μm Attempts have been proposed to improve the CSS characteristics with the magnetic head by the convex rims. However, with this method, the contact area with the lower surface of the magnetic head is not drastically reduced, and it is hard to say that the problem of sticking between the magnetic head and the disk is improved as compared with the mechanical texture.

【0005】また、突起をフォトリソグラフィを使って
形成する方法も提案されている。フォトリソグラフィに
よる例は、日本潤滑学会トライボロジー予稿集(199
1−5,A−11),(1992−10,B−6)に開
示されており、ディスクの全表面に対する面積比が0.
1〜5%の同心円状の突起をフォトリソグラフィによっ
て形成した磁気ディスクのCSSのテスト結果が示され
ている。しかし、この方法では、突起の頂部が平滑なた
め、磁気ヘッドの摺動回数と共に摩擦が増加するという
欠点があり、また工業化も容易でないという問題があっ
た。
Further, a method of forming the protrusion by using photolithography has been proposed. An example of photolithography is the Tribology Proceedings of Japan Society of Lubrication (199
1-5, A-11), (1992-10, B-6), the area ratio to the entire surface of the disk is 0.
The CSS test results of a magnetic disk in which 1 to 5% concentric protrusions are formed by photolithography are shown. However, in this method, since the tops of the protrusions are smooth, there is a drawback that friction increases with the number of sliding of the magnetic head, and there is a problem that industrialization is not easy.

【0006】[0006]

【発明が解決しようとする課題】このように、磁気記録
媒体のCSS領域では、突起の先端の面積を小さくして
磁気ヘッドとのスティッキングをなくし、しかも平均的
な面の高さをデータ記録領域とほぼ同じ高さにして、磁
気ヘッドをデータ記録領域とCSS領域との間でシーク
した時に磁気ヘッドの安定浮上高さの変動が少なく、ヘ
ッドクラッシュや磁気ヘッドの空間での不安定化が起こ
らない磁気記録媒体が望まれている。特に、磁気ヘッド
の極低浮上用高密度磁気記録媒体としては、CSS領域
においても磁気ヘッドの浮上安定高さが1.5μインチ
以下であり、且つCSS領域での磁気ヘッドのスティキ
ングを防ぐことのできる媒体が望まれている。
As described above, in the CSS area of the magnetic recording medium, the area of the tip of the protrusion is reduced to eliminate sticking with the magnetic head, and the average surface height is set to the data recording area. When the magnetic head is sought between the data recording area and the CSS area at almost the same height as above, the fluctuation of the stable flying height of the magnetic head is small, and a head crash or instability in the space of the magnetic head occurs. No magnetic recording medium is desired. Particularly, as a high-density magnetic recording medium for extremely low flying of a magnetic head, the flying height of the magnetic head is 1.5 μinches or less even in the CSS area, and sticking of the magnetic head in the CSS area is prevented. There is a demand for a medium that can do this.

【0007】[0007]

【課題を解決するための手段】本発明はこうした高密度
磁気記録用の媒体に対してなされたもので、その第1の
要旨は、基板上に、必要により下地層を介して磁性層を
有する磁気記録媒体において、基板または下地層の磁性
層側表面に、突起の高さが1〜40nmの範囲内であ
り、突起の先端から1nm低い位置における等高線で囲
まれた図形の面積が0.5μm2 以下であり、突起高さ
の1/2の高さにおける等高線で囲まれた図形の面積が
3μm2 以下であり、且つ磁気記録媒体表面に平行な断
面の形状がほぼ円形である突起が、1mm2 あたり10
〜108 個存在することを特徴とする磁気記録媒体、に
存する。
The present invention has been made to such a medium for high density magnetic recording, and the first gist thereof is to have a magnetic layer on a substrate with an underlayer if necessary. In the magnetic recording medium, the height of the protrusion is in the range of 1 to 40 nm on the surface of the substrate or the underlayer on the magnetic layer side, and the area of the figure surrounded by the contour line at a position 1 nm lower than the tip of the protrusion is 0.5 μm. A protrusion having a size of 2 or less, an area of a figure surrounded by contour lines at a height of ½ of the protrusion height of 3 μm 2 or less, and a cross section parallel to the surface of the magnetic recording medium having a substantially circular shape is 10 per 1 mm 2
The magnetic recording medium characterized by the presence 10 8 consists in.

【0008】また、本発明の第2の要旨は、必要により
下地層を設けた磁気記録媒体用基板において、基板また
は下地層の磁性層側表面に、突起の高さが1〜40nm
の範囲内であり、突起の先端から1nm低い位置におけ
る等高線で囲まれた図形の面積が0.5μm2 以下であ
り、突起高さの1/2の高さにおける等高線で囲まれた
図形の面積が3μm2 以下であり、且つ磁気記録媒体表
面に平行な断面の形状がほぼ円形である突起が、1mm
2 あたり10〜108 個存在することを特徴とする磁気
記録媒体用基板に存する。
A second aspect of the present invention is a substrate for a magnetic recording medium provided with an underlayer if necessary, wherein the height of the protrusion is 1 to 40 nm on the surface of the substrate or the underlayer on the magnetic layer side.
The area of the figure surrounded by the contour line at a position 1 nm lower than the tip of the projection is 0.5 μm 2 or less, and the area of the figure surrounded by the contour line at a height of 1/2 of the projection height. Is 3 μm 2 or less, and the protrusion whose cross section parallel to the surface of the magnetic recording medium is substantially circular is 1 mm.
It exists in a substrate for a magnetic recording medium, characterized in that there are 10 to 10 8 per 2 .

【0009】以下、本発明を詳細に説明する。本発明の
磁気記録媒体および基板は、基板または下地層の磁性層
側表面に、突起の高さが1〜40nmの範囲内であり、
突起の先端から1nm低い位置における等高線で囲まれ
た図形の面積が0.5μm2 以下であり、突起高さの1
/2の高さにおける等高線で囲まれた図形の面積が3μ
2 以下であり、且つ磁気記録媒体表面に平行な断面の
形状がほぼ円形である突起が、1mm2 あたり10〜1
8 個存在することを特徴とする。
The present invention will be described in detail below. In the magnetic recording medium and the substrate of the present invention, the height of the protrusion is in the range of 1 to 40 nm on the surface of the substrate or the underlayer on the magnetic layer side,
The area surrounded by contour lines at a position 1 nm lower than the tip of the protrusion has an area of 0.5 μm 2 or less,
The area surrounded by contour lines at a height of / 2 is 3μ
m 2 or less, and the magnetic recording medium surface substantially circular projection shape of a cross section parallel to the, 1 mm 2 per 10 to 1
0 and 8 characterized by the presence of.

【0010】この突起の高さは、好ましくは1〜30n
m、更に好ましくは10〜25nmであり、40nmを
超えるとCSS特性は良いが、本発明の目的とする磁気
ヘッドの安定浮上高さを1.5μインチ以下には下げる
ことが困難となり、1nm未満では基板が元来有する細
かな凹凸に埋もれてしまい所望の効果を得ることが困難
となる。本発明において、突起の高さは、JIS表面粗
さ(B0601−1982)により規定される、粗さ曲
線の中心線を基準とした場合の突起の高さを表す。
The height of this protrusion is preferably 1 to 30 n.
m, more preferably 10 to 25 nm, and if it exceeds 40 nm, the CSS characteristics are good, but it is difficult to reduce the stable flying height of the magnetic head to 1.5 μ inches or less, which is the object of the present invention, and it is less than 1 nm. Then, the substrate is buried in the fine irregularities which it originally has, and it becomes difficult to obtain a desired effect. In the present invention, the height of the protrusion represents the height of the protrusion with respect to the center line of the roughness curve defined by JIS surface roughness (B0601-1982).

【0011】また、本発明においては、高さが1〜40
nmの突起を1mm2 あたり10〜108 個有すること
を特徴としているが、該突起の存在密度が10個未満で
は基板のうねり等により磁気ヘッド下面を突起のみで支
えるのは難しく、また108個を超えた突起を作ろうと
すると互いに干渉しあって突起の高さをそろえるのが難
しくなるため、好ましい突起密度は1mm2 あたり10
2 〜106 個、更に好ましくは103 〜105 個であ
る。ここで突起密度は媒体全体での平均密度ではなく、
突起存在部での単位面積当たりの密度をいう。
In the present invention, the height is 1 to 40.
It is characterized by having 10 to 10 8 nm protrusions per mm 2, but if the existence density of the protrusions is less than 10, it is difficult to support the bottom surface of the magnetic head only by the protrusions due to the waviness of the substrate, and 10 8 Since it is difficult to make the heights of protrusions interfere with each other when trying to make protrusions exceeding the number of protrusions, the preferable protrusion density is 10 per 1 mm 2.
It is 2 to 10 6, and more preferably 10 3 to 10 5 . Here, the protrusion density is not the average density of the entire medium,
It means the density per unit area in the protrusion existing portion.

【0012】また、本発明における突起は、突起の先端
から1nm低い位置における等高線で囲まれた図形の面
積の平均値(以下、等高線面積という)が0.5μm2
以下であり、好ましくは、0.3μm2 以下、より好ま
しくは0.2μm2 以下、更に好ましくは0.1μm2
以下の値を有する。該等高線面積が0.5μm2 を超
え、且つ突起密度が1mm2 あたり105 個以上に高く
なるとると磁気ヘッドとの間にスティッキングが発生し
やすくなり、CSSを作動することが困難となる。
Further, in the projection according to the present invention, the average value of the area of the figure surrounded by the contour line at a position 1 nm lower than the tip of the projection (hereinafter referred to as the contour line area) is 0.5 μm 2.
Or less, preferably, 0.3 [mu] m 2 or less, more preferably 0.2 [mu] m 2 or less, more preferably 0.1 [mu] m 2
It has the following values: If the contour line area exceeds 0.5 μm 2 and the protrusion density increases to 10 5 or more per 1 mm 2 , sticking easily occurs between the contour and the magnetic head, and it becomes difficult to operate the CSS.

【0013】また、突起高さの1/2の高さの位置にお
ける等高線面積の大きさも、用いる潤滑剤や湿度等の環
境によってはCSS特性に影響するため、通常、3μm
2 以下、好ましくは2μm2 以下、更に好ましくは1μ
2 以下がよい。また、本発明における突起の断面形状
はほぼ円形であり、突起の先端形状が急峻になっている
ため潤滑材による磁気ヘッドの媒体表面への吸着防止の
効果を発揮することができる。
Further, the size of the contour line area at a position half the height of the protrusion also affects the CSS characteristics depending on the environment such as the lubricant used and the humidity, and is therefore usually 3 μm.
2 or less, preferably 2 μm 2 or less, more preferably 1 μm
m 2 or less is preferable. In addition, in the present invention, the cross-sectional shape of the protrusion is substantially circular and the tip shape of the protrusion is steep, so that the effect of preventing the lubricant from adsorbing to the medium surface of the magnetic head can be exhibited.

【0014】なお、こうした等高線面積や断面形状は、
レーザ干渉による表面形状測定装置、例えば、米国ザイ
ゴ社製ザイゴ〔ZYGO〕で測定が可能である。本発明
の好ましい態様として、突起は磁気ヘッドがCSSを行
なう領域(CSS領域)のみに存在し、データ記録領域
には存在しない磁気記録媒体が挙げられる。このような
構成にすることにより、データ記録領域においては磁性
層の配向のみを目的とした周方向の軽いテキスチャ等を
採用することも可能であり、表面をより平滑にすること
ができる。したがって、従来のようにCSSの改善を目
的とした表面の粗い機械的テキスチャに見られる深いス
クラッチ傷によるエラーを減少させることができる。
The contour line area and the cross-sectional shape are
It is possible to measure with a surface profile measuring device by laser interference, for example, Zygo [ZYGO] manufactured by Zygo Co., USA. As a preferred embodiment of the present invention, there is a magnetic recording medium in which the protrusion exists only in the area where the magnetic head performs CSS (CSS area) and not in the data recording area. With such a structure, it is possible to adopt a light texture in the circumferential direction or the like only for the orientation of the magnetic layer in the data recording area, and the surface can be made smoother. Therefore, it is possible to reduce errors due to deep scratches that are found in a mechanical texture having a rough surface for improving CSS as in the past.

【0015】また、さらに好ましい態様として、データ
記録領域に存在する突起の高さが、CSS領域に存在す
る突起の高さより低い磁気記録媒体が挙げられる。ま
た、データ記録領域に存在する突起の密度が、CSS領
域に存在する突起の密度より小さい磁気記録媒体も挙げ
られる。データ記録領域存在する突起高さ、密度を下げ
るのは、データ記録領域での磁気ヘッド浮上高さをでき
るだけ下げるのと、万が一、トラブルで磁気ヘッドがデ
ータ記録領域で停止した時に媒体面に吸着するのを防ぐ
ためである。通常は、データ記録領域のCSSは、10
0回もできれば十分であり、通常、データ記録領域の突
起高さはCSS領域の突起高さの1/2以下、また、密
度も1/10〜1/104 程度にするのが好ましい。
Further, as a more preferable embodiment, there is a magnetic recording medium in which the height of the protrusions present in the data recording area is lower than the height of the protrusions present in the CSS area. Further, there is also a magnetic recording medium in which the density of the protrusions present in the data recording area is smaller than the density of the protrusions present in the CSS area. The height and density of the protrusions existing in the data recording area should be reduced so that the flying height of the magnetic head in the data recording area should be reduced as much as possible, and if the magnetic head should stop in the data recording area due to some trouble, it may be attracted to the medium surface. This is to prevent Normally, the CSS of the data recording area is 10
It is sufficient to perform 0 times, and normally, it is preferable that the height of protrusions in the data recording area is 1/2 or less of the height of protrusions in the CSS area, and the density is about 1/10 to 1/10 4 .

【0016】さらに、CSS領域の全ての突起高さ、ま
たはCSS領域のデータ記録領域近傍の突起高さが、デ
ータ記録領域に向かって減少している磁気記録媒体も好
ましい態様としても挙げられる。これにより、データ記
録領域からCSS領域あるいは逆の方向に磁気ヘッドを
安定にシークすることができる。また、CSS領域にお
いて、半径方向の突起密度が、周方向の突起密度よりも
小さい磁気記録媒体も好ましい態様としても挙げられ
る。
Further, a magnetic recording medium in which the height of all protrusions in the CSS area or the height of protrusions in the vicinity of the data recording area of the CSS area decreases toward the data recording area is also a preferable embodiment. This makes it possible to stably seek the magnetic head from the data recording area to the CSS area or in the opposite direction. Further, a magnetic recording medium in which the protrusion density in the radial direction is smaller than the protrusion density in the circumferential direction in the CSS region is also mentioned as a preferable embodiment.

【0017】本発明の磁気記録媒体を製造するための好
ましい方法としては、基板または基板上にNiP等の下
地層を設けた磁気記録媒体用基板を回転させながら、そ
の表面に円周方向に沿って、出力を精度良く制御したエ
ネルギー線を照射して表面に突起を形成する方法等が挙
げられる。エネルギー線としては、パルスレーザ、電子
線、X線等が挙げられ、中でもパルスレーザを用いるこ
とが好ましく、特に位相が揃っており集光させた場合ス
ポット径が小さくなるAr等のガスレーザを変調器でパ
ルス状したものが好ましい。
As a preferred method for producing the magnetic recording medium of the present invention, the substrate or the substrate for magnetic recording medium having an underlayer such as NiP provided thereon is rotated while the surface thereof is circumferentially extended. Then, a method of forming projections on the surface by irradiating an energy beam whose output is controlled with high precision can be cited. Examples of energy beams include pulse lasers, electron beams, and X-rays. Among them, it is preferable to use pulse lasers. Particularly, gas lasers such as Ar that have a uniform phase and a small spot diameter when condensed are used as a modulator. The pulsed form is preferable.

【0018】本発明において、突起の生成機構は未だ十
分解明されていないが、次のように考えられる。パルス
レーザが照射された基板または下地層の局所的に過熱さ
れたスポット部は一部溶融し、基板の回転またはレーザ
の走査によって溶融部分が移動する。最初にレーザが当
った部分はその後、温度が下がり温度勾配が生ずる。一
般に、溶融液体においては、低温側の方が表面張力が大
きく、この表面張力の差により、最初にレーザで照射さ
れ溶融しその後低温になった部分が、後から溶融した部
分の液体を取り込み盛り上がる。したがって、最後に溶
融した部分には凹部ができ、レーザの走査方向に対して
突起の後部に凹部を有することとなる。つまり、突起の
中心を通り、レーザの走査方向を含む垂直断面形状が、
突起底部の片側部分に凹部を有することとなる。なお、
本発明において特徴的である円形の断面形状の突起を作
るためには、パルスレーザのスポット径を、通常、2μ
m以下、更に望ましくは1.5μm以下とする。その下
限は0.2μmが好ましい。出力は、通常、200mW
以下、更に好ましくは150mW以下であり、その下限
は50mWが好ましい。また、一つの突起を作るための
照射時間を、通常、100〜700nsec、特には1
00〜500nsecが好ましく、且つ、照射時間内に
ビームスポットが基板上を走査する距離は、通常、0.
5〜1.5μm、望ましくは0.75〜1.25μmの
範囲に制御することが好ましい。
In the present invention, the mechanism of protrusion formation has not been fully clarified yet, but it is considered as follows. The locally overheated spot portion of the substrate or the underlayer irradiated with the pulse laser is partially melted, and the molten portion is moved by the rotation of the substrate or the laser scanning. The part where the laser first hits then cools down, creating a temperature gradient. Generally, in a molten liquid, the surface tension is higher on the low temperature side, and due to this difference in surface tension, the portion that was first irradiated with a laser and melted and then became low temperature takes up the liquid of the later melted portion and rises. . Therefore, a concave portion is formed in the last melted portion, and a concave portion is provided at the rear portion of the protrusion with respect to the laser scanning direction. That is, the vertical cross-sectional shape that passes through the center of the protrusion and includes the laser scanning direction is
A recess is provided on one side of the bottom of the protrusion. In addition,
In order to form a protrusion having a circular cross-sectional shape, which is a feature of the present invention, the spot diameter of the pulse laser is usually 2 μm.
m or less, and more preferably 1.5 μm or less. The lower limit is preferably 0.2 μm. Output is usually 200mW
Hereafter, it is more preferably 150 mW or less, and its lower limit is preferably 50 mW. The irradiation time for making one protrusion is usually 100 to 700 nsec, and particularly 1
0 to 500 nsec is preferable, and the distance over which the beam spot scans the substrate within the irradiation time is usually 0.
It is preferable to control in the range of 5 to 1.5 μm, preferably 0.75 to 1.25 μm.

【0019】Al基板あるいはガラス基板等に、NiP
あるいはCr層を下地層として付けた基板にパルスレー
ザビームを走査した場合、上記のような特徴ある形状の
突起となる。本発明において、エネルギー線の走査方向
とは、静止したディスク上でエネルギー線が走査する方
向のみならず、エネルギー線は静止させておき、ディス
クを回転させた状態で照射する場合のディスクの回転方
向をも示す。
NiP on an Al substrate or glass substrate
Alternatively, when a pulsed laser beam is scanned on a substrate having a Cr layer as an underlayer, the protrusions have the above-described characteristic shapes. In the present invention, the scanning direction of the energy beam is not only the direction in which the energy beam scans on the stationary disk, but also the rotational direction of the disk when the energy beam is stationary and the disk is irradiated in a rotated state. Is also shown.

【0020】エネルギー線の走査速度あるいは基板の回
転速度が遅い場合、あるいはエネルギー線のパワーが大
きい場合等においては、熱収縮により突起底部の周囲に
凹部ができる場合もある。この現象の解明も十分ではな
いが、局所的に加熱されたスポット部は膨張し、その回
りは冷えていて変形しにくいため、膨張した部分は外気
ですぐに冷やされ突起として残るためと考えられる。
When the scanning speed of the energy rays or the rotation speed of the substrate is slow, or when the power of the energy rays is large, there is a case where a concave portion is formed around the bottom of the protrusion due to thermal contraction. Although this phenomenon has not been fully clarified, it is considered that the locally heated spot part expands and the surrounding area is cold and difficult to deform, so the expanded part is immediately cooled by the outside air and remains as a protrusion. .

【0021】また、本発明の突起の頂部は平坦ではな
く、適度な曲率を有している。米国特許第5,062,
021号、同5,108,781号記載の方法において
は、レーザビームの照射範囲が広く、かつレーザの出力
も1.5W等の大出力であるため、NiPの溶融範囲が
広く、溶融した液面の中心部が盛り上がらずにクレータ
状となってしまう。
Further, the tops of the projections of the present invention are not flat and have an appropriate curvature. US Pat. No. 5,062,
In the methods described in Nos. 021 and 5,108,781, the irradiation range of the laser beam is wide and the laser output is a large output such as 1.5 W. Therefore, the melting range of NiP is wide and the melted liquid The center of the surface does not rise and becomes a crater.

【0022】これに対し、本発明においては、エネルギ
ー線を狭い範囲に絞り、出力も低い条件下で精度良く突
起を制御するため、NiPの溶融範囲が狭く、溶融した
液面の中心部が凸状に盛り上がり、エネルギー線の走査
により液体中での温度差が発生して液体表面の形状が複
雑に変化する。したがって、条件により突起先端がより
急峻となり、また、固化した時に特徴的な突起形状にな
る点で前記米国特許とは大きく異なる。したがって、先
端の面積も非常に小さく、CSSにとって好ましい突起
ができる。
On the other hand, in the present invention, since the energy rays are narrowed to a narrow range and the protrusions are accurately controlled under the condition of low output, the melting range of NiP is narrow and the center of the melted liquid surface is convex. The temperature rises in the liquid due to the scanning of the energy rays, and the shape of the liquid surface changes in a complicated manner. Therefore, the tip of the protrusion becomes steeper depending on the conditions, and when it is solidified, it has a characteristic protrusion shape, which is a big difference from the US patent. Therefore, the area of the tip is also very small, and a protrusion preferable for CSS can be formed.

【0023】また、突起高さはレーザのスポット径、強
度、平均照射時間、およびディスクの線速度等を調節す
ることによって自由に制御することができ、突起の密度
は、1周当たりの突起の個数、パルスレーザの半径方向
の照射間隔、および上記の突起の高さを制御する条件を
調節することにより自由に制御することができる。例え
ば、パルスレーザの照射面積を変えるには、通常、対物
レンズの開口率を変えればよく、開口率が0.1〜0.
95の対物レンズを用いることにより、パルスレーザの
照射径は0.7〜6μm程度まで制御することができ
る。
The projection height can be freely controlled by adjusting the laser spot diameter, intensity, average irradiation time, disk linear velocity, and the like. It can be freely controlled by adjusting the number, the irradiation interval of the pulsed laser in the radial direction, and the conditions for controlling the height of the projections. For example, in order to change the irradiation area of the pulse laser, it is usually necessary to change the aperture ratio of the objective lens, and the aperture ratio is 0.1 to 0.
By using the 95 objective lens, the irradiation diameter of the pulse laser can be controlled to about 0.7 to 6 μm.

【0024】本発明において、基板としては、通常、ア
ルミニウム合金板またはガラス基板が用いられるが、
銅、チタン等の金属基板、セラミック基板、樹脂基板ま
たはシリコン基板等を用いることもできる。下地層とし
ては、好ましくはNiP合金層が挙げられ、通常、無電
解メッキ法またはスパッタ法により基板上に形成され
る。また、通常、この上にCr層を製膜するが、このC
r層に突起を作ることもできる。下地層の厚みはレーザ
照射による発熱と熱伝導による放熱の関係から重要であ
り、好ましくは50〜20,000nm、特に好ましく
は100〜15,000nmである。
In the present invention, an aluminum alloy plate or a glass substrate is usually used as the substrate,
A metal substrate of copper, titanium, or the like, a ceramic substrate, a resin substrate, a silicon substrate, or the like can also be used. The underlayer is preferably a NiP alloy layer, and is usually formed on the substrate by electroless plating or sputtering. In addition, a Cr layer is usually formed on top of this, but this C
It is also possible to form protrusions on the r layer. The thickness of the underlayer is important in view of the relationship between heat generation by laser irradiation and heat dissipation by heat conduction, and is preferably 50 to 20,000 nm, particularly preferably 100 to 15,000 nm.

【0025】下地層の上にはCr層、あるいはCu層等
を磁性層との間に設けるのが好ましく、その膜厚は通常
20〜200nm、好ましくは50〜100nmであ
る。下地層上または中間層上に設ける磁性層は、通常、
Co−P、Co−Ni−P、Co−Ni−Cr、Co−
Ni−Pt、Co−Cr−Ta、Co−Cr−Pt、C
o−Cr−Ta−Pt系合金等の強磁性合金薄膜を、無
電解メッキ、電気メッキ、スパッタ、蒸着等の方法によ
って成膜することにより形成され、その膜厚は、通常、
30から70nm程度である。
A Cr layer, a Cu layer, or the like is preferably provided on the underlayer between the magnetic layer and the Cr layer, and the thickness thereof is usually 20 to 200 nm, preferably 50 to 100 nm. The magnetic layer provided on the underlayer or the intermediate layer is usually
Co-P, Co-Ni-P, Co-Ni-Cr, Co-
Ni-Pt, Co-Cr-Ta, Co-Cr-Pt, C
It is formed by depositing a ferromagnetic alloy thin film such as an o-Cr-Ta-Pt-based alloy by a method such as electroless plating, electroplating, sputtering, vapor deposition, etc.
It is about 30 to 70 nm.

【0026】磁性層上には、通常、保護層が設けられる
が、保護層としては蒸着、スパッタ、プラズマCVD、
イオンプレーティング、湿式法等の方法により、炭素
膜、水素化カーボン膜、TiC、SiC等の炭化物膜、
SiN、TiN等の窒化膜等、SiO、Al23、Zr
O等の酸化物膜等が成膜される。これらのうち特に好ま
しくは、炭素膜、水素化カーボン膜が挙げられる。又、
保護層上には通常、潤滑剤層が設けられる。
A protective layer is usually provided on the magnetic layer. As the protective layer, vapor deposition, sputtering, plasma CVD,
A carbon film, a hydrogenated carbon film, a carbide film such as TiC, SiC, etc., by a method such as ion plating or a wet method,
SiN, TiN, etc. nitride films, etc., SiO, Al 2 O 3 , Zr
An oxide film of O or the like is formed. Of these, a carbon film and a hydrogenated carbon film are particularly preferable. or,
A lubricant layer is usually provided on the protective layer.

【0027】[0027]

【実施例】次に、実施例により本発明を更に具体的に説
明するが、本発明はその要旨を超えない限り以下の実施
例によって限定されるものではない。 実施例1〜5、比較例1〜5 直径95mmのディスク状Al合金基板上に膜厚10〜
20μmのNiPメッキを施した後、表面粗さRaが約
1nmになるように表面研磨を行ってNiP基板を得
た。
EXAMPLES Next, the present invention will be described more specifically by way of examples, but the present invention is not limited to the following examples unless it exceeds the gist. Examples 1 to 5, Comparative Examples 1 to 5 Film thickness 10 to 10 on a disk-shaped Al alloy substrate with a diameter of 95 mm
After NiP plating with a thickness of 20 μm, surface polishing was performed so that the surface roughness Ra was about 1 nm to obtain a NiP substrate.

【0028】次に、表−1に記載した強度に精度良く制
御されたアルゴンパルスレーザーを、表−1に記載した
条件下でNiP基板上のCSS領域に照射して突起を形
成させ、磁気ディスク用基板を得た。図1は、実施例1
で得られた基板のNiP層の表面形状を、レーザ干渉に
よる表面形状測定装置(米国ザイゴ社製「ZYGO」)
で観察した結果を表す図である。図2の(a)、(b)
は、図1で示した突起の、レーザ走査方向に平行な方向
を含む垂直断面図およびレーザ走査方向に対してと直角
な方向(磁気ディスクの半径方向)を含む垂直断面図を
それぞれ示したものであり、1は突起、2はレーザビー
ムの走査方向に対して突起の後ろ側の凹部を示す。図3
は図1で示した突起の水平断面形状を示したものであ
り、ほぼ円形をしていることがわかる。
Next, an argon pulse laser whose intensity is accurately controlled as shown in Table 1 was irradiated to the CSS region on the NiP substrate under the conditions shown in Table 1 to form protrusions, and the magnetic disk was formed. A substrate for use was obtained. FIG. 1 shows the first embodiment.
The surface shape of the NiP layer of the substrate obtained in 1. was measured by a laser interference surface shape measuring apparatus ("ZYGO" manufactured by Zygo, Inc., USA).
It is a figure showing the result observed by. 2A and 2B
1 is a vertical sectional view of the protrusion shown in FIG. 1 including a direction parallel to the laser scanning direction and a vertical sectional view including a direction (radial direction of the magnetic disk) perpendicular to the laser scanning direction. Where 1 is a protrusion and 2 is a recess on the rear side of the protrusion with respect to the scanning direction of the laser beam. FIG.
Shows the horizontal cross-sectional shape of the protrusion shown in FIG. 1, and it can be seen that it has a substantially circular shape.

【0029】つまり、本発明の突起は図1〜3に示すよ
うな特徴的な形状をしており、その孤立した突起の頂部
は平坦ではなく適度な曲率を有している。また、図4
は、比較例3で得られた基板のNiP層の表面形状を、
レーザ干渉による表面形状測定装置(米国ザイゴ社製
「ZYGO」)で観察した結果を表す図である。図5の
(a)、(b)は、図1で示した突起の、レーザ走査方
向に平行な方向を含む垂直断面図およびレーザ走査方向
に対してと直角な方向(磁気ディスクの半径方向)を含
む垂直断面図をそれぞれ示したものであり、図6は図4
で示した突起の水平断面形状を示したものであり、楕円
形をしている。
That is, the protrusion of the present invention has a characteristic shape as shown in FIGS. 1 to 3, and the top of the isolated protrusion is not flat but has a proper curvature. Also, FIG.
Is the surface shape of the NiP layer of the substrate obtained in Comparative Example 3,
It is a figure showing the result of having observed with the surface shape measuring apparatus by laser interference ("ZYGO" by the US Zigo company). 5A and 5B are vertical sectional views of the protrusion shown in FIG. 1 including a direction parallel to the laser scanning direction and a direction perpendicular to the laser scanning direction (radial direction of the magnetic disk). FIG. 6 is a vertical cross-sectional view each including FIG.
It shows the horizontal cross-sectional shape of the protrusion shown by, and has an elliptical shape.

【0030】次いで、スパッタ法により、上記基板のN
iP下地層上に、順次、Cr中間層(膜厚100n
m)、Co−Cr−Ta合金磁性膜(膜厚50nm)お
よびカーボン保護膜を(膜厚20nm)を形成し、その
後、浸漬法によりフッ素系液体潤滑剤(モンテエジソン
社製商品名DOL−2000)を2nmの膜厚に塗布し
て、磁気記録媒体を作製した。
Next, the N of the substrate is sputtered.
A Cr intermediate layer (film thickness 100 n is formed on the iP underlayer in order.
m), a Co-Cr-Ta alloy magnetic film (thickness 50 nm) and a carbon protective film (thickness 20 nm) are formed, and then a fluorine-based liquid lubricant (trade name DOL-2000 manufactured by Monte Edison Co., Ltd. is prepared by an immersion method. Was applied to a film thickness of 2 nm to prepare a magnetic recording medium.

【0031】また、比較例4は従来の機械的テキスチャ
法によりRaが約2nmの粗さのテキスチャを施したA
l合金基板を用いたこと以外は、実施例と同様のプロセ
スで磁気記録媒体を製造した。表−1に、実施例1〜5
および比較例2〜4において、突起を形成したときの条
件およびその測定結果(基板の線速度、レーザの強度、
レーザの平均照射時間、平均突起線密度(周方向/半径
方向)、平均突起高さ、突起の先端から1nm低いとこ
ろの等高線面積(1)、突起高さの1/2のところの等
高線面積(2)、突起の水平断面の形状)を示す。な
お、波長が488nmのArレーザの集光に用いた対物
レンズの開口率NAは全て0.6のものを用いた。な
お、エネルギーの84%が集中するスポット径は、1.
22×λ/NAで表される。
In Comparative Example 4, the texture A having Ra of about 2 nm was applied by the conventional mechanical texture method.
A magnetic recording medium was manufactured by the same process as in the example except that the 1-alloy substrate was used. Table 1 shows Examples 1 to 5
In Comparative Examples 2 to 4, the conditions when the protrusions were formed and the measurement results (the linear velocity of the substrate, the laser intensity,
Average laser irradiation time, average projection linear density (circumferential direction / radial direction), average projection height, contour area 1 nm lower than the tip of the projection (1), contour area 1/2 projection height ( 2), the shape of the horizontal cross section of the protrusion). The objective lens used for condensing the Ar laser having a wavelength of 488 nm had an aperture ratio NA of all 0.6. The spot diameter at which 84% of the energy is concentrated is 1.
It is represented by 22 × λ / NA.

【0032】[0032]

【表1】 表−1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 基板 レーサ゛ 平均 平均突 平均突 等高線面 突起 線速度 強度 照射時間 起密度 起高さ 積(μm2) 水平断面 (mm/sec) (mW) (μsec) (個/mm) (nm) (1)/(2) 形状 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例1 3200 100 0.31 100/100 22 0.07/0.93 円形状 2 3200 100 0.31 200/50 22 0.07/0.93 円形状 3 3200 100 0.31 50/50 22 0.07/0.93 円形状 4 3200 120 0.31 10/20 26 0.08/1.82 円形状 比較例1 レーザ照射無し 2 3200 20 0.31 100/100 1以上 3 1600 220 1.24 100/100 29 0.21/3.05 楕円状 4 機械的テキスチャ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[Table 1] Table-1 ----------------------------------- Substrate laser average average projection average projection Contour line Asperity Linear velocity Intensity Irradiation time Density Elevation product (μm 2 ) Horizontal cross section (mm / sec) (mW) (μsec) (pieces / mm) (nm) (1) / (2) Shape −−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Example 1 3200 100 0.31 100/100 22 0.07 / 0.93 circular shape 2 3200 100 0.31 200/50 22 0.07 / 0.93 Circular 3 3200 100 0.31 50/50 22 0.07 / 0.93 Circular 4 3200 120 0.31 10/20 26 0.08 / 1.82 Circular Comparative Example 1 No laser irradiation 2 3200 20 0.31 100/100 1 or more 3 1600 220 1.24 100/100 29 0.21 / 3.05 Elliptical 4 Mechanical texture −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−

【0033】表−2に、得られた磁気記録媒体の常温、
常湿でのCSSテスト前の静止摩擦係数(初期スティク
ション)およびCSS2万回後の摩擦力を示した。CS
Sテストはヘッド浮上量2.5μインチ、ロードグラム
6gfの薄膜ヘッド(スライダ材質Al23TiC)を
用いた。CSS領域の安定浮上高さは全て1.2〜1.
6μインチであった。表−3は、実施例1および比較例
3で得られた磁気記録媒体の30℃、湿度80%におけ
るCSSテスト結果を示す。
Table 2 shows the obtained magnetic recording medium at room temperature,
The coefficient of static friction (initial stiction) before the CSS test at normal humidity and the friction force after 20,000 CSS cycles are shown. CS
In the S test, a thin film head (slider material: Al 2 O 3 TiC) having a head flying height of 2.5 μinch and a loadgram of 6 gf was used. The stable flying heights in the CSS area are all 1.2 to 1.
It was 6 μ inches. Table 3 shows the CSS test results of the magnetic recording media obtained in Example 1 and Comparative Example 3 at 30 ° C. and 80% humidity.

【0034】[0034]

【表2】 表−2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 初期スティクション CSS2万回後の (摩擦係数) 摩擦力 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例1 0.17 3gf 2 0.18 3gf 3 0.37 12gf 4 0.23 16gf 比較例1 測定不能(吸着によりヘッドクラッシュ) 2 5.20 吸着してドライブ停止(200回目) 3 0.19 7gf 4 1.25 38gf −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Table 2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Initial stiction CSS after 20,000 times ( Friction coefficient) Friction force ------------------------------------------ Example 1 0.17 3gf 2 0.18 3gf 3 0.37 12gf 4 0.23 16gf Comparative Example 1 Unmeasurable (head crash due to adsorption) 2 5.20 Adsorption and drive stop (200th time) 3 0.19 7gf 4 1.25 38gf ----- −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

【0035】[0035]

【表3】 表−3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 初期スティクション CSS2万回後の (摩擦係数) 摩擦力 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例1 0.19 4gf 比較例3 0.24 吸着してドライブ停止(18,000回目) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Table 3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Initial stiction CSS After 20,000 times ( Friction coefficient) Friction force --------------------------------------- Example 1 0.19 4 gf Comparative Example 30 .24 Adsorption and drive stop (18,000th time) -----------------------------------------------

【0036】表−2、3から明らかなように、本発明に
よる磁気記録媒体は、CSS時の摩擦が極端に小さく、
またその性能の持続性が優れることが分かる。また、突
起の形状によってもCSSの特性は微妙に変化し、例え
ば、比較例3のように磁気ヘッドの走行方向に長い楕円
状の突起は常温、常湿の条件では、CSS特性は良好で
あるが、高温、高湿の条件下では、CSSの回数を重ね
るにしたがって特性が劣化する。それに対し、突起の先
端が急峻な実施例1のほぼ円形断面を有する突起は、高
温、高湿下でも特性の劣化は緩やかである。
As is clear from Tables 2 and 3, the magnetic recording medium according to the present invention has extremely small friction during CSS,
Also, it can be seen that the durability of the performance is excellent. Also, the CSS characteristics slightly change depending on the shape of the protrusions. For example, an elliptical protrusion long in the traveling direction of the magnetic head as in Comparative Example 3 has good CSS characteristics under normal temperature and normal humidity conditions. However, under the conditions of high temperature and high humidity, the characteristics deteriorate as the number of times of CSS is repeated. On the other hand, the protrusion having the substantially circular cross section of Example 1 in which the tip of the protrusion is steep has a gradual deterioration in characteristics even under high temperature and high humidity.

【0037】[0037]

【発明の効果】本発明においては、基板または下地層の
表面上に突起の形状および高さとその先端部分での水平
方向に対する断面積、突起の存在領域および密度が制御
された表面形状が形成するため、磁気ヘッド下面と磁気
記録媒体の表面との接触面積が少なく、CSS時の摩擦
が極端に小さくなり、また、磁気ヘッドの媒体表面への
スティキングも全く発生しなくなる。
According to the present invention, a surface shape is formed on the surface of a substrate or an underlayer in which the shape and height of the projection and the cross-sectional area at the tip portion thereof in the horizontal direction, the area where the projection exists and the density are controlled. Therefore, the contact area between the lower surface of the magnetic head and the surface of the magnetic recording medium is small, friction during CSS is extremely small, and sticking of the magnetic head to the medium surface does not occur at all.

【0038】また、周方向の突起密度を高めにし、半径
方向の突起密度を小さくしてもCSS特性があまり劣化
しない性質を利用すると、突起形成に要する時間が短縮
できる利点がある。また、磁気ヘッドのCSS領域のみ
にこうした突起を作った場合、平均的な面の高さはほと
んど変わらないため、磁気ヘッドをデータ記録領域とC
SS領域との間でシークした時に磁気ヘッドの安定浮上
高さの変動がほとんどなく、ヘッドクラッシュや磁気ヘ
ッドの空間での不安定化が起こらない。更に、この突起
の高さや密度をデータ記録領域に近づくにしたがって制
御することもできるため、磁気ヘッドのデータ記録領域
とCSS領域との間でのシークは極めて滑らかに行なう
ことができる。
Further, there is an advantage that the time required for forming the protrusions can be shortened by utilizing the property that the CSS characteristics are not significantly deteriorated even if the protrusion density in the circumferential direction is increased and the protrusion density in the radial direction is decreased. Further, when such a protrusion is formed only in the CSS area of the magnetic head, the average height of the surface is almost the same, so that the magnetic head is set to the data recording area C
There is almost no fluctuation in the stable flying height of the magnetic head when seeking to the SS area, and head crashes and instability in the space of the magnetic head do not occur. Further, since the height and density of the protrusions can be controlled as they approach the data recording area, the seek between the data recording area and the CSS area of the magnetic head can be performed extremely smoothly.

【0039】この場合データ記録領域では、従来のよう
なCSSの改善を目的とした機械的テキスチャによる表
面の傷を作る必要がないので、磁気ヘッドのフライング
ハイトを小さくでき、また、前記傷によるデータのエラ
ーも減少するため高密度の磁気記録媒体の製造が可能と
なり、工業的な意義は極めて大きい。
In this case, in the data recording area, since it is not necessary to make a scratch on the surface by mechanical texture for the purpose of improving CSS as in the conventional case, the flying height of the magnetic head can be made small, and the data due to the scratch can be reduced. Since the error is also reduced, it is possible to manufacture a high-density magnetic recording medium, which is of great industrial significance.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られたNiP基板表面の突起の形
状を示す斜視図である。
FIG. 1 is a perspective view showing the shape of protrusions on the surface of a NiP substrate obtained in Example 1.

【図2】実施例1で得られたNiP基板表面の突起のレ
ーザ走査方向に平行な方向を含む垂直断面図(a)およ
びレーザ走査方向に対してと直角な方向を含む垂直断面
図(b)である。
FIG. 2A is a vertical sectional view including a direction parallel to a laser scanning direction of a protrusion on a NiP substrate surface obtained in Example 1 and FIG. 2B is a vertical sectional view including a direction perpendicular to the laser scanning direction. ).

【図3】実施例1で得られたNiP基板表面の突起の水
平断面形状を示した図である。
FIG. 3 is a view showing a horizontal cross-sectional shape of protrusions on the surface of a NiP substrate obtained in Example 1.

【図4】比較例3で得られたNiP基板表面の突起の形
状を示す斜視図である。
FIG. 4 is a perspective view showing the shape of protrusions on the surface of a NiP substrate obtained in Comparative Example 3.

【図5】比較例3で得られたNiP基板表面の突起のレ
ーザ走査方向に平行な方向を含む垂直断面図(a)およ
びレーザ走査方向に対してと直角な方向を含む垂直断面
図(b)である。
5A is a vertical sectional view including a direction parallel to a laser scanning direction of a protrusion on a surface of a NiP substrate obtained in Comparative Example 3 and FIG. 5B is a vertical sectional view including a direction perpendicular to the laser scanning direction. ).

【図6】比較例3で得られたNiP基板表面の突起の水
平断面形状を示した図である。
6 is a diagram showing a horizontal cross-sectional shape of protrusions on the surface of a NiP substrate obtained in Comparative Example 3. FIG.

【符号の説明】[Explanation of symbols]

1 突起 2 凹部 1 protrusion 2 recess

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神津 順一 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junichi Kozu 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa Mitsubishi Chemical Corporation Yokohama Research Institute

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、必要により下地層を介して磁
性層を有する磁気記録媒体において、基板または下地層
の磁性層側表面に、突起の高さが1〜40nmの範囲内
であり、突起の先端から1nm低い位置における等高線
で囲まれた図形の面積が0.5μm2 以下であり、突起
高さの1/2の高さにおける等高線で囲まれた図形の面
積が3μm2 以下であり、且つ磁気記録媒体表面に平行
な断面の形状がほぼ円形である突起が、1mm2 あたり
10〜108 個存在することを特徴とする磁気記録媒
体。
1. In a magnetic recording medium having a magnetic layer on a substrate, optionally with an underlayer, the height of the protrusions is in the range of 1 to 40 nm on the surface of the substrate or the underlayer on the magnetic layer side, The area surrounded by the contour line at a position 1 nm lower than the tip of the protrusion is 0.5 μm 2 or less, and the area surrounded by the contour line at half the height of the protrusion is 3 μm 2 or less. The magnetic recording medium is characterized in that there are 10 to 10 8 protrusions per 1 mm 2 which have a substantially circular cross section parallel to the surface of the magnetic recording medium.
【請求項2】 突起の底部近傍に凹部を有する請求項1
に記載の磁気記録媒体。
2. A recess is provided near the bottom of the protrusion.
3. The magnetic recording medium according to claim 1.
【請求項3】 磁気ヘッドがCSS(コンタクトスター
トアンドストップ)を行なうCSS領域のみに突起が存
在する請求項1または2に記載の磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein the magnetic head has protrusions only in a CSS region where CSS (contact start and stop) is performed.
【請求項4】 データ記録領域に存在する突起の高さ
が、CSS領域に存在する突起の高さより低い請求項1
または2に記載の磁気記録媒体。
4. The height of the protrusion existing in the data recording area is lower than the height of the protrusion existing in the CSS area.
Alternatively, the magnetic recording medium according to 2.
【請求項5】 データ記録領域に存在する突起の密度
が、CSS領域に存在する突起の密度より小さい請求項
1または2に記載の磁気記録媒体。
5. The magnetic recording medium according to claim 1, wherein the density of the protrusions present in the data recording area is smaller than the density of the protrusions present in the CSS area.
【請求項6】 CSS領域の突起高さが、データ記録領
域に向かって減少している請求項1ないし5のいずれか
1項に記載の磁気記録媒体。
6. The magnetic recording medium according to claim 1, wherein the protrusion height of the CSS area decreases toward the data recording area.
【請求項7】 CSS領域において、データ記録領域近
傍の突起高さが、データ記録領域に向かって減少してい
る請求項1ないし6のいずれか1項に記載の磁気記録媒
体。
7. The magnetic recording medium according to claim 1, wherein the protrusion height near the data recording area in the CSS area decreases toward the data recording area.
【請求項8】 CSS領域において、半径方向の突起密
度が、周方向の突起密度よりも小さい請求項1ないし7
のいずれか1項に記載の磁気記録媒体。
8. The protrusion density in the radial direction is smaller than the protrusion density in the circumferential direction in the CSS region.
The magnetic recording medium according to any one of 1.
【請求項9】 突起が、エネルギー線照射により形成さ
れてなる請求項1ないし8のいずれか1項に記載の磁気
記録媒体。
9. The magnetic recording medium according to claim 1, wherein the protrusions are formed by irradiation with energy rays.
【請求項10】 突起の中心を通り、照射エネルギー線
の走査方向に平行な垂直断面形状が、突起底部の片側近
傍に凹部を有することを特徴とする請求項9記載の磁気
記録媒体。
10. The magnetic recording medium according to claim 9, wherein a vertical cross-sectional shape that passes through the center of the protrusion and is parallel to the scanning direction of the irradiation energy ray has a recess near one side of the bottom of the protrusion.
【請求項11】 必要により下地層を設けた磁気記録媒
体用基板において、基板または下地層の磁性層側表面
に、突起の高さが1〜40nmの範囲内であり、突起の
先端から1nm低い位置における等高線で囲まれた図形
の面積が0.5μm2 以下であり、突起高さの1/2の
高さにおける等高線で囲まれた図形の面積が3μm2
下であり、且つ磁気記録媒体表面に平行な断面の形状が
ほぼ円形である突起が、1mm2 あたり10〜108
存在することを特徴とする磁気記録媒体用基板。
11. A substrate for a magnetic recording medium optionally provided with an underlayer, wherein the height of the protrusion is in the range of 1 to 40 nm on the surface of the substrate or the underlayer on the magnetic layer side, and is 1 nm lower than the tip of the protrusion. The area of the figure surrounded by the contour line at the position is 0.5 μm 2 or less, the area of the figure surrounded by the contour line at the height of 1/2 of the protrusion height is 3 μm 2 or less, and the surface of the magnetic recording medium A substrate for a magnetic recording medium, characterized in that there are 10 to 10 8 protrusions per mm 2 having a substantially circular cross section parallel to the substrate.
【請求項12】 突起が、エネルギー線照射により形成
されてなることを特徴とする請求項11に記載の磁気記
録媒体。
12. The magnetic recording medium according to claim 11, wherein the projection is formed by irradiation with energy rays.
【請求項13】 突起の中心を通り、照射エネルギー線
の走査方向に平行な垂直断面形状が、突起底部の片側近
傍に凹部を有することを特徴とする請求項11または1
2に記載の磁気記録媒体。
13. The vertical cross-sectional shape, which passes through the center of the protrusion and is parallel to the scanning direction of the irradiation energy ray, has a recess near one side of the bottom of the protrusion.
2. The magnetic recording medium according to 2.
JP32587194A 1994-07-04 1994-12-27 Magnetic recording medium and substrate Pending JPH08180400A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP32587194A JPH08180400A (en) 1994-12-27 1994-12-27 Magnetic recording medium and substrate
KR1019950019855A KR960005459A (en) 1994-07-04 1995-07-03 Magnetic recording medium, manufacturing method thereof, and recording and reading method
DE19524220A DE19524220A1 (en) 1994-07-04 1995-07-03 Magnetic recording medium allowing head suspension distance to be reduced for hard disc scanning
US08/937,045 US5928759A (en) 1994-07-04 1997-09-24 Magnetic recording medium, method of producing the same, and recording and reading-out method
US09/306,909 US6217970B1 (en) 1994-07-04 1999-05-07 Magnetic recording medium, method of producing the same, and recording and reading-out method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32587194A JPH08180400A (en) 1994-12-27 1994-12-27 Magnetic recording medium and substrate

Publications (1)

Publication Number Publication Date
JPH08180400A true JPH08180400A (en) 1996-07-12

Family

ID=18181554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32587194A Pending JPH08180400A (en) 1994-07-04 1994-12-27 Magnetic recording medium and substrate

Country Status (1)

Country Link
JP (1) JPH08180400A (en)

Similar Documents

Publication Publication Date Title
US6217970B1 (en) Magnetic recording medium, method of producing the same, and recording and reading-out method
US6057984A (en) Method for data writing/read-out using a contact start and stop system
US6773782B2 (en) Magnetic memory medium having a magnetic film laminated on a substrate and a non-magnetic film formed thereon, and method of manufacturing the same
JP3013717B2 (en) Magnetic recording medium and substrate
JPH0877554A (en) Magnetic recording medium and substrate
JP2953364B2 (en) Magnetic recording medium and substrate
JPH08180400A (en) Magnetic recording medium and substrate
JP3146917B2 (en) Manufacturing method of magnetic recording medium
JP2970466B2 (en) Manufacturing method of magnetic recording medium
JPH08147692A (en) Manufacture of magnetic recording medium
JPH08147687A (en) Magnetic recording medium and its manufacture
JP2856131B2 (en) Method for forming protrusions on magnetic recording medium and magnetic recording medium
JPH08129749A (en) Magnetic recording medium and substrate
JPH08147684A (en) Magnetic recording medium and substrate
JPH08153325A (en) Magnetic recording medium and substrate
JP3629275B2 (en) Method for forming texture in magnetic recording medium by laser irradiation using multiple lens focusing
JPH1186279A (en) Magnetic recording medium and substrate
JPH08287457A (en) Production of magnetic recording medium
JPH08147682A (en) Magnetic disk and substrate for magnetic disk and recording and reproduction method
JPH097168A (en) Production of magnetic recording medium
JPH09180176A (en) Magnetic disk and recording/reproducing method
US5945197A (en) Laser texturing of magnetic recording medium using multiple lens focusing
JPH09231562A (en) Magnetic recording medium and its production
JP2001067660A (en) Production of magnetic recording medium
JPH08147916A (en) Recording and reproducing method