JPH08147682A - Magnetic disk and substrate for magnetic disk and recording and reproduction method - Google Patents

Magnetic disk and substrate for magnetic disk and recording and reproduction method

Info

Publication number
JPH08147682A
JPH08147682A JP29329494A JP29329494A JPH08147682A JP H08147682 A JPH08147682 A JP H08147682A JP 29329494 A JP29329494 A JP 29329494A JP 29329494 A JP29329494 A JP 29329494A JP H08147682 A JPH08147682 A JP H08147682A
Authority
JP
Japan
Prior art keywords
magnetic
protrusion
css
protrusions
magnetic disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29329494A
Other languages
Japanese (ja)
Inventor
Yoji Arita
陽二 有田
Yuzo Seo
雄三 瀬尾
Ryuichi Yoshiyama
龍一 芳山
Mitsunori Mochida
光範 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP29329494A priority Critical patent/JPH08147682A/en
Priority to KR1019950019855A priority patent/KR960005459A/en
Priority to DE19524220A priority patent/DE19524220A1/en
Publication of JPH08147682A publication Critical patent/JPH08147682A/en
Priority to US08/937,045 priority patent/US5928759A/en
Priority to US09/306,909 priority patent/US6217970B1/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE: To reduce the floating height of a head by providing long projections and short projections in a contact start and stop CSS region, increasing the number of the long projections in the vicinity of a recording region and increasing the number of the short projections in the vicinity of an inner circumference. CONSTITUTION: The range of 21 to 18mm of a radius from the center of a magnetic disk is adopted as a CSS region and 20 pieces of long projections are formed per the length of 1mm in a radial direction in which the ratio of the major axis and the short axis of the cross section of a bottom part is 3. The intensity of a laser is changed within the range of 60 to 105mW, thereby changing the height of the projections within the range of 5 to 30nm. Short projections are formed within the range of 20 to 19mm from the center of the magnetic disk, and the intensity of a laser is changed within the range of 95 to 220mW, thereby changing the height of the projections within the range of 30 to 70nm. Further, in the stop position of a magnetic head within the range of 19 to 18mm of a radius from the center of the magnetic disk, the short projections are formed, and the height of the projections is made so as to be the constant height of about 70nm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録媒体用装置に
使用されるハードディスク等の磁気ディスク及び磁気デ
ィスク用基板並びに記録再生方法に関し、特に、良好な
CSS特性を保ちながら磁気ヘッドの媒体表面へのステ
ィッキング特性の向上と磁気ヘッドの低浮上化を同時に
可能にする磁気ディスク及び磁気ディスク用基板並びに
記録再生方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic disk such as a hard disk used in an apparatus for a magnetic recording medium, a substrate for the magnetic disk, and a recording / reproducing method, and more particularly to a medium surface of a magnetic head while maintaining good CSS characteristics. The present invention relates to a magnetic disk, a magnetic disk substrate, and a recording / reproducing method capable of simultaneously improving sticking characteristics to the magnetic head and lowering the flying height of the magnetic head.

【0002】[0002]

【従来の技術】通常、ハードディスクへの情報の書き込
み/読み出し等は、磁気ヘッドを介して行っており、そ
の際、ハードディスクは高速で回転して磁気ヘッドを浮
上させている。ハードディスクは、磁気特性の向上のた
めに、ディスクの基板面又は基板面上に設けられたNi
Pメッキ等の非磁性体からなる下地層上に、磁気ディス
クの円周方向にほぼ同心円状に機械的研磨を行って加工
痕を残す加工(以下、機械的テキスチャという)が行わ
れている。
2. Description of the Related Art Normally, writing / reading of information to / from a hard disk is performed via a magnetic head, and at that time, the hard disk rotates at high speed to levitate the magnetic head. A hard disk is a substrate surface of a disk or a Ni provided on the substrate surface for improving magnetic characteristics.
On a base layer made of a non-magnetic material such as P plating, mechanical polishing is performed in a circumferential direction of a magnetic disk in a substantially concentric manner to leave a processing mark (hereinafter, referred to as mechanical texture).

【0003】ハードディスクは、近年の情報量の増大と
装置の小型軽量化の要求により、線記録密度及びトラッ
ク密度が高くなり、1ビット当りの面積が小さくなって
くると、従来のような機械的テキスチャによるスクラッ
チ傷は情報読み出しの際にエラーとなる確率が高くな
る。そのため、磁気ディスク内周部にあるCSS領域の
みに機械的テキスチャを施し、データ記録領域はそのま
まにする方法が提案されているが、この場合は、データ
記録領域の面がCSS領域の面の高さよりも高くなって
しまい、該段差を滑らかな傾斜にすることが難しく、磁
気ヘッドがシークする時にクラッシュするという問題が
あった。
With the recent increase in the amount of information and the demand for smaller and lighter devices, a hard disk has a high linear recording density and a high track density, and the area per bit becomes smaller. Scratch scratches due to texture have a high probability of causing an error when reading information. Therefore, a method has been proposed in which only the CSS area on the inner circumference of the magnetic disk is mechanically textured and the data recording area is left as it is. However, in this case, the surface of the data recording area is higher than the surface of the CSS area. However, there is a problem in that it is difficult to make the step have a smooth slope, and the magnetic head crashes when seeking.

【0004】また、こうした機械的テキスチャに代え
て、レーザでテキスチャパターンを作る方法も提案され
ている。レーザによるテキスチャの例は、米国特許第
5,062,021号、同5,108,781号に開示
されており、Nd−YAGの強パルスレーザ光によりN
iP層を局所的に溶融することにより、溶融して形成さ
れた凹状の穴部と、その周囲の溶融したNiPが表面張
力により盛り上がって固化して形成された直径が2.5
〜100μmのリム部からなるクレータ状の凹凸を多数
作り、円環状の凸状リムによって磁気ヘッドとのCSS
特性を改善する試みが提案されている。
Also, a method of making a texture pattern by a laser has been proposed in place of such a mechanical texture. Examples of laser textures are disclosed in US Pat. Nos. 5,062,021 and 5,108,781, and Nd-YAG strong pulse laser light is used to generate N.
By locally melting the iP layer, the concave hole formed by melting and the molten NiP around the hole are raised by surface tension and solidified to form a diameter of 2.5.
A large number of crater-shaped irregularities consisting of a rim portion of ~ 100 μm are made, and the ring-shaped convex rim makes CSS with a magnetic head.
Attempts to improve the properties have been proposed.

【0005】この方法を用いると、磁気ディスクのCS
S領域のみにテキスチャを行うことが可能である。しか
し、この場合でも、磁気ヘッドのスティッキングが起こ
らないようにするためにはCSS領域の突起高さはある
一定の高さ以上必要であり、その突起の高さの分だけグ
ライド高さは高くなる。したがって、媒体のグライド高
さが、CSS領域のグライド高さで規定されてしまうた
め、データ記録領域においは過剰なヘッド浮上高さにな
ってしまい、記録密度を十分上げることができないとい
う問題があった。
When this method is used, the CS of the magnetic disk is
It is possible to texture only the S area. However, even in this case, in order to prevent sticking of the magnetic head, the protrusion height in the CSS region needs to be a certain height or more, and the glide height increases by the height of the protrusion. . Therefore, since the glide height of the medium is defined by the glide height of the CSS area, the head flying height becomes excessive in the data recording area, and the recording density cannot be sufficiently increased. It was

【0006】[0006]

【発明が解決しようとする課題】したがって、磁気ディ
スクのデータ記録領域における磁気ヘッドの安定浮上高
さを、データ記録領域のグライドで規定されるように十
分低くすることができ、また、CSS領域においてはス
ティッキングが起こらないような適度な高さのある突起
の上に磁気ヘッドを停止させることが望まれてている。
Therefore, the stable flying height of the magnetic head in the data recording area of the magnetic disk can be made sufficiently low as defined by the glide of the data recording area, and in the CSS area. It is desired to stop the magnetic head on a protrusion having an appropriate height so that sticking does not occur.

【0007】[0007]

【課題を解決するための手段】本発明は、こうした高密
度記録用磁気ディスクの性能を十分引き出すことを目的
になされたものであり、本発明の第1の要旨は、非磁性
基板上に、少なくとも下地層及び磁性層を有する磁気記
録媒体において、非磁性基板又は下地層の磁性層側表面
の磁気ヘッドがコンタクトスタートアンドストップ(C
SS)を行うCSS領域に長尺突起及び短尺突起を有し
ており、データ記録領域近傍のCSS領域においては長
尺突起の割合が多く、ディスク内周部近傍のCSS領域
においては短尺突起の割合が多く、且つ突起の高さがデ
ータ記録領域に向かって漸減していることを特徴とする
磁気ディスク、に存する。
The present invention has been made for the purpose of fully utilizing the performance of such a magnetic disk for high density recording. The first gist of the present invention is to provide a non-magnetic substrate on a non-magnetic substrate. In a magnetic recording medium having at least an underlayer and a magnetic layer, the magnetic head on the magnetic layer side surface of the non-magnetic substrate or the underlayer is in contact start and stop (C
The CSS area for performing SS) has long protrusions and short protrusions. The proportion of long protrusions is large in the CSS area near the data recording area, and the proportion of short protrusions in the CSS area near the inner circumference of the disc. And the height of the protrusions gradually decreases toward the data recording area.

【0008】また、本発明の第2の要旨は、非磁性基板
上に下地層を有する磁気ディスク用基板であって、非磁
性基板又は下地層の磁性層側表面の磁気ヘッドがコンタ
クトスタートアンドストップ(CSS)を行うCSS領
域に長尺突起及び短尺突起を有しており、データ記録領
域近傍のCSS領域においては長尺突起の割合が多く、
ディスク内周部近傍のCSS領域においては短尺突起の
割合が多く、且つ突起の高さがデータ記録領域に向かっ
て漸減していることを特徴とする磁気ディスク用基板、
に存する。
A second aspect of the present invention is a magnetic disk substrate having an underlayer on a nonmagnetic substrate, wherein the magnetic head on the magnetic layer side surface of the nonmagnetic substrate or the underlayer makes contact start and stop. (CSS) has long protrusions and short protrusions in the CSS area, and the proportion of long protrusions is large in the CSS area near the data recording area.
In the CSS area near the inner circumference of the disk, the ratio of short projections is large, and the height of the projections gradually decreases toward the data recording area.
Exist in.

【0009】さらに、本発明の第3の要旨は、磁気ヘッ
ドによる磁気ディスクに対するデータの読み出し書き込
みをコンタクトスタートアンドストップ(CSS)方式
によって行う記録再生方法において、磁気ディスクとし
て、非磁性基板又は下地層の磁性層側表面の磁気ヘッド
がコンタクトスタートアンドストップ(CSS)を行う
CSS領域に長尺突起及び短尺突起を有しており、デー
タ記録領域近傍のCSS領域においては長尺突起の割合
が多く、ディスク内周部近傍のCSS領域においては短
尺突起の割合が多く、且つ突起の高さがデータ記録領域
に向かって漸減している磁気ディスクを使用し、長尺突
起の割合の割合が多いデータ記録領域近傍のCSS領域
において、磁気ヘッドの磁気ディスクへの降下及び磁気
ディスクからの浮上を行い、短尺突起の割合が多いディ
スク内周部近傍のCSS領域において、磁気ヘッドを静
止させることを特徴とする記録再生方法、に存する。
Further, a third aspect of the present invention is a recording / reproducing method of reading / writing data from / to a magnetic disk by a magnetic head by a contact start and stop (CSS) system, wherein the magnetic disk is a non-magnetic substrate or an underlayer. The magnetic head on the surface of the magnetic layer has long protrusions and short protrusions in the CSS area for performing contact start and stop (CSS), and the proportion of long protrusions is large in the CSS area near the data recording area. In the CSS area near the inner circumference of the disk, a large number of short protrusions are used, and the height of the protrusion is gradually reduced toward the data recording area. In the CSS area near the area, the magnetic head drops to the magnetic disk and floats from the magnetic disk. Was carried out, in the CSS region near the peripheral portion discs large proportion of the short projections consists in recording and reproducing method, characterized in that for stationary magnetic head.

【0010】以下、本発明を詳細に説明する。本発明で
は、磁気ディスク表面のデータ記録領域近傍のCSS領
域(磁気ヘッドのランディング領域)において長尺突起
の割合が多い磁気ディスクを用いること、この磁気ディ
スクに対して磁気ヘッドがCSSを行なう時に、磁気ヘ
ッドの磁気ディスクへの降下及び磁気ディスクからの浮
上が長尺突起の割合が多いCSS領域で行なうこと、磁
気ディスクの低速回転に伴い磁気ヘッドをデータ記録領
域又はCSS領域へ動かすこと、また磁気ヘッドの最終
的な静止位置が突起高さの高いディスク内周部近傍のC
SS領域であることを特徴とする。
Hereinafter, the present invention will be described in detail. In the present invention, a magnetic disk having a large proportion of long protrusions in the CSS area (landing area of the magnetic head) near the data recording area on the surface of the magnetic disk is used, and when the magnetic head performs CSS on this magnetic disk, The descent of the magnetic head to the magnetic disk and the levitating from the magnetic disk are performed in the CSS area with a large proportion of long protrusions, the magnetic head is moved to the data recording area or the CSS area as the magnetic disk rotates at low speed, and The final stationary position of the head is C near the inner circumference of the disk where the protrusion height is high.
It is characterized by being an SS area.

【0011】なお、磁気ヘッドの突起高さの高いディス
ク内周部近傍のCSS領域への移動は、磁気ヘッドがス
ティッキングを起こす前であれば、媒体が停止した直後
でもよい。本発明の磁気ディスクにおいて、非磁性基板
としては、通常シリコン又はアルミニウム合金等の基板
が好ましく用いられるが、銅、チタン等の金属基板、セ
ラミック基板等を用いることもできる。通常、非磁性基
板の材質は、レーザ照射による発熱と熱伝導による放熱
の関係から、表面の反射率が小さく、熱拡散率の小さい
ものが望ましい。
The magnetic head may be moved to the CSS area in the vicinity of the inner peripheral portion of the disk where the projection height is high, immediately before the magnetic head is stopped, as long as the magnetic head is not sticking. In the magnetic disk of the present invention, as the non-magnetic substrate, usually a substrate made of silicon or aluminum alloy is preferably used, but a metal substrate made of copper, titanium or the like, a ceramic substrate or the like can also be used. Generally, the material of the non-magnetic substrate is preferably one having a small surface reflectance and a small thermal diffusivity in view of the relationship between heat generation by laser irradiation and heat dissipation by heat conduction.

【0012】下地層は、通常、非磁性体からなり、好ま
しくはNiP合金層であり、通常、無電解メッキ法又は
スパッタ法により形成される。また、その厚みは、好ま
しくは50〜20,000nm、特に好ましくは100
〜15,000nmである。下地層の上にはCr層、あ
るいはCu層等の中間層を磁性層との間に設けるのが好
ましく、その膜厚は、通常、20〜200nm、好まし
くは50〜100nmである。
The underlayer is usually made of a nonmagnetic material, preferably a NiP alloy layer, and is usually formed by an electroless plating method or a sputtering method. The thickness is preferably 50 to 20,000 nm, particularly preferably 100.
˜15,000 nm. An intermediate layer such as a Cr layer or a Cu layer is preferably provided between the magnetic layer and the underlayer, and the thickness thereof is usually 20 to 200 nm, preferably 50 to 100 nm.

【0013】下地層上又は中間層上に設ける磁性層は、
通常、Co−P、Co−Ni−P、Co−Ni−Cr、
Co−Ni−Pt、Co−Cr−Ta、Co−Cr−P
t、Co−Cr−Ta−Pt系合金等の強磁性合金薄膜
が、無電解メッキ、電気メッキ、スパッタ、蒸着等の方
法によって形成され、その膜厚は、通常、30〜70n
m程度である。
The magnetic layer provided on the underlayer or the intermediate layer is
Usually, Co-P, Co-Ni-P, Co-Ni-Cr,
Co-Ni-Pt, Co-Cr-Ta, Co-Cr-P
A ferromagnetic alloy thin film such as t, Co—Cr—Ta—Pt alloy is formed by a method such as electroless plating, electroplating, sputtering, or vapor deposition, and its film thickness is usually 30 to 70 n.
m.

【0014】磁性層上には、通常、保護層が設けられる
が、保護層としては蒸着、スパッタ、プラズマCVD、
イオンプレーティング、湿式法等の方法により、炭素
膜、水素化カーボン膜、TiC、SiC等の炭化物膜、
SiN、TiN等の窒化膜等、SiO、AlO、ZrO
等の酸化物膜等が成膜される。これらのうち特に好まし
くは、炭素膜、水素化カーボン膜である。又、保護層上
には通常、潤滑剤層が設けられる。
A protective layer is usually provided on the magnetic layer. As the protective layer, vapor deposition, sputtering, plasma CVD,
A carbon film, a hydrogenated carbon film, a carbide film such as TiC, SiC, etc., by a method such as ion plating or a wet method,
SiN, TiN, etc. nitride films, etc., SiO, AlO, ZrO
An oxide film or the like is formed. Of these, a carbon film and a hydrogenated carbon film are particularly preferable. A lubricant layer is usually provided on the protective layer.

【0015】本発明に用いる磁気記録媒体を製造するた
めの好ましい方法としては、NiP等の非磁性体からな
る下地層を設けた磁気ディスク用基板を回転させなが
ら、その表面に円周方向に沿って、出力を精度良く制御
したエネルギービーム等を照射して表面に突起を形成す
る方法等が挙げられる。エネルギービームとしては、パ
ルスレーザ、電子線、X線等が挙げられ、中でもパルス
レーザを用いることが好ましい。また、磁気ディスク用
基板には上記のような下地層を設けなくても良い。ま
た、磁気ディスク用基板を回転する代わりに、磁気ディ
スク用基板上にパルスレーザを走査してもよい。次に、
必要により中間層を設けた後、磁気ディスク用基板上に
磁性層を設け、さらに、通常、保護層を製膜することに
より本発明の磁気ディスクが製造される。
A preferred method for producing the magnetic recording medium used in the present invention is to rotate a magnetic disk substrate provided with an underlayer made of a non-magnetic material such as NiP while rotating the surface of the magnetic disk substrate along the circumferential direction. Then, a method of forming projections on the surface by irradiating an energy beam or the like whose output is accurately controlled is cited. Examples of the energy beam include pulse lasers, electron beams, X-rays, and the like, and among them, pulse lasers are preferably used. Further, the magnetic disk substrate does not need to be provided with the above-mentioned underlayer. Further, instead of rotating the magnetic disk substrate, a pulse laser may be scanned on the magnetic disk substrate. next,
After providing an intermediate layer as needed, a magnetic layer is provided on the magnetic disk substrate, and a protective layer is usually formed to produce the magnetic disk of the present invention.

【0016】突起の生成機構は未だ十分解明されていな
いが、次のように考えられる。パルスレーザが照射され
た非磁性基板又は下地層上の局所的に過熱されたスポッ
ト部は一部溶融し、基板の回転、又はエネルギービーム
の走査によって溶融部分が移動する。最初にビームが当
った部分は、その後、温度が下がり温度勾配が生ずる。
一般に、溶融液体においては、低温側の方が表面張力が
大きく、この表面張力の差により、最初にビームで照射
され溶融し、その後低温になった部分が後から溶融した
部分の液体を取り込み盛り上がる。したがって、最後に
溶融した部分には凹部ができる。つまり、この場合に
は、エネルギービームの走査方向に対し、突起の後部に
凹部を有することとが多い。突起が長尺になるか短尺に
なるかは、パルスの時間幅による。つまりパルス幅が長
いと、長尺突起になり、短い場合は短尺突起になる。こ
こで、長尺突起とは、底部断面の長軸と短軸の比が2以
上の突起のことであり、短尺突起とは、底部断面の長軸
と短軸の比が2より小さい突起のことである。
The mechanism of formation of protrusions has not been fully clarified yet, but it is considered as follows. The locally overheated spot portion on the non-magnetic substrate or underlayer irradiated with the pulsed laser is partially melted, and the molten portion is moved by the rotation of the substrate or the scanning of the energy beam. At the portion where the beam first hits, the temperature then drops and a temperature gradient occurs.
Generally, in a molten liquid, the surface tension is higher on the low temperature side, and due to this difference in surface tension, the beam is first irradiated and melted, and then the low temperature part takes up the liquid of the melted part later and rises. . Therefore, a recess is formed in the last melted portion. That is, in this case, a recess is often provided at the rear of the projection in the scanning direction of the energy beam. Whether the protrusion is long or short depends on the time width of the pulse. That is, when the pulse width is long, it becomes a long protrusion, and when it is short, it becomes a short protrusion. Here, the long protrusion means a protrusion having a ratio of the long axis to the short axis of the bottom cross section of 2 or more, and the short protrusion means a protrusion having a ratio of the long axis to the short axis of the bottom cross section of less than 2. That is.

【0017】本発明において、エネルギービームの走査
方向とは、静止した磁気ディスク基板上でのエネルギー
ビームの走査方向のみならず、エネルギービームは静止
させておき、磁気ディスク基板を回転させた状態で照射
する場合の磁気ディスク基板の回転方向も意味する。ま
た、エネルギービームの走査速度あるいは磁気ディスク
基板の回転速度が遅い場合やエネルギービームのパワー
が大きい場合等、条件によっては、熱収縮により突起の
周囲には凹部ができる場合もある。この現象の解明は十
分ではないが、局所的に加熱されたスポット部は膨張す
るが、その周囲は冷えていて変形しにくいため、加熱さ
れて膨張した部分は外気ですぐに冷やされ突起として残
り、突起の周囲は熱収縮により凹みができるためだと考
えられる。
In the present invention, the scanning direction of the energy beam is not limited to the scanning direction of the energy beam on the stationary magnetic disk substrate, but the energy beam is kept stationary and the irradiation is performed while the magnetic disk substrate is rotated. It also means the direction of rotation of the magnetic disk substrate. Depending on the conditions, such as when the scanning speed of the energy beam or the rotation speed of the magnetic disk substrate is slow or when the power of the energy beam is large, there may be a case where a recess is formed around the protrusion due to thermal contraction. Although this phenomenon has not been fully clarified, the locally heated spot expands, but the surrounding area is cold and difficult to deform, so the heated and expanded part is immediately cooled by the outside air and remains as a protrusion. It is considered that this is because the periphery of the protrusion is depressed due to thermal contraction.

【0018】突起高さはレーザの強度とその平均照射時
間、及びディスクの線速度を調節することによって自由
に制御され、突起の密度は、1周当たりの突起の個数、
パルスレーザの半径方向の照射間隔、及び上記の突起の
高さを制御する条件を調節することにより自由に制御す
ることができる。通常、レーザの強度は20〜500m
W、平均照射時間は0.05〜100μsec、レーザ
のスポット径は0.2〜4μm、基板の線速度は0.8
〜15m/secが好ましい。ここで、平均照射時間と
は、1つの突起を形成させるために必要なレーザの照射
時間を示す。ただし、スパイラル状の山脈状突起を作る
場合には、エネルギービームを半径方向に走査しながら
連続的に発振するようにする。
The height of the protrusions can be freely controlled by adjusting the intensity of the laser, the average irradiation time thereof, and the linear velocity of the disk, and the density of the protrusions can be determined by the number of protrusions per revolution,
It can be freely controlled by adjusting the irradiation interval of the pulsed laser in the radial direction and the condition for controlling the height of the protrusion. Laser intensity is usually 20-500m
W, average irradiation time is 0.05 to 100 μsec, laser spot diameter is 0.2 to 4 μm, and substrate linear velocity is 0.8.
-15 m / sec is preferable. Here, the average irradiation time indicates the irradiation time of the laser required to form one protrusion. However, when a spiral mountain-shaped projection is formed, the energy beam is continuously oscillated while being scanned in the radial direction.

【0019】突起は、突起の最大突起高さが200nm
以下であることが好ましく、磁気ディスクのデータ記録
領域から内周部へ向かう半径方向の突起高さの勾配が
0.0001以下であることが好ましい。また、突起密
度は、通常、102〜106個/mm2 が好ましい。突起
密度が102 個/mm2 未満では基板のうねり等の影響
により磁気ヘッド下面を突起のみで支えるのは難しくな
ることがあり、106個/mm2 を超えて突起を作るの
は突起同士の干渉等により突起の高さを揃えるのが難し
くなることがある。さらに、ディスク内周部近傍のCS
S領域(特に、磁気ヘッド停止位置)においては、高さ
が30nm以上の突起の存在密度が1〜100個/mm
2 であることが好ましい。
The protrusion has a maximum protrusion height of 200 nm.
The gradient of the protrusion height in the radial direction from the data recording area of the magnetic disk to the inner peripheral portion is preferably 0.0001 or less. Further, the protrusion density is usually preferably 10 2 to 10 6 pieces / mm 2 . Projection density may become difficult to support the lower surface magnetic head only projections due to the influence of such undulation of the substrate is less than 10 2 / mm 2, making the projection beyond 10 6 / mm 2 protrusions each other It may be difficult to make the heights of the protrusions uniform due to the interference of. In addition, CS near the inner circumference of the disk
In the S region (particularly the magnetic head stop position), the existence density of protrusions having a height of 30 nm or more is 1 to 100 / mm.
It is preferably 2 .

【0020】突起の高さは、JIS表面粗さ(B060
1−1982)により規定される、粗さ曲線の中心線を
基準とした場合の突起の高さを表す。また突起の存在密
度は媒体全体での平均密度ではなく、突起存在部での単
位面積当たりの密度をいう。本発明の磁気ディスクは、
CSS領域に長尺突起及び短尺突起を有しており、デー
タ記録領域近傍のCSS領域においては長尺突起の割合
が多く、ディスク内周部近傍のCSS領域においては短
尺突起の割合が多く、且つ突起の高さがデータ記録領域
に向かって漸減していることを特徴とする。CSS領域
において長尺突起と短尺突起は混在させていてもよい
し、データ記録領域近傍のCSS領域においては長尺突
起のみ存在し、ディスク内周部近傍のCSS領域におい
ては短尺突起のみ存在するように分別して存在させてい
てもよい。
The height of the protrusion is determined by JIS surface roughness (B060
1-1982), the height of the protrusion when the center line of the roughness curve is used as a reference. The density of protrusions is not the average density of the entire medium but the density per unit area of the protrusions. The magnetic disk of the present invention is
The CSS area has long projections and short projections, the CSS area near the data recording area has a large proportion of long projections, and the CSS area near the inner circumference of the disk has a large proportion of short projections. The height of the protrusion is gradually reduced toward the data recording area. Long protrusions and short protrusions may be mixed in the CSS area, only long protrusions exist in the CSS area near the data recording area, and only short protrusions exist in the CSS area near the inner circumference of the disc. You may separate and exist.

【0021】磁気記録装置が停止している時、磁気ヘッ
ドは、短尺突起の存在割合が多く、相対的に突起高さが
高く、スティッキングの小さい、ディスク内周部近傍の
CSS領域に置かれている。ドライブが起動すると、デ
ィスクの回転に伴い、磁気ヘッドは、長尺突起の存在割
合が多く、相対的に突起高さが低い、データ記録領域近
傍のCSS領域に移動する。この部分は、磁気ヘッドが
媒体上で停止してしまうとスティックしてしまうが、摺
動状態での摩擦力が十分小さく、また、長尺突起は頂部
の面積が短尺突起に較べて大きいため耐摩耗性に優れて
いる。
When the magnetic recording device is stopped, the magnetic head is placed in the CSS area near the inner circumference of the disk where the short protrusions are present at a high ratio, the protrusion height is relatively high, and the sticking is small. There is. When the drive is started, the magnetic head moves to a CSS area near the data recording area in which the long protrusions are relatively high and the height of the protrusions is relatively low as the disk rotates. This part will stick if the magnetic head stops on the medium, but the frictional force in the sliding state is sufficiently small, and the long protrusions have a large top area compared to the short protrusions. It has excellent wear resistance.

【0022】磁気ディスクの回転数が規定の高速回転に
達すると磁気ヘッドは完全に磁気ディスクから離れて浮
上し、データ記録領域上を自由に動くことができるよう
になる。磁気記録装置の駆動時において、通常、データ
記録領域上で磁気ヘッドのシークが行われていない時
は、電源異常等の緊急時に備えて、磁気ヘッドは相対的
に突起高さが低い、データ記録領域近傍のCSS領域で
待機することが望ましい。したがって、このデータ記録
領域近傍のCSS領域はデータ記録領域とほぼ同等のグ
ライド高さを有することが望まれる。
When the number of rotations of the magnetic disk reaches a specified high-speed rotation, the magnetic head floats completely away from the magnetic disk and can freely move on the data recording area. When the magnetic recording device is driven, normally when the magnetic head is not sought on the data recording area, the magnetic head has a relatively low protrusion height in case of emergency such as power failure. It is desirable to wait in the CSS area near the area. Therefore, it is desired that the CSS area near the data recording area has a glide height almost equal to that of the data recording area.

【0023】駆動している磁気記録装置が停止するとき
は、通常、まず、磁気ヘッドを相対的に突起高さが低
い、データ記録領域近傍のCSS領域に移動する。この
後、媒体の回転数を減少させ磁気ヘッドの浮上高さを下
げ、磁気ヘッドの底部が突起に当たり始める状態になっ
た時に、磁気ヘッドを相対的に突起高さの高い、ディス
ク内周部近傍のCSS領域に移動、停止するようにす
る。
When the driving magnetic recording apparatus is stopped, first, the magnetic head is usually moved to a CSS area near the data recording area where the protrusion height is relatively low. After that, when the number of rotations of the medium is decreased to lower the flying height of the magnetic head and the bottom of the magnetic head starts to hit the protrusion, the magnetic head is relatively high in the protrusion height, near the inner circumference of the disk. Move to and stop the CSS area.

【0024】また、CSS領域にエネルギービームによ
りテキスチャを行う場合、予め全面を低グライドで周方
向の機械的テキスチャを施してある磁気ディスク用基板
を使う方が望ましい。なぜならば、エネルギービームに
より形成する突起の高さや密度が小さい場合、即ち、基
板と磁気ヘッドが部分的に接触するような状況において
も、単純にポリッシュした基板を使う場合と比較して、
スティッキングが起こり難く、また、摩擦係数も小さく
なるためである。また、この場合、レーザテキスチャの
作成条件も広範にすることができるため、特に大量生産
には好ましい。
When the CSS region is textured with an energy beam, it is preferable to use a magnetic disk substrate whose entire surface is mechanically textured in the circumferential direction with low glide. This is because when the height and density of the projections formed by the energy beam are small, that is, even when the substrate and the magnetic head are partially in contact with each other, compared to the case where a simply polished substrate is used,
This is because sticking is unlikely to occur and the friction coefficient is also small. Further, in this case, the conditions for producing the laser texture can be widened, which is particularly preferable for mass production.

【0025】[0025]

【実施例】次に、実施例により本発明を更に具体的に説
明するが、本発明はその要旨を超えない限り以下の実施
例によって限定されるものではない。 実施例1〜2、比較例1〜3 直径90mmのNiP下地層を被覆したアルミニウム基
板に周方向に機械的テキスチャを施し、データ記録領域
及びCSS領域の表面粗さRaを2nm以下にした基板
を磁気ディスク用基板として用いた。
EXAMPLES Next, the present invention will be described more specifically by way of examples, but the present invention is not limited to the following examples unless it exceeds the gist. Examples 1 and 2 and Comparative Examples 1 to 3 An aluminum substrate coated with a NiP underlayer having a diameter of 90 mm was mechanically textured in the circumferential direction to obtain a substrate having a surface roughness Ra of 2 nm or less in the data recording area and the CSS area. It was used as a magnetic disk substrate.

【0026】次に、表−1に記載した強度に精度良く制
御されたアルゴンパルスレーザを、表−1に記載した条
件下で、NiP層のCSS領域に照射して突起を形成し
た。次いで,スパッタ法により,上記磁気ディスク用基
板上に、順次、Cr中間層(膜厚100nm)、Co−
Cr−Ta合金磁性膜(膜厚50nm)及びカーボン保
護膜を(膜厚20nm)を形成し、その後、浸漬法によ
りフッ素系液体潤滑剤(モンテエジソン社製「DOL−
2000」)を2nmの膜厚に塗布して、磁気ディスク
を作製した。
Next, an argon pulse laser whose intensity was accurately controlled as shown in Table 1 was irradiated on the CSS region of the NiP layer under the conditions shown in Table 1 to form protrusions. Then, by a sputtering method, a Cr intermediate layer (film thickness 100 nm) and Co- were sequentially formed on the magnetic disk substrate.
A Cr-Ta alloy magnetic film (film thickness 50 nm) and a carbon protective film (film thickness 20 nm) are formed, and then a fluorine-based liquid lubricant ("DOL-" manufactured by Monte Edison Co., Ltd. is prepared by an immersion method.
2000 ") was applied to a film thickness of 2 nm to prepare a magnetic disk.

【0027】また、比較例3は、NiP層のCSS領域
に機械的テキスチャを施し、表面粗さRaを約2nmと
した基板を用いたこと以外は、実施例1と同様のプロセ
スで磁気ディスクを作製した。表−1に実施例1及び比
較例1〜3で製造した磁気ディスク用基板に突起を作成
したときの条件(回転させた基板の線速度、照射したレ
ーザの強度、レーザの平均照射時間、レーザの集光に用
いた対物レンズの開口率NA)を示す。照射したレーザ
エネルギーの84%が集中するスポット径は、1.22
×λ/NAで表される。また形成した突起の平均突起密
度、平均突起高さ、突起先端から1nm低い部分の断面
積を表−1に示す。なお、表−1で示した断面積とは、
突起先端から1nm低い高さにおける等高線で囲まれた
図形の面積を表す。
Further, in Comparative Example 3, a magnetic disk was manufactured by the same process as in Example 1 except that a substrate having a NiP layer having a CSS region with a mechanical texture and a surface roughness Ra of about 2 nm was used. It was made. Table 1 shows the conditions when the protrusions were formed on the magnetic disk substrates manufactured in Example 1 and Comparative Examples 1 to 3 (the linear velocity of the rotated substrate, the intensity of the irradiated laser, the average irradiation time of the laser, the laser). The numerical aperture (NA) of the objective lens used for condensing is shown. The spot diameter at which 84% of the irradiated laser energy is concentrated is 1.22
It is represented by × λ / NA. Table 1 shows the average protrusion density of the formed protrusions, the average protrusion height, and the cross-sectional area of the portion 1 nm lower than the protrusion tips. The cross-sectional area shown in Table-1 is
The area of a figure surrounded by contour lines at a height 1 nm lower than the tip of the protrusion is shown.

【0028】[0028]

【表1】 表−1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 基板 レーサ゛ 平均照 平均突 平均突 突起 対物レンス゛ 線速度 強度 射時間 起密度 起高さ 断面積 開口率 (mm/sec) (mW) (μsec) (個/mm2) (nm) (μm2) (NA) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例1 短尺突起部 1714 95〜220 1.25 9260 30〜70 0.38〜0.08 0.6 長尺突起部 1714 60〜105 1.25 − 5〜30 − 0.6 実施例2 最大突起部 1714 220 1.25 80 70 0.08 0.6 比較例1 最大突起部 1714 62 1.25 9260 5 0.38 0.6 比較例2 最大突起部 1714 200 1.25 9260 56 0.08 0.3 比較例3 機械的テキスチャー −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[Table 1] Table 1 -------------------------------------- Substrate Laser Average Average Average Average Average Projection Protrusion Objective velocity Linear velocity Strength Radiation time Evoked height Elevated cross-sectional area Open area (mm / sec) (mW) (μsec) (pieces / mm 2 ) (nm) (μm 2 ) (NA) −−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Example 1 Short protrusion 1714 95 to 220 1.25 9260 30 to 70 0.38 to 0.08 0.6 Long protrusion 1714 60 to 105 1.25 − 5 to 30 − 0.6 Example 2 Maximum protrusion 1714 220 1.25 80 70 0.08 0.6 Comparative example 1 Maximum protrusion 1714 62 1.25 9260 5 0.38 0.6 Comparative example 2 Maximum protrusion 1714 200 1.25 9260 56 0.08 0.3 COMPARATIVE EXAMPLE 3 Mechanical Texture -----------------------------------------------------

【0029】実施例1では、磁気ディスクの中心から半
径21〜18mmの範囲をCSS領域とし、外側である
半径21〜20mmの範囲に、底部断面の長軸と短軸の
比が3である長尺突起を、半径方向の長さ1mm当たり
20個形成した。レーザの強さを60〜105mWの範
囲で変化させることにより、突起高さを5〜30nm程
度まで変化させた。
In the first embodiment, the range of radius 21 to 18 mm from the center of the magnetic disk is set as the CSS region, and the range of radius 21 to 20 mm on the outer side has a ratio of the major axis to the minor axis of the bottom cross section of 3. 20 shaku protrusions were formed per 1 mm in the radial direction. By changing the laser intensity in the range of 60 to 105 mW, the height of the protrusion was changed to about 5 to 30 nm.

【0030】レーザ干渉による表面形状測定装置“ZY
GO”(米国ザイゴ社製)による長尺突起形状を図1
に、レーザ走査方向に沿った突起の頂部を通る断面形状
を図2のaに、それに対して直角方向(半径方向)の突
起断面形状を図2のbに示した。磁気ディスクの中心か
ら半径20〜19mmの範囲には、短尺突起を同様に形
成した。レーザの強さを95〜220mWまで変化させ
ることにより、突起高さを、30〜70nm程度まで変
化させた。
Surface shape measuring device "ZY" by laser interference
Figure 1 shows the long protrusions made by GO ”(manufactured by Zygo, USA)
2A shows a cross-sectional shape passing through the tops of the projections along the laser scanning direction, and FIG. 2B shows a cross-sectional shape of the projections in a direction (radial direction) perpendicular thereto. Short projections were similarly formed within a radius of 20 to 19 mm from the center of the magnetic disk. By changing the laser intensity to 95 to 220 mW, the protrusion height was changed to about 30 to 70 nm.

【0031】更に、磁気ディスクの中心から半径19〜
18mmの範囲の磁気ヘッド停止位置では、短尺突起を
同様に形成し、突起高さは約70nmの一定の高さにな
るようにした。“ZYGO”による短尺突起形状を図3
に、レーザ走査方向に沿った突起の頂部を通る断面形状
を図4のcに、それに対して直角方向(半径方向)の突
起断面形状を図4のdに示した。
Further, the radius 19 to the center of the magnetic disk is
At the magnetic head stop position within the range of 18 mm, short protrusions were similarly formed so that the protrusion height was a constant height of about 70 nm. Fig. 3 shows the shape of short protrusions made by "ZYGO".
4C shows a cross-sectional shape passing through the tops of the projections along the laser scanning direction, and FIG. 4D shows a cross-sectional shape of the projections in a direction (radial direction) perpendicular thereto.

【0032】実施例2では、磁気ディスクの中心から半
径19〜18mmの範囲の磁気ヘッド停止位置におい
て、突起高さが約70nmの凸状突起を80個/mm2
としたこと以外は、実施例1と全く同様にして突起を形
成した。表−2に、これらのディスクのCSSテスト前
の静止摩擦係数(初期スティクション)及びCSS2万
回後の摩擦力を示した。CSSテストはヘッド浮上量
1.6μインチ、ロードグラム6gfの薄膜ヘッド(ス
ライダ材質Al23TiC)を用いた。また、磁気ヘッ
ドの浮上安定高さは、データ記録領域とCSS領域間の
シーク時の磁気ヘッドの浮上安定性をグライドテスター
を用いて評価した。CSS領域の安定浮上高さは、比較
例1が1.1μインチ、比較例2が約2.7μインチ、
機械的テキスチャのみの比較例3では1.0μインチで
あった。実施例1のグライド高さは、CSS領域内で
1.1〜2.7μインチの間で連続的に変化しているも
のと思われる。
In the second embodiment, at the magnetic head stop position within a radius of 19 to 18 mm from the center of the magnetic disk, 80 convex protrusions having a protrusion height of about 70 nm / mm 2 are formed.
A protrusion was formed in exactly the same manner as in Example 1 except that the above was adopted. Table 2 shows the static friction coefficient (initial stiction) of these disks before CSS test and the frictional force after CSS 20,000 times. In the CSS test, a thin film head (slider material: Al 2 O 3 TiC) having a head flying height of 1.6 μinch and a loadgram of 6 gf was used. The flying stability of the magnetic head was evaluated by using a glide tester to evaluate the flying stability of the magnetic head when seeking between the data recording area and the CSS area. The stable flying height of the CSS region is 1.1 μ inch in Comparative Example 1 and about 2.7 μ inch in Comparative Example 2,
In Comparative Example 3 including only the mechanical texture, the value was 1.0 μ inch. It is believed that the glide height of Example 1 varies continuously between 1.1 and 2.7 μin in the CSS region.

【0033】実施例1及び2で得られた磁気ディスクに
おいては、磁気ヘッドの静止位置では磁気ヘッドと突起
の摩擦は相対速度が小さいために問題とならないため、
突起先端と磁気ヘッドの接触面積を非常に小さくしたた
め、長時間停止していてもスティッキングが全く起こら
ない。このように、十分高さが高い突起上に停止してい
る磁気ヘッドは、媒体の回転と同時に少しずつ磁気ディ
スクの外側に移動し、磁気ディスクの安定回転速度
(5,400rpm)に達するころには、半径18〜2
0mmの位置に移動し、浮上する。
In the magnetic disks obtained in Examples 1 and 2, the friction between the magnetic head and the protrusion at the stationary position of the magnetic head is not a problem because the relative speed is small.
Since the contact area between the tip of the protrusion and the magnetic head is made extremely small, sticking does not occur at all even when stopped for a long time. As described above, the magnetic head stopped on the protrusion having a sufficiently high height gradually moves to the outside of the magnetic disk at the same time as the rotation of the medium, and reaches the stable rotation speed (5,400 rpm) of the magnetic disk. Has a radius of 18-2
Move to the position of 0 mm and levitate.

【0034】逆に停止する場合は、磁気ヘッドが半径2
0〜21mmの範囲にある時に、磁気ヘッドと磁気ディ
スク上の長尺突起が接触するまで媒体の回転数を落し、
その後媒体が停止する前に、半径19〜18mmの範囲
の十分に高さの高い突起が形成されている領域に磁気ヘ
ッドを移動する。ここで、実施例1及び実施例2のステ
ィックション及び2万回後の摩擦力は、磁気ディスクの
中心から半径19〜18mmの位置における値である。
On the contrary, when the magnetic head stops, the radius of the magnetic head is 2
When it is in the range of 0 to 21 mm, the rotation speed of the medium is reduced until the magnetic head and the long protrusions on the magnetic disk come into contact with each other.
After that, before the medium is stopped, the magnetic head is moved to a region where a sufficiently high protrusion having a radius of 19 to 18 mm is formed. Here, the stickion of Example 1 and Example 2 and the frictional force after 20,000 times are values at a position of a radius of 19 to 18 mm from the center of the magnetic disk.

【0035】[0035]

【表2】 表−2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− 初期スティクション CSS2万回後の (摩擦係数) 摩擦力 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例1 0.12 3 gf 実施例2 0.11 3 gf 比較例1 4.41 36 gf 比較例2 0.12 ヘッドクラッシュ 比較例3 5.19 吸着ドライブ停止(750回) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−[Table 2] Table-2 -------------------------------------- (Frictional coefficient) Friction force after 20,000 times of initial stiction CSS −−−−−−−−−−−−−−−−−−−−−−−−−−−−− Example 1 0.12 3 gf Example 2 0.11 3 gf Comparative Example 1 4.41 36 gf Comparative Example 2 0.12 Head crash Comparative example 3 5.19 Adsorption drive stop (750 times) -------------------------------

【0036】表−2から明らかなように、機械テキスチ
ャのみ(比較例3)、及びこれにレーザによる5nmの
突起を付けた磁気ディスク(比較例1)は、スティック
ション、摩擦力の値が不十分である。また、レーザでC
SS領域の全てに、突起高さが56nmの凸状突起を作
ったもの(比較例2)は、スティックションは良くなる
が、低浮上の磁気ヘッドでは、シーク時に突起にぶつか
り、ヘッドクラッシュを起こしてしまう。
As is clear from Table 2, the mechanical texture alone (Comparative Example 3) and the magnetic disk having a laser projection of 5 nm (Comparative Example 1) had no stickion and frictional force values. It is enough. In addition, C with laser
The protrusion having a protrusion height of 56 nm formed in the entire SS region (Comparative Example 2) has a better sticktion, but a low-flying magnetic head hits the protrusion during seek, causing a head crash. Will end up.

【0037】これに対し、CSS領域で連続的に突起高
さが変化している磁気ディスク(実施例1及び2)での
CSSは、スティッキングも低く、ヘッドクラッシュを
起こすこともないことが分かる。また、磁気ヘッド静止
位置で、突起密度を低くした実施例2においては、CS
Sテストにおける2000回ごとのヘッドパーキングに
おいても、スティクションの値が初期のスティクション
値と殆んど変わらない。
On the other hand, it can be seen that the CSS in the magnetic disk (Examples 1 and 2) in which the protrusion height is continuously changed in the CSS area has low sticking and does not cause head crash. In the second embodiment in which the protrusion density is low at the magnetic head stationary position,
Even in head parking every 2000 times in the S test, the stiction value is almost the same as the initial stiction value.

【0038】磁気ヘッドとの接触部を短尺突起のみとし
た場合は、突起先端の摩耗が見られるが、本発明におい
ては、磁気ヘッドとの高速回転時における接触部分の突
起形状を長尺突起としたため、耐久性が極めて高くな
る。
When only the short protrusion is used as the contact portion with the magnetic head, the tip of the protrusion is worn, but in the present invention, the protrusion shape of the contact portion at the time of high speed rotation with the magnetic head is the long protrusion. Therefore, the durability is extremely high.

【0039】[0039]

【発明の効果】本発明によれば、データ記録領域におけ
る磁気ヘッドの浮上高さを十分低くすることができ、ま
た、磁気ヘッドの停止時には、スティキングも起こるこ
とがなく、高密度の磁気記録装置の開発が可能となる。
しかも、磁気ヘッドの突起の摺動部分に長尺突起を形成
しているため、耐久性が極めて高い磁気ディスクが得ら
れ、工業上非常に有用である。
According to the present invention, the flying height of the magnetic head in the data recording area can be made sufficiently low, and sticking does not occur when the magnetic head is stopped. The device can be developed.
Moreover, since the long protrusion is formed on the sliding portion of the protrusion of the magnetic head, a magnetic disk having extremely high durability can be obtained, which is very useful in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】表面形状測定装置により観察した本発明の長尺
突起の形状を示す図である。
FIG. 1 is a view showing a shape of a long protrusion of the present invention observed by a surface shape measuring device.

【図2】図1の突起の、レーザ走査方向に沿った突起の
頂部を通る断面形状(a)及びレーザ走査方向に対して
直角方向(半径方向)の断面形状(b)を示す図であ
る。
FIG. 2 is a diagram showing a cross-sectional shape (a) of the projection of FIG. 1 which passes through the top of the projection along the laser scanning direction and a cross-sectional shape (b) perpendicular to the laser scanning direction (radial direction). .

【図3】表面形状測定装置により観察した本発明の短尺
突起の形状を示す図である。
FIG. 3 is a view showing a shape of a short protrusion of the present invention observed by a surface shape measuring device.

【図4】図3の突起の、レーザ走査方向に沿った突起の
頂部を通る断面形状(c)及びレーザ走査方向に対して
直角方向(半径方向)の断面形状(d)を示す図であ
る。
FIG. 4 is a diagram showing a cross-sectional shape (c) of the protrusion of FIG. 3 that passes through the top of the protrusion along the laser scanning direction and a cross-sectional shape (d) of a direction (radial direction) perpendicular to the laser scanning direction. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 持田 光範 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsunori Mochida 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa Mitsubishi Chemical Corporation Yokohama Research Institute

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板上に、少なくとも下地層及び
磁性層を有する磁気記録媒体において、非磁性基板又は
下地層の磁性層側表面の磁気ヘッドがコンタクトスター
トアンドストップ(CSS)を行うCSS領域に長尺突
起及び短尺突起を有しており、データ記録領域近傍のC
SS領域においては長尺突起の割合が多く、ディスク内
周部近傍のCSS領域においては短尺突起の割合が多
く、且つ突起の高さがデータ記録領域に向かって漸減し
ていることを特徴とする磁気ディスク。
1. In a magnetic recording medium having at least an underlayer and a magnetic layer on a nonmagnetic substrate, a CSS area in which a magnetic head on the magnetic layer side surface of the nonmagnetic substrate or the underlayer performs contact start and stop (CSS). C has a long protrusion and a short protrusion in the vicinity of the data recording area.
The SS area has a large proportion of long projections, the CSS area near the inner peripheral portion of the disc has a large proportion of short projections, and the height of the projection gradually decreases toward the data recording area. Magnetic disk.
【請求項2】 長尺突起は、底部断面の長軸と短軸の比
が2以上の突起であり、短尺突起は、底部断面の長軸と
短軸の比が2より小さい突起である請求項1に記載の磁
気ディスク。
2. The long protrusion is a protrusion having a ratio of the major axis to the minor axis of the bottom cross section of 2 or more, and the short protrusion is a protrusion having a ratio of the major axis to the minor axis of the bottom cross section of less than 2. Item 1. The magnetic disk according to Item 1.
【請求項3】 突起の最大高さが200nm以下、磁気
ディスクのデータ記録領域から内周部へ向かう半径方向
の突起高さの勾配が0.0001以下である請求項1又
は2に記載の磁気ディスク。
3. The magnetic according to claim 1, wherein the maximum height of the protrusion is 200 nm or less, and the gradient of the protrusion height in the radial direction from the data recording area of the magnetic disk toward the inner peripheral portion is 0.0001 or less. disk.
【請求項4】 非磁性基板上に下地層を有する磁気ディ
スク用基板であって、非磁性基板又は下地層の磁性層側
表面の磁気ヘッドがコンタクトスタートアンドストップ
(CSS)を行うCSS領域に長尺突起及び短尺突起を
有しており、データ記録領域近傍のCSS領域において
は長尺突起の割合が多く、ディスク内周部近傍のCSS
領域においては短尺突起の割合が多く、且つ突起の高さ
がデータ記録領域に向かって漸減していることを特徴と
する磁気ディスク用基板。
4. A magnetic disk substrate having an underlayer on a non-magnetic substrate, wherein the magnetic head on the magnetic layer side surface of the non-magnetic substrate or the underlayer extends to a CSS area for performing contact start and stop (CSS). It has long protrusions and short protrusions, and the proportion of long protrusions is large in the CSS area near the data recording area.
A magnetic disk substrate characterized in that a large proportion of short protrusions are present in the area, and the height of the protrusions gradually decreases toward the data recording area.
【請求項5】 磁気ヘッドによる磁気ディスクに対する
データの読み出し書き込みをコンタクトスタートアンド
ストップ(CSS)方式によって行う記録再生方法にお
いて、磁気ディスクとして、非磁性基板又は下地層の磁
性層側表面の磁気ヘッドがコンタクトスタートアンドス
トップ(CSS)を行うCSS領域に長尺突起及び短尺
突起を有しており、データ記録領域近傍のCSS領域に
おいては長尺突起の割合が多く、ディスク内周部近傍の
CSS領域においては短尺突起の割合が多く、且つ突起
の高さがデータ記録領域に向かって漸減している磁気デ
ィスクを使用し、長尺突起の割合の割合が多いデータ記
録領域近傍のCSS領域において、磁気ヘッドの磁気デ
ィスクへの降下及び磁気ディスクからの浮上を行い、短
尺突起の割合が多いディスク内周部近傍のCSS領域に
おいて、磁気ヘッドを静止させることを特徴とする記録
再生方法。
5. A recording / reproducing method of reading / writing data from / to a magnetic disk by a magnetic head by a contact start and stop (CSS) method, wherein a magnetic head is a non-magnetic substrate or a magnetic head on the surface of a magnetic layer of an underlayer. The CSS area for performing contact start and stop (CSS) has long protrusions and short protrusions. In the CSS area near the data recording area, the proportion of long protrusions is high, and in the CSS area near the inner circumference of the disc. Is a magnetic disk in which the proportion of short protrusions is large and the height of the protrusions gradually decreases toward the data recording area. In the CSS area near the data recording area where the proportion of long protrusions is large, a magnetic head is used. Drop to and levitate from the magnetic disk, and there are many short protrusions. A recording / reproducing method characterized in that the magnetic head is made to stand still in the CSS area near the inner peripheral portion of the disk.
【請求項6】 長尺突起が、底部断面の長軸と短軸の比
が2以上の突起であり、短尺突起が、底部断面の長軸と
短軸の比が2より小さいの突起である請求項6に記載の
記録再生方法。
6. The long protrusion is a protrusion having a ratio of a long axis to a short axis of the bottom cross section of 2 or more, and the short protrusion is a protrusion having a ratio of the long axis to the short axis of the bottom cross section of less than 2. The recording / reproducing method according to claim 6.
【請求項7】 磁気ディスクが、突起の最大高さが20
0nm以下、磁気ディスクの外周部から内周部へ向かう
半径方向の突起高さの勾配が0.0001以下ある請求
項6又は7に記載の記録再生方法。
7. The magnetic disk has a maximum protrusion height of 20.
8. The recording / reproducing method according to claim 6, wherein the projection height gradient in the radial direction from the outer peripheral portion to the inner peripheral portion of the magnetic disk is 0 nm or less and 0.0001 or less.
【請求項8】 高さが30nm以上の短尺突起の存在密
度が1〜100個/mm2 であるCSS領域において磁
気ヘッドを静止させる請求項6ないし8のいずれか1項
に記載の記録再生方法。
8. The recording / reproducing method according to claim 6, wherein the magnetic head is made to stand still in a CSS region in which the existence density of short protrusions having a height of 30 nm or more is 1 to 100 / mm 2. .
JP29329494A 1994-07-04 1994-11-28 Magnetic disk and substrate for magnetic disk and recording and reproduction method Pending JPH08147682A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29329494A JPH08147682A (en) 1994-11-28 1994-11-28 Magnetic disk and substrate for magnetic disk and recording and reproduction method
KR1019950019855A KR960005459A (en) 1994-07-04 1995-07-03 Magnetic recording medium, manufacturing method thereof, and recording and reading method
DE19524220A DE19524220A1 (en) 1994-07-04 1995-07-03 Magnetic recording medium allowing head suspension distance to be reduced for hard disc scanning
US08/937,045 US5928759A (en) 1994-07-04 1997-09-24 Magnetic recording medium, method of producing the same, and recording and reading-out method
US09/306,909 US6217970B1 (en) 1994-07-04 1999-05-07 Magnetic recording medium, method of producing the same, and recording and reading-out method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29329494A JPH08147682A (en) 1994-11-28 1994-11-28 Magnetic disk and substrate for magnetic disk and recording and reproduction method

Publications (1)

Publication Number Publication Date
JPH08147682A true JPH08147682A (en) 1996-06-07

Family

ID=17792975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29329494A Pending JPH08147682A (en) 1994-07-04 1994-11-28 Magnetic disk and substrate for magnetic disk and recording and reproduction method

Country Status (1)

Country Link
JP (1) JPH08147682A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422431B1 (en) * 1996-12-31 2004-06-18 삼성전자주식회사 Texturing method for landing zone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422431B1 (en) * 1996-12-31 2004-06-18 삼성전자주식회사 Texturing method for landing zone

Similar Documents

Publication Publication Date Title
US6217970B1 (en) Magnetic recording medium, method of producing the same, and recording and reading-out method
US6057984A (en) Method for data writing/read-out using a contact start and stop system
JPH0877554A (en) Magnetic recording medium and substrate
JP3013717B2 (en) Magnetic recording medium and substrate
JPH08147682A (en) Magnetic disk and substrate for magnetic disk and recording and reproduction method
US6205002B1 (en) Disk drive with textured slider contact region
JP3146917B2 (en) Manufacturing method of magnetic recording medium
JP2953364B2 (en) Magnetic recording medium and substrate
JP2970466B2 (en) Manufacturing method of magnetic recording medium
JPH08147692A (en) Manufacture of magnetic recording medium
JP3629275B2 (en) Method for forming texture in magnetic recording medium by laser irradiation using multiple lens focusing
JP2856131B2 (en) Method for forming protrusions on magnetic recording medium and magnetic recording medium
JPH08147687A (en) Magnetic recording medium and its manufacture
JPH08147684A (en) Magnetic recording medium and substrate
JPH11339204A (en) Recording and reproducing method
JPH09180176A (en) Magnetic disk and recording/reproducing method
JPH08147916A (en) Recording and reproducing method
US5945197A (en) Laser texturing of magnetic recording medium using multiple lens focusing
JPH11339203A (en) Recording and reproducing method
US6519114B1 (en) Magnetic storage medium having a textured zone
KR100378496B1 (en) Laser texturing of magnetic recording medium using multiple lens focusing
JPH08129749A (en) Magnetic recording medium and substrate
JPH097168A (en) Production of magnetic recording medium
JPH09180179A (en) Magnetic recording medium and its production
JPH08287457A (en) Production of magnetic recording medium