JPH08178900A - Leakage flux type flaw detector - Google Patents

Leakage flux type flaw detector

Info

Publication number
JPH08178900A
JPH08178900A JP6324793A JP32479394A JPH08178900A JP H08178900 A JPH08178900 A JP H08178900A JP 6324793 A JP6324793 A JP 6324793A JP 32479394 A JP32479394 A JP 32479394A JP H08178900 A JPH08178900 A JP H08178900A
Authority
JP
Japan
Prior art keywords
plate
flaw detection
probe
magnetic pole
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6324793A
Other languages
Japanese (ja)
Inventor
Hitoshi Aizawa
均 相澤
Naoyuki Yuge
直幸 弓削
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6324793A priority Critical patent/JPH08178900A/en
Publication of JPH08178900A publication Critical patent/JPH08178900A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a leakage flux type flaw detector which detects defects in the end part of a plate. CONSTITUTION: When a leakage magnetic flux from a plate material S magnetized by an excitation yoke 2 is detected by a probe 5 scanning in parallel to the surface of the plate, one magnetic pole 3b of the excitation yoke 2 is arranged adjacently to the end face of the plate material S via a predetermined gap (h), and the other magnetic pole 3a is disposed adjacently to the surface of the plate material S via a predetermined gap (g). The probe 5 is turned within a plane parallel to the surface of the plate to scan up to the side face of the magnetic pole 3b on the end face of the plate material. Accordingly, defects can be detected irrespective of the direction of the defective part up to a position very close to the end part of the plate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、漏洩磁束探傷装置に係
り、とりわけ板面の端部などに発生するエッジシームや
へげなどを検出するのに好適な漏洩磁束探傷装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a leakage magnetic flux flaw detector, and more particularly to a leakage flux flaw detector suitable for detecting edge seams and dents generated at the end of a plate surface.

【0002】[0002]

【従来の技術】従来、板材の高能率な表面探傷法として
は、超音波探傷法や渦流探傷法、光学式探傷法などが用
いられている。これらの性能について比較すると以下の
ごとくである。 超音波探傷法;タイヤ探触子を用いた表面波による
ものであるが、SN比が低く、深さ0.3 mm程度までの欠
陥しか検出できない上に、板端部での不感帯が20mm程度
残る。 渦流探傷法;深さ0.2 mmまでの欠陥が検出可能で、
エッジ不感帯はほとんどないが、材質の影響が大きく、
スケールはく離部はノイズとなる。 光学式探傷法;黒皮下の割れは原理的に検出が不可
能である。
2. Description of the Related Art Conventionally, ultrasonic flaw detection, eddy current flaw detection, optical flaw detection and the like have been used as highly efficient surface flaw detection methods for plate materials. A comparison of these performances is as follows. Ultrasonic flaw detection method: It is based on surface waves using a tire probe, but the SN ratio is low, defects only up to a depth of about 0.3 mm can be detected, and a dead zone of about 20 mm remains at the plate edge. Eddy current flaw detection method: Defects up to a depth of 0.2 mm can be detected,
There is almost no edge dead zone, but the influence of the material is large,
The scale peeling part becomes noise. Optical flaw detection method: Cracks under the black skin cannot be detected in principle.

【0003】このようにいずれの方法においても一長一
短がある。そこで、それらに代わる方法として、漏洩磁
束探傷法が、深さ0.2 mm程度の欠陥検出が可能で検出感
度も高く、材質や表面状態の影響も受けにくい上に、欠
陥の深さ情報も得られることから、板材の表面探傷に適
していると考えられている。ここで、漏洩磁束探傷法に
ついて、たとえば特開平5−312786号公報で提案されて
いる磁気探傷装置を参照して説明すると、図8に示され
るように、探傷ユニット21は、下部に間隙Kを有するコ
の字形のコア22とコイル23からなる電磁石の磁界発生部
(以下、単に励磁ヨークという)24と、たとえばホール
素子などの漏洩磁束密度センサを内蔵した漏洩磁気検出
部(以下、単にプローブという)25とから構成される。
As described above, each method has advantages and disadvantages. Therefore, as an alternative method, the magnetic flux leakage flaw detection method can detect defects with a depth of about 0.2 mm, has high detection sensitivity, is not easily affected by the material and surface condition, and can also obtain defect depth information. Therefore, it is considered to be suitable for surface flaw detection of plate materials. Here, the leakage magnetic flux flaw detection method will be described with reference to, for example, a magnetic flaw detection device proposed in Japanese Patent Laid-Open No. 5-312786, as shown in FIG. 8, the flaw detection unit 21 has a gap K at the bottom. A magnetic field generating section (hereinafter, simply referred to as an excitation yoke) 24 of an electromagnet including a U-shaped core 22 and a coil 23, and a leakage magnetic detection section (hereinafter, simply referred to as a probe) that incorporates a magnetic flux density sensor such as a Hall element. ) 25 and.

【0004】このコア22の磁極22a,22bを板材Sにギ
ャップgだけ近接させることにより、磁極22aから出発
した磁束は板材Sを経由して他方の磁極22bに到達する
磁気回路を構成し、板材Sにピンホールやガウジ、斜め
孔などの表面傷や非金属介在物やブローホールなどの内
部傷が存在すると、磁束はこれらの欠陥部から板材S外
へ漏出し、この漏出した磁束をプローブ24で検出する。
これにより、板材Sの表面傷や内部傷の欠陥部を検出す
ることができるのである。
By bringing the magnetic poles 22a and 22b of the core 22 close to the plate material S by the gap g, the magnetic flux starting from the magnetic pole 22a forms a magnetic circuit which reaches the other magnetic pole 22b via the plate material S, If S has surface scratches such as pinholes, gouges, and oblique holes, and internal scratches such as non-metallic inclusions and blowholes, the magnetic flux leaks out of the plate S from these defective portions, and the leaked magnetic flux is detected by the probe 24. Detect with.
As a result, it is possible to detect a defective portion such as a surface scratch or an internal scratch on the plate material S.

【0005】[0005]

【発明が解決しようとする課題】上記したように、漏洩
磁束探傷法は超音波探傷法や渦流探傷法、光学式探傷法
にはない特長を有しているが、板材端部の表面探傷に適
用しようとすると、平面を対象とした従来の装置では、
励磁ヨーク24の構造上の制約から板端部の不感帯が50mm
以上にもなるため、板端部検査用としては不十分であ
る。
As described above, the leakage magnetic flux flaw detection method has features not found in the ultrasonic flaw detection method, the eddy current flaw detection method, and the optical flaw detection method. If we try to apply it, in a conventional device for a flat surface,
Due to the structural restrictions of the excitation yoke 24, the dead zone at the plate edge is 50 mm.
Since it becomes the above, it is insufficient for the inspection of the plate edge.

【0006】本発明は、上記のような従来技術の有する
課題を解決した板端部における欠陥検出装置を提供する
ことを目的とする。
[0006] It is an object of the present invention to provide a defect detecting device at the edge of a plate which solves the problems of the prior art as described above.

【0007】[0007]

【課題を解決するための手段】請求項1の発明は、励磁
ヨークによって磁化した被検材の漏洩磁束を探傷面に平
行に走査するプローブによって検出する装置であって、
前記励磁ヨークの一方の磁極を被検材の端面に所定のギ
ャップで近接配置し、もう一方の磁極を探傷面に所定の
ギャップで近接配置してなることを特徴とする漏洩磁束
探傷装置である。
According to a first aspect of the present invention, there is provided an apparatus for detecting a leakage magnetic flux of a material to be inspected magnetized by an exciting yoke by a probe which scans in parallel with a flaw detection surface.
A leakage magnetic flux flaw detector according to claim 1, wherein one magnetic pole of the exciting yoke is arranged close to an end surface of a material to be inspected with a predetermined gap, and the other magnetic pole is arranged close to a flaw detection surface with a predetermined gap. .

【0008】また、請求項2の発明は、前記プローブを
探傷面に平行な平面内で旋回させて、被検材端面に配置
した前記励磁ヨークの一方の磁極の側面まで走査する旋
回機構を備えたことを特徴とするものである。
Further, the invention of claim 2 is provided with a swivel mechanism for swiveling the probe in a plane parallel to the flaw detection surface and scanning up to the side surface of one of the magnetic poles of the exciting yoke disposed on the end surface of the material to be inspected. It is characterized by that.

【0009】[0009]

【作 用】請求項1の発明によれば、励磁ヨークの一方
の磁極を板材の端面に突き合わせ、もう一方の磁極を板
材の表面に合わせるようにしたので、板材の端部領域に
均一な磁界を形成することができ、これによって板端部
直近まで探傷することが可能である。
According to the invention of claim 1, one magnetic pole of the excitation yoke is abutted against the end surface of the plate material, and the other magnetic pole is aligned with the surface of the plate material. Can be formed, and by this, it is possible to detect flaws up to the vicinity of the plate edge.

【0010】また、請求項2の発明によれば、旋回機構
によって板面に平行な平面内でプローブを旋回させて、
板材端面に配置した前記励磁ヨークの一方の磁極の側面
まで走査するようにしたので、欠陥部の向きに関係なく
板端直近まで探傷を行うことができる。
According to the second aspect of the invention, the swivel mechanism swivels the probe in a plane parallel to the plate surface,
Since scanning is performed up to the side surface of one of the magnetic poles of the excitation yoke arranged on the end surface of the plate material, flaw detection can be performed up to the vicinity of the plate end regardless of the orientation of the defective portion.

【0011】[0011]

【実施例】以下に、本発明の実施例について図面を参照
して詳しく説明する。図1は本発明の一実施例の構成を
示す概要図である。図において、1は本発明の板端部検
出用の探傷ヘッド、2はコア3の磁極3a,3bにコイ
ル4a,4bを巻き付けた励磁ヨークである。5はプロ
ーブで、回転ディスク6に取付けられる。7は回転ディ
スク6を板材Sの表面に平行に回転する回転軸、8は回
転軸7の他端に取付けられたプーリ、9は駆動モータ、
10は駆動モータ9の回転軸9aに取付けられたプーリ、
11はプーリ8とプーリ10に巻回されたVベルトである。
12は回転軸7の端部に取付けられるスリップリングで、
プローブ5で検出された信号を外部の探傷装置(図示せ
ず)に出力するものである。なお、磁極3bの高さ方向
の厚さは板材Sの板厚と略同一とし、プローブ側の側面
は板材Sの探傷表面と同一高さ位置とされるかまたはわ
ずかに沈んだ状態に配置される。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of an embodiment of the present invention. In the figure, reference numeral 1 is a flaw detection head for detecting a plate end portion of the present invention, and 2 is an exciting yoke in which coils 4a and 4b are wound around magnetic poles 3a and 3b of a core 3. A probe 5 is attached to the rotating disk 6. 7 is a rotary shaft that rotates the rotary disk 6 parallel to the surface of the plate S, 8 is a pulley attached to the other end of the rotary shaft 7, 9 is a drive motor,
10 is a pulley attached to the rotating shaft 9a of the drive motor 9,
Reference numeral 11 is a V-belt wound around the pulley 8 and the pulley 10.
12 is a slip ring attached to the end of the rotary shaft 7,
The signal detected by the probe 5 is output to an external flaw detector (not shown). The thickness of the magnetic pole 3b in the height direction is substantially the same as the plate thickness of the plate S, and the side surface on the probe side is located at the same height as the flaw detection surface of the plate S or is slightly sunk. It

【0012】このように構成した探傷ヘッド1を、コア
3の一方の磁極3aが板材Sの表面にギャップgで対向
するように、またもう一方の磁極3bが板材Sの側端面
にギャップhで対向するように配置される。そして、コ
イル4a,4bに所定の周波数の励磁信号を印加してコ
ア3を励磁すると、N極である磁極3aとS極である磁
極3bとの間に挟まれた板材Sに均一な磁界が発生す
る。
In the flaw detection head 1 constructed as described above, one magnetic pole 3a of the core 3 faces the surface of the plate S with a gap g, and the other magnetic pole 3b has a gap h on the side end surface of the plate S. It is arranged so as to face each other. When an exciting signal having a predetermined frequency is applied to the coils 4a and 4b to excite the core 3, a uniform magnetic field is applied to the plate material S sandwiched between the magnetic pole 3a which is the N pole and the magnetic pole 3b which is the S pole. appear.

【0013】これを平面的で示すと、図2に示すよう
に、プローブ5の旋回の軌跡Rが板材Sの端部稜線Mと
交叉する2点a,bが中心位置Oとなす角度θが略90°
になるように励磁ヨーク2の中心位置Oが位置決めされ
る。これにより、板端部領域においては、プローブ5に
よってほぼ直交する方向で2回の走査をすることができ
る。
When this is shown in a plan view, as shown in FIG. 2, the angle θ formed by the two points a and b where the locus R of the probe 5 crosses the edge ridge M of the plate S and the center position O is defined. 90 °
The center position O of the excitation yoke 2 is positioned so that As a result, in the plate end region, the probe 5 can perform two scans in a direction substantially orthogonal to each other.

【0014】すなわち、プローブ5は図3に示すような
らせん状の軌跡Rを描いて走査することになるが、たと
えば点Pに欠陥部があったとすると、この欠陥部に対し
てプローブ5は1回目では矢示c側から走査し、2回目
では矢示d側から走査することになる。これによって、
方向性の強いプローブを使用した場合でも欠陥部の向き
がどの方向であっても検出することが可能になる。
That is, the probe 5 scans while drawing a spiral locus R as shown in FIG. 3. If, for example, there is a defective portion at the point P, the probe 5 is 1 for this defective portion. In the second time, scanning is performed from the arrow c side, and in the second time, scanning is performed from the arrow d side. by this,
Even if a probe having a strong directivity is used, it is possible to detect the defect portion in any direction.

【0015】なお、プローブ5の軌跡にかかわる角度θ
は90°から多少外れても実用上は問題がなく、たとえば
60〜120 °の範囲内であれば検出能に大差はない。この
ように、探傷ヘッド1をその姿勢を保持しながら板材S
の端部に沿って走行させながら走査するか、あるいは探
傷ヘッド1を静止した状態で板材Sを走行させるように
すれば、板材Sの端部の表面または内面の欠陥の探傷を
全長にわたって行うことができる。
The angle θ related to the locus of the probe 5
Is practically no problem even if it deviates a little from 90 °.
There is no significant difference in detectability within the range of 60 to 120 °. In this way, the plate material S is held while maintaining the posture of the flaw detection head 1.
Scanning while traveling along the edge of the plate S, or by traveling the plate S while the flaw detection head 1 is stationary, it is possible to perform flaw detection of defects on the surface or the inner surface of the plate S over the entire length. You can

【0016】ここで、励磁ヨーク2の磁束密度分布の調
査結果について説明する。図4に示す幅W; 300mm×長
さL; 500mm×板厚t;18mmの板材Sに、板表面と磁極
3aのギャップgおよび板端面と磁極3bとのギャップ
hをそれぞれ3mmとして、開口部寸法T×Uが 210×30
0(mm2)の探傷ヘッド1を幅方向端部から距離Yが50mmの
位置にセットした。
Now, the examination result of the magnetic flux density distribution of the exciting yoke 2 will be described. The width W shown in FIG. 4; 300 mm × length L; 500 mm × plate thickness t; a plate material S having a thickness of 18 mm, a gap g between the plate surface and the magnetic pole 3a and a gap h between the plate end face and the magnetic pole 3b are set to 3 mm, and the opening is formed. Dimension T × U is 210 × 30
The flaw detection head 1 of 0 (mm 2 ) was set at a position where the distance Y was 50 mm from the end in the width direction.

【0017】なお、この実験に使用した探傷ヘッド1の
励磁条件は、試験周波数;8kHz 、励磁電圧;300V、励
磁電流;6.2A、共振電流;17.5A (最大値)、コイル巻
線数;40T 、磁界強度;248 ATである。このときの励磁
ヨーク2の全幅にわたるC点からD点までの間のギャッ
プg,h内の磁束密度を測定した結果を図5に示した。
この図で、●印は磁極3a側(g)、◆印は磁極3b側
(h)である。なお、板材Sがないときの磁極3a側の
を○印、磁極3b側のを◇印として併せて示した。
The excitation conditions for the flaw detection head 1 used in this experiment were as follows: test frequency: 8 kHz, excitation voltage: 300 V, excitation current: 6.2 A, resonance current: 17.5 A (maximum value), number of coil windings: 40 T , Magnetic field strength; 248 AT. FIG. 5 shows the result of measuring the magnetic flux densities in the gaps g and h from the point C to the point D over the entire width of the exciting yoke 2 at this time.
In this figure, ● indicates the magnetic pole 3a side (g), and ◆ indicates the magnetic pole 3b side (h). In addition, when the plate S is not provided, the side of the magnetic pole 3a is indicated by a circle, and the side of the magnetic pole 3b is indicated by a diamond.

【0018】この図から、板材Sがある場合は、磁極3
a,3bと板材Sの間隙がわずかに変化するので、磁束
密度は測定位置によって変化しているが十分高い磁束密
度が得られることがわかる。また、板材Sがない場合
は、磁極3a側、磁極3b側とも均一な磁束密度が形成
されており、励磁ヨーク2自体の磁界が均一であること
がわかる。
From this figure, when there is a plate material S, the magnetic pole 3
It can be seen that a sufficiently high magnetic flux density can be obtained although the magnetic flux density changes depending on the measurement position because the gap between a and 3b and the plate material S slightly changes. Further, it can be seen that when the plate material S is not present, uniform magnetic flux densities are formed on the magnetic pole 3a side and the magnetic pole 3b side, and the magnetic field of the excitation yoke 2 itself is uniform.

【0019】これによって、磁極3aと磁極3bとの間
にそれぞれギャップg,hで位置する板材S内は強磁性
体であるので、ギャップg,hで測定されたのと同等以
上の磁束密度であり、探傷のために十分なかつ均一な磁
界となっていることがわかる。なお、実用的には、特に
均一な磁束密度が形成されている励磁ヨーク2の幅 210
mmより内側の幅 110mm以内を評価領域として設定するよ
うにするのがよい。
As a result, since the inside of the plate material S located at the gaps g and h between the magnetic poles 3a and 3b is a ferromagnetic material, the magnetic flux density is equal to or higher than that measured at the gaps g and h. It is clear that the magnetic field is sufficient and uniform for flaw detection. In addition, practically, the width 210 of the excitation yoke 2 in which a particularly uniform magnetic flux density is formed.
It is advisable to set the width within 110 mm within 110 mm as the evaluation area.

【0020】つぎに、板端部より5mmの位置に深さ0.3
mm×幅0.2 mm×長さ10mmの板端部の稜線に直交する方向
を有する人工欠陥を設けて、磁極3aと板材Sとのギャ
ップgを変化させてバックグラウンドノイズと欠陥信号
のSN比を測定した。その結果を図6に示した。この励
磁ヨーク2ではギャップgを10mm程度まで大きくとって
も欠陥に対する検出感度に与える影響はほとんどないこ
とが判る。このようにギャップgを広くとれるというこ
とは、鋼材などの被測定材との衝突防止の観点からも有
利であるといえる。
Next, at a position 5 mm from the edge of the plate, a depth of 0.3
mm × width 0.2 mm × length 10 mm is provided with an artificial defect having a direction orthogonal to the ridgeline of the plate end, and the gap g between the magnetic pole 3a and the plate S is changed to reduce the SN ratio of background noise and defect signal. It was measured. The results are shown in Fig. 6. In this exciting yoke 2, it can be seen that even if the gap g is increased to about 10 mm, there is almost no effect on the detection sensitivity to defects. The fact that the gap g can be widened in this way can be said to be advantageous from the viewpoint of preventing collision with a material to be measured such as steel material.

【0021】深さ0.3 mm×幅0.2 mm×長さ10mmの板端部
の稜線に直交する方向を有する人工欠陥を、板端部より
10mmの位置と5mmの位置に設けた被検材を製作して、本
発明の探傷ヘッド1を用いて探傷を行った。この探傷ヘ
ッド1の励磁条件は、前記した図4の場合と同じであ
り、また1kHz のローパスフィルタと40kHz のハイパス
フィルタとを使用した。その漏洩磁束密度の結果を図7
(a) ,(b) にそれぞれ示した。図からわかるように、板
端部より5ないし10mmまでの欠陥部はSN比が2以上で
検出可能であることがわかる。したがって、本発明装置
によれば、不感帯を板端部から5〜10mmにまで小さくす
ることが可能である。
An artificial defect having a depth of 0.3 mm, a width of 0.2 mm, and a length of 10 mm and having a direction orthogonal to the ridgeline of the plate end portion is removed from the plate end portion.
The test materials provided at the positions of 10 mm and 5 mm were manufactured, and the flaw detection was performed using the flaw detection head 1 of the present invention. The excitation condition of the flaw detection head 1 is the same as that in the case of FIG. 4 described above, and a low-pass filter of 1 kHz and a high-pass filter of 40 kHz are used. The result of the leakage magnetic flux density is shown in FIG.
They are shown in (a) and (b) respectively. As can be seen from the figure, the defect portion of 5 to 10 mm from the plate edge can be detected when the SN ratio is 2 or more. Therefore, according to the device of the present invention, the dead zone can be reduced to 5 to 10 mm from the edge of the plate.

【0022】なお、上記実施例における欠陥の方向性と
プローブ5の関係については、使用するプローブ5の形
式や形状、寸法などによる方向特性と、対象とする欠陥
の性状や検出限界との組み合わせにより、プローブ5の
使用と走査方法を適宜決定すればよい。また、上記実施
例においては、プローブ5を旋回させるとして説明した
が、本発明はこれに限るものではなく、旋回式プローブ
に替えて複数のセンサをアレイ状にしたブラシ型の広幅
プローブを用いるとか、あるいは従来と同じ1個のプロ
ーブを備えたものを端部で往復走査させるように構成し
ても、旋回方式と同等に近い検出能をもたせることが可
能である。
Regarding the relationship between the directionality of the defect and the probe 5 in the above embodiment, the directional characteristics depending on the type, shape and size of the probe 5 to be used and the characteristics and detection limit of the target defect are combined. The use of the probe 5 and the scanning method may be appropriately determined. Further, although the probe 5 is swung in the above embodiment, the present invention is not limited to this, and instead of the swivel probe, a wide brush type probe in which a plurality of sensors are arrayed is used. Alternatively, even if the one equipped with the same one probe as in the prior art is configured to reciprocally scan at the end, it is possible to provide the detectability close to that of the turning method.

【0023】さらに、本実施例では板材の端部の探傷に
ついて記述したが、本装置は、条材など平面の探傷面の
側端であれば他の形状の被検材にも適用することが可能
である。
Further, in this embodiment, the flaw detection of the end portion of the plate material is described, but the present apparatus can be applied to the test material of other shapes as long as it is the side edge of the flat flaw detection surface such as a strip material. It is possible.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
励磁ヨークの磁極の一方を被検体である板材の端面に所
定のギャップで沿わせることにより、板端部における未
探傷領域を最小化することができるので、たとえば目視
検査が困難な黒皮下の割れなどの欠陥部検出が可能とな
って、製品の品質保証を高め得るとともに、最適な切断
が可能になるから歩留りの向上に寄与する。また、人手
による検査が不要になるから検査コストの低減が可能に
なる。
As described above, according to the present invention,
By arranging one of the magnetic poles of the excitation yoke along the end surface of the plate material to be inspected with a predetermined gap, the undetected area at the plate end can be minimized, so that, for example, cracks under the black skin that are difficult to visually inspect. It is possible to detect defective parts such as, and improve the quality assurance of the product, and it is possible to perform the optimum cutting, which contributes to the improvement of the yield. In addition, the inspection cost can be reduced because manual inspection is not required.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成を示す概要図である。FIG. 1 is a schematic diagram showing the configuration of an embodiment of the present invention.

【図2】図1のA−A矢視断面図である。FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】プローブの走査軌跡の説明図である。FIG. 3 is an explanatory diagram of a scanning locus of a probe.

【図4】励磁ヨークの磁束密度分布測定用の実験装置の
斜視図である。
FIG. 4 is a perspective view of an experimental device for measuring a magnetic flux density distribution of an exciting yoke.

【図5】励磁ヨークの幅方向の磁束密度の測定例を示す
グラフである。
FIG. 5 is a graph showing a measurement example of the magnetic flux density in the width direction of the exciting yoke.

【図6】磁極3aのギャップと検出感度の関係を示す特
性図である。
FIG. 6 is a characteristic diagram showing the relationship between the gap of the magnetic pole 3a and the detection sensitivity.

【図7】(a) ,(b) は板端部の人工欠陥の検出時の漏洩
磁束密度の測定状況を示す特性図である。
7 (a) and 7 (b) are characteristic diagrams showing a measurement state of a leakage magnetic flux density at the time of detecting an artificial defect at a plate end portion.

【図8】漏洩磁束探傷装置の従来例を示す概要図であ
る。
FIG. 8 is a schematic diagram showing a conventional example of a leakage magnetic flux flaw detector.

【符号の説明】[Explanation of symbols]

1 探傷ヘッド 2 励磁ヨーク 3 コア 3a,3b 磁極 4a,4b コイル 5 プローブ 6 回転ディスク(旋回機構) 7 回転軸(旋回機構) 8,10 プーリ(旋回機構) 9 駆動モータ(旋回機構) 11 Vベルト(旋回機構) 12 スリップリング S 板材(被検材) g,h ギャップ 1 flaw detection head 2 excitation yoke 3 cores 3a, 3b magnetic poles 4a, 4b coil 5 probe 6 rotating disk (swing mechanism) 7 rotating shaft (swing mechanism) 8, 10 pulley (swing mechanism) 9 drive motor (swing mechanism) 11 V-belt (Swivel mechanism) 12 Slip ring S Plate material (test material) g, h Gap

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 励磁ヨークによって磁化した被検材の
漏洩磁束を探傷面に平行に走査するプローブによって検
出する装置であって、 前記励磁ヨークの一方の磁極を被検材の端面に所定のギ
ャップで近接配置し、もう一方の磁極を探傷面に所定の
ギャップで近接配置してなることを特徴とする漏洩磁束
探傷装置。
1. A device for detecting a leakage magnetic flux of a material to be inspected magnetized by an excitation yoke by a probe scanning in parallel to a flaw detection surface, wherein one magnetic pole of the excitation yoke is provided at a predetermined gap on an end surface of the material to be inspected. And the other magnetic pole is disposed close to the flaw detection surface with a predetermined gap.
【請求項2】 前記プローブを探傷面に平行な平面内
で旋回させて、被検材端面に配置した前記励磁ヨークの
一方の磁極の側面まで走査する旋回機構を備えたことを
特徴とする請求項1記載の漏洩磁束探傷装置。
2. A swirl mechanism for swiveling the probe in a plane parallel to the flaw detection surface and scanning up to the side surface of one of the magnetic poles of the exciting yoke disposed on the end surface of the material to be inspected. Item 3. The leakage magnetic flux flaw detector according to Item 1.
JP6324793A 1994-12-27 1994-12-27 Leakage flux type flaw detector Pending JPH08178900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6324793A JPH08178900A (en) 1994-12-27 1994-12-27 Leakage flux type flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6324793A JPH08178900A (en) 1994-12-27 1994-12-27 Leakage flux type flaw detector

Publications (1)

Publication Number Publication Date
JPH08178900A true JPH08178900A (en) 1996-07-12

Family

ID=18169750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6324793A Pending JPH08178900A (en) 1994-12-27 1994-12-27 Leakage flux type flaw detector

Country Status (1)

Country Link
JP (1) JPH08178900A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230351A (en) * 2009-03-26 2010-10-14 Honda Motor Co Ltd Work hardness measuring instrument
JP2010236882A (en) * 2009-03-30 2010-10-21 Jfe Steel Corp Tester for testing magnetic characteristic of veneer of electromagnetic steel plate and method of measuring magnetic characteristics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230351A (en) * 2009-03-26 2010-10-14 Honda Motor Co Ltd Work hardness measuring instrument
JP2010236882A (en) * 2009-03-30 2010-10-21 Jfe Steel Corp Tester for testing magnetic characteristic of veneer of electromagnetic steel plate and method of measuring magnetic characteristics

Similar Documents

Publication Publication Date Title
US5130652A (en) AC magnetic flux leakage flaw detecting apparatus for detecting flaws in flat surfaces with rotating leakage detection element
US3611120A (en) Eddy current testing systems with means to compensate for probe to workpiece spacing
EP0624249B1 (en) Arrayed eddy current probe system
US5537876A (en) Apparatus and method for nondestructive evaluation of butt welds
JP5758798B2 (en) Method and apparatus for detecting defects near a surface by measuring leakage flux
US6951133B2 (en) Electromagnetic acoustic transducer with recessed coils
CA1284180C (en) Electronically scanned eddy current flaw inspection
US6561035B2 (en) Electromagnetic acoustic transducer with recessed coils
JP3276295B2 (en) Eddy current flaw detector
US6014024A (en) Apparatus and method for detecting and/or measuring flaws in conductive material
US4477776A (en) Apparatus and process for flux leakage testing using transverse and vectored magnetization
US4706021A (en) Crossed wire defect detector employing eddy currents
JPH08178900A (en) Leakage flux type flaw detector
JP3944068B2 (en) Inspection method for butt welds of steel sheets
JP4117645B2 (en) Eddy current testing probe and eddy current testing equipment for magnetic materials
CN113984879B (en) High-voltage cabinet inflation compartment weld joint detection probe, device and method
JPH0560510A (en) Flatness measurement and magnetic particle inspection method for metallic component
JP4484723B2 (en) Eddy current testing probe
JPS63311165A (en) Method and apparatus for finding flaw with magnetism
JP2000141198A (en) Method and device for automatically grinding defect of round bar material
JP4048256B2 (en) Magnetic flux leakage flaw detector
JPS5840141B2 (en) Kariyutanyoukenshiyutsu Coil
JP2860336B2 (en) Steel plate magnetic inspection equipment
JPH08261991A (en) Eddy current probe
JPH10170481A (en) Eddy current flaw detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100517

LAPS Cancellation because of no payment of annual fees