JPH08178827A - Tester equipment for water permeability and gas permeability - Google Patents

Tester equipment for water permeability and gas permeability

Info

Publication number
JPH08178827A
JPH08178827A JP31881394A JP31881394A JPH08178827A JP H08178827 A JPH08178827 A JP H08178827A JP 31881394 A JP31881394 A JP 31881394A JP 31881394 A JP31881394 A JP 31881394A JP H08178827 A JPH08178827 A JP H08178827A
Authority
JP
Japan
Prior art keywords
water
gas
permeability
air
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31881394A
Other languages
Japanese (ja)
Other versions
JP3120674B2 (en
Inventor
Yasuhiro Kubota
康宏 窪田
Hiroshi Watabe
寛 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP06318813A priority Critical patent/JP3120674B2/en
Publication of JPH08178827A publication Critical patent/JPH08178827A/en
Application granted granted Critical
Publication of JP3120674B2 publication Critical patent/JP3120674B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE: To shorten the time required for switching from measurement of water permeability to measurement of gas permeability by discharging the residual fluid from the channel of a fluid channel forming member and a porous support upon finishing the water permeability test. CONSTITUTION: Upon finishing the measurement of water permeability, compressed air or gas is fed to a line Ld1 at a draining gas introducing section. The gas is fed through a draining gas supply pipe 15 and a blow-out port of a gas blow-out channel 15a into a first porous board member 7. The residual water on the member 7 and a first press tile is drained by the introduced air or gas to the down side where the ventilation resistance is low, then through a connection pipe 12 to the outside of a gas permeable vessel. A fixing block 19 for coupling the connection pipe 12 with ON/OFF valves disposed at the forward ends of lines La1 , La2 is independently provided with a drain line through which the water is drained to the outside.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透水透気試験装置に係
り、詳しく述べると、たとえば圧縮空気貯蔵岩盤の気密
性把握、石油・ガス貯蔵岩盤の漏気防止、気密性把握、
土木建設における圧気工法トンネルの透気性評価などに
おいて利用される透水透気試験装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water permeation test apparatus. More specifically, for example, the airtightness of compressed air storage rocks, the leakage prevention of oil and gas storage rocks, the airtightness detection,
The present invention relates to a water permeation / permeation test device used for air permeation evaluation of a pneumatic tunnel in civil engineering construction.

【0002】[0002]

【従来の技術及びその問題点】原子力事業において生じ
る放射性廃棄物を、放射能を外部に漏洩させることなく
安定に貯蔵する放射性廃棄物廃棄施設として、例えば、
図5に示すような構成を有する地下水槽体中に放射性廃
棄物を封入して貯蔵することがなされている。すなわ
ち、この地下水槽体100は、雑固と均一廃棄体101
を内側から順に高透気モルタル層102、多孔質コンク
リート層103、コンクリート躯体104、バッファ層
105およびベントナイト混合土層106で覆ってな
る。この地下水槽体100は、岩盤をくり抜いて形成し
た穴部に埋め込まれ、この上部に十分な覆土をかけてあ
る。なお、このベントナイト混合土槽103は重量比で
約85%程度の土砂に15%程度のベントナイトを混合
したもので、水を加えて混練して成形してなるものであ
る。含水量約14%程度とすることで石膏程度の硬度を
有する。
2. Description of the Related Art As a radioactive waste disposal facility for stably storing radioactive waste generated in a nuclear business without leaking radioactivity to the outside, for example,
Radioactive waste is enclosed and stored in a groundwater tank having a structure as shown in FIG. In other words, this groundwater tank body 100 is a
Is sequentially covered from the inside with a highly permeable mortar layer 102, a porous concrete layer 103, a concrete skeleton 104, a buffer layer 105, and a bentonite mixed soil layer 106. The groundwater tank body 100 is embedded in a hole formed by hollowing out a bedrock, and a sufficient amount of soil is covered on the upper part. The bentonite mixed soil tank 103 is made by mixing approximately 85% by weight of sand and sand with approximately 15% of bentonite, and is formed by kneading by adding water. By setting the water content to about 14%, the hardness is about the same as gypsum.

【0003】このように放射性廃棄物を封入する地下水
槽体は、放射性廃棄物から発生するガスを外部へと逃す
必要があるために、ある程度の透気性が必要とされてい
る。このような地下水槽体は、厳密な信頼性を必要とす
るものであるために、その透水性および透気性に関して
も正確に把握する必要がある。しかしながら、この地下
水槽体に使用される前記ベントナイト混合土槽は、天然
物を主体としているものであり、かつ膨潤性を有してい
るものであるため、机上計算において透水透気能を正確
に算出することは不可能であり、数回の透水および透気
を交互に繰返して、透水に関する自己修復性を確認する
必要がある。
As described above, the underground water tank body for enclosing radioactive waste is required to have a certain degree of air permeability because it is necessary to release the gas generated from the radioactive waste to the outside. Since such a groundwater tank body requires strict reliability, it is necessary to accurately grasp its water permeability and air permeability. However, since the bentonite mixed soil tank used for this groundwater tank body is mainly composed of natural products and has a swelling property, it is possible to accurately determine the water vapor permeability in a desktop calculation. It is impossible to calculate, and it is necessary to confirm the self-repairability of water permeability by repeating water permeability and air permeability several times alternately.

【0004】このような土壌ないし岩石等の試料の透水
透気係数測定は、従来、多孔質支持体で上下より挟持し
て被測定試料を密封容器(透気容器)内に配し、この被
測定試料の側面部をゴム膜のような非通気非通水性の弾
性部材で囲繞し、これに外周側から所定の水圧をかけて
側面方向への透水透気を遮断し、上下方向のみの透水透
気が可能となる状態とし、前記密封容器の底面側に連通
する流路より水ないしガスを送り、前記被測定試料を通
過し密封容器の上面側に連通する流路を介して流出する
水ないしガスの量を測定することにより行なわれてい
る。そして、この測定値から、下記の式(1)および
(2)に基づき、透気係数および透水係数を求めてい
る。
Conventionally, the permeability and air permeability of a sample such as soil or rock is measured by sandwiching the sample from above and below with a porous support and placing the sample to be measured in a sealed container (aeration container). The side surface of the measurement sample is surrounded by a non-air-permeable and water-impermeable elastic member such as a rubber membrane, and a predetermined water pressure is applied to this from the outside to block the permeation of air in the lateral direction and to permeate only in the vertical direction. Water or gas is sent from a channel communicating with the bottom surface side of the hermetically sealed container, and water flowing out through a channel communicating with the sample to be measured and communicating with the upper surface side of the hermetically sealed container. Or by measuring the amount of gas. Then, the air permeability coefficient and the water permeability coefficient are obtained from the measured values based on the following equations (1) and (2).

【0005】[0005]

【数1】 [Equation 1]

【0006】[0006]

【数2】 [Equation 2]

【0007】図6は、上記のような透水透気係数測定を
行なう際に従来用いられている透水透気試験装置におけ
る透気容器の要部構成を示す断面図である。図示するよ
うに、透気容器本体50内において、被測定試料51
は、前記透気容器本体50上に載置された第1ペレスタ
イル54および第1多孔質盤状部材53の上に載せられ
ており、またその側面部をゴム膜52で覆われている。
また、透気容器本体50の中央部には、水供給源および
ガス供給源(いずれも図示せず)に連通する流路を形成
する接続管55がOリングを介して気密に挿通されてお
り、前記第1ペレスタイル54は、この接続管55の流
路に下端側において連通しかつ上端側においてはその上
部に載置される前記第1多孔質盤状部材53ないし被測
定試料51の径方向全体にまんべんなく水ないしガスを
供給することができるように拡径された断面略T字状の
流路を有する。
FIG. 6 is a cross-sectional view showing the essential structure of an air permeable container in a water permeable air permeability test apparatus that has been conventionally used for measuring the water permeable air permeability coefficient as described above. As shown in the figure, in the air-permeable container main body 50, the measured sample 51
Is placed on the first Pelestyle 54 and the first porous disc-shaped member 53 placed on the air-permeable container body 50, and the side surface thereof is covered with the rubber film 52.
Further, a connecting pipe 55 forming a flow path communicating with a water supply source and a gas supply source (neither is shown) is airtightly inserted through an O-ring in the central portion of the air permeable container body 50. The diameter of the first porous disk-shaped member 53 or the sample to be measured 51, which communicates with the flow path of the connecting pipe 55 at the lower end side and is placed on the upper side at the upper end side. It has a channel having a substantially T-shaped cross-section whose diameter is expanded so that water or gas can be supplied uniformly over the entire direction.

【0008】従来、このような透水透気試験装置を用い
て透水透気係数を測定する場合、まず水供給源より水を
透気容器本体50内へと送り、被測定試料51を通水に
よって飽和させた後、透水係数を測定し、そのままの状
態で、今度はガス供給源よりガスを透気容器本体内50
へと送って透気係数を測定していた。
Conventionally, in the case of measuring the water vapor permeability coefficient using such a water vapor permeability test apparatus, first, water is sent from the water supply source into the air permeable container body 50, and the sample 51 to be measured is passed through. After saturating, the water permeability was measured, and in that state, the gas was supplied from the gas supply source within the air permeable container body 50
I sent it to and measured the air permeability.

【0009】しかしながら、このように水を送って透水
試験を行い、第1ペレスタイル54および第1多孔質盤
状部材53に水が滞留しているままの状態でガスによる
透気試験を実施すると、正確な透気試験が行えない。そ
こで、第1ペレスタイル54および第1多孔質盤状部材
53に滞留している水が抜けてから、透気試験を行って
いた。このため、数十日に及ぶ長持間を要していた。
However, if a water permeability test is carried out by sending water in this way, and a gas permeability test is carried out with the water remaining in the first pellet 54 and the first porous plate-like member 53. , The accurate air permeability test cannot be done. Therefore, the air permeability test is performed after the water remaining in the first pellet style 54 and the first porous disc-shaped member 53 is released. For this reason, it took a long time of several tens of days.

【0010】[0010]

【発明が解決しようとする課題】本発明は、透水係数測
定から透気係数測定に要する測定時間を短縮化し、かつ
その測定操作が簡略化されてなる改善された透水透気試
験装置を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides an improved water permeation / permeation test apparatus in which the measurement time required for measuring the air permeability coefficient from the water permeability coefficient is shortened and the measurement operation is simplified. The purpose is to

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る透水透気試験装置は、通水によって透
水係数を測定した後、ガスを送って透気係数を測定する
際、まず、前記第1多孔質盤状部材および第1ペレスタ
イルに滞留している水(以下、ドレイン水と称する。)
を、被測定試料側へと送ることなく除去し、当該被測定
試料下面に直接ガスを送ることができるように構成した
ものである。
In order to achieve the above object, the water permeation test apparatus according to the present invention, after measuring the water permeability coefficient by water passage, when sending gas to measure the air permeability coefficient, First, water retained in the first porous disc-shaped member and the first Pellet style (hereinafter referred to as drain water).
Is removed without being sent to the measured sample side, and the gas can be directly sent to the lower surface of the measured sample.

【0012】すなわち、本発明に係る透水透気試験装置
は、一端部に水およびガス供給系が接続され、かつこれ
と対向する他端部に水およびガス測定系が接続された密
閉容器内に、流体流路形成部材および多孔質支持体をそ
れぞれ前後に存在させて被測定試料を挟持してなる透水
透気試験装置において、透水試験を終了した後に、前記
水およびガス供給系側に位置する流体流路形成部材の流
路内および多孔質支持体内に残留する流体を排出するド
レイン排出機構を備えたことを特徴とする。
That is, the water permeation test apparatus according to the present invention is provided in a closed container having a water and gas supply system connected to one end and a water and gas measurement system connected to the other end opposite thereto. In a water permeation test apparatus in which a fluid flow path forming member and a porous support are present in front of and behind each other and a sample to be measured is sandwiched, the water and gas supply system is positioned after the water permeation test is completed. A drain discharge mechanism for discharging the fluid remaining in the flow passage of the fluid flow passage forming member and in the porous support body is provided.

【0013】前記ドレイン排出機構が、水およびガス供
給系側に位置する流体流路形成部材の流路内にガスを吹
き付ける手段を有することが好ましい。
It is preferable that the drain discharge mechanism has means for blowing gas into the flow passage of the fluid flow passage forming member located on the water and gas supply system side.

【0014】[0014]

【作用】このように本発明の透水透気試験装置において
は、前記水およびガス供給系側に位置する流体流路形成
部材の流路内および多孔質支持体内に残留する流体を前
記水およびガス供給系側を排出するドレイン排出機構が
設けられているために、透水係数測定後、ドレイン水を
短時間で系外に排出でき、透気係数測定の際に、水およ
びガス供給系から送られてくるガスを被測定試料下面に
直接供給できるようになり、透水係数測定から透気係数
測定までに要していた時間を大幅に短縮できるようにな
る。
As described above, in the water permeation test apparatus of the present invention, the fluid remaining in the channels of the fluid channel forming member located on the side of the water and gas supply system and in the porous support is treated with the water and the gas. Since the drain discharge mechanism that discharges the supply system side is provided, drain water can be discharged to the outside of the system in a short time after the permeability measurement, and it is sent from the water and gas supply system when measuring the permeability coefficient. The incoming gas can be directly supplied to the lower surface of the sample to be measured, and the time required from the permeability coefficient measurement to the air permeability coefficient measurement can be greatly shortened.

【0015】[0015]

【実施例】以下、本発明を実施例に基づきより詳細に説
明する。図1は、本発明の一実施例に係る透水透気試験
装置の全体構成を概略示す装置回路図であり、図2は本
発明に係る透水透気試験装置の要部構成を示す断面図で
あり、図3は図2におけるIII −III 線断面図である。
EXAMPLES The present invention will be described in more detail based on the following examples. FIG. 1 is an apparatus circuit diagram schematically showing the overall configuration of a water permeation test apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing the main configuration of the water permeability test apparatus according to the present invention. FIG. 3 is a sectional view taken along line III-III in FIG.

【0016】図1および図2に示すように、この実施例
の透水透気試験装置は、土壌及び岩石等の透水透気係数
測定を行なう三軸透水透気試験装置であって、被測定試
料1を収納するための透気容器2と、この透気容器2内
に収納された被測定試料1にに通水および通気を行なう
ための通水通気部Aと、透気容器2内に収納された被測
定試料1を通過する水およびガス量を測定するための計
測部Bと、透気容器2内に収納された被測定試料1の側
面に所定の側圧を加えるため側圧導入部Cと、透気容器
2内のドレイン水排出のためガスを供給するドレイン水
排出用ガス導入部Dとを有する。
As shown in FIGS. 1 and 2, the water permeation test apparatus of this embodiment is a triaxial water permeation test apparatus for measuring the coefficient of water permeation of soil and rocks. 1. An air-permeable container 2 for storing 1; a water-permeable aeration unit A for allowing water and air to flow through the sample 1 to be measured stored in the air-permeable container 2; A measuring unit B for measuring the amount of water and gas passing through the measured sample 1 and a lateral pressure introducing unit C for applying a predetermined lateral pressure to the side surface of the measured sample 1 housed in the air permeable container 2. And a drain water discharge gas introduction part D for supplying gas for discharging drain water in the air permeable container 2.

【0017】前記透気容器2は、上端部が開放された透
気容器本体部3と、この透気容器本体部2の上端開口を
閉塞する透気容器蓋体4とを有し、この透気容器本体部
3と蓋体4との接合は、その囲繞空間の気密性・液密性
を保つために、ボルト5によって固定されるようになっ
ている。そして、この透気容器2内には、この容器本体
と同軸的に、断面略T字状の流路を有する第1ペレスタ
イル6、第1多孔質盤状部材7、被測定試料1、第2多
孔質盤状部材8および断面略逆T字状の流路を形成する
第2ペレスタイル9が順に積層載置されて収納されてお
り、さらにこれらの積層体の側面をゴム膜10で覆って
いる。
The air permeable container 2 has an air permeable container body 3 having an open upper end, and an air permeable container lid 4 for closing the upper end opening of the air permeable container body 2. The joint between the air container body 3 and the lid 4 is fixed by a bolt 5 in order to maintain the airtightness and liquidtightness of the surrounding space. Then, in the air permeable container 2, a first Pellet style 6 having a channel having a substantially T-shaped cross section, a first porous disc-shaped member 7, a sample to be measured 1, a first coaxially with the container body are provided. 2 The porous disk-shaped member 8 and the second Pelestyle 9 that forms a flow path having a substantially inverted T-shaped cross section are sequentially stacked and stored, and the side surfaces of these stacked bodies are covered with a rubber film 10. ing.

【0018】また、前記透気容器本体部3の底面中央部
には、前記通水通気部AのラインL a1およびLa2に連通
する流路を形成する接続管12がOリング等を介して気
密に挿通されている。前記第1ペレスタイル6の流路
は、この接続管12の流路に下端側において連通し、か
つ上端側においてはその上部に載置される前記第1多孔
質盤状部材7ないし被測定試料1の径方向全体にまんべ
んなく水ないしガスを供給することができるように漏斗
状に拡径され、前記断面略T字状となっている。なお、
この拡径部は必ずしもテーパ状である必要はなく、円盤
状のものなどであってもよい。一方、前記透気容器蓋体
4の中央部に設けられた開口部からは、前記第2ペレス
タイル9の上端部が外部へと突出しており、この部位に
おいてもOリング等によって気密性が保たれている。
Further, the central portion of the bottom surface of the air permeable container body 3
Is the line L of the water passage part A a1And La2In communication with
The connecting pipe 12 forming a flow path for
It is tightly inserted. Flow path of the first Pelestyle 6
Is connected to the flow path of the connecting pipe 12 on the lower end side,
On the upper end side, the first perforation placed on the upper side thereof
Spreads the whole of the plaque member 7 or the sample 1 to be measured in the radial direction.
Funnel so that water or gas can be supplied
The diameter is expanded in a circular shape to have a substantially T-shaped cross section. In addition,
This expanded part does not necessarily have to be tapered,
It may be in the form of a shape. On the other hand, the air-permeable container lid
From the opening provided in the central part of No. 4,
The upper end of the tile 9 projects to the outside,
Airtightness is maintained even by O-rings.

【0019】また、透気容器2内において、前記ゴム膜
10で囲繞された前記積層体と透気容器本体部3の内周
面との間の空隙には、前記側圧導入部Cの水タンク11
から当該空隙部へと連通するラインLc1を介して供給さ
れる蒸溜水を満たして被測定試料に所定の側圧、例えば
0.1〜10.0kgf/cm2 程度の圧力をかけ、側
面方向への透水透気を遮断し、上下方向のみの透水透気
が可能となる状態とされる。
Further, in the air permeable container 2, a water tank of the side pressure introducing portion C is provided in a gap between the laminated body surrounded by the rubber film 10 and the inner peripheral surface of the air permeable container body 3. 11
From the above to the gap through a line L c1 communicating with the distilled water to fill the sample to be measured with a predetermined lateral pressure, for example, a pressure of about 0.1 to 10.0 kgf / cm 2 , and to the lateral direction. The water permeation is blocked so that only the vertical direction can be permeated.

【0020】さらに、透気容器2内には、ドレイン水排
出用ガス導入部DのラインLd1に接続されたドレイン水
排出用ガス供給管15が、透気容器本体部3の底面を通
して、図2,3に示すように、第1ペレスタイル6内に
形成されたガス吹き出し用通路15aに連通してある。
ガス吹き出し用通路15aは、環状溝16を介して、ガ
ス供給管15と連通し、その吹出口は、前記第1多孔質
盤状部材7の肉厚途中において開口している。
Further, in the air permeable container 2, a drain water discharge gas supply pipe 15 connected to the line L d1 of the drain water discharge gas introduction portion D is passed through the bottom surface of the air permeable container body 3 to As shown in FIGS. 2 and 3, it communicates with a gas blowing passage 15 a formed in the first Pellet style 6.
The gas outlet passage 15a communicates with the gas supply pipe 15 via the annular groove 16, and the outlet thereof is opened in the middle of the thickness of the first porous disc-shaped member 7.

【0021】図1に示すように、透水係数の測定は、上
記のように透気容器2内に被測定試料1を配し所定の側
圧をかけた状態で、前記通水通気部Aのコンプレッサー
13より所定圧、例えば0.1〜10.0kgf/cm
2 程度の圧縮空気をラインL a5を介して下部エアートラ
ップ14へと送り、ここより圧縮空気によって押出され
る蒸溜水をラインLc2および接続管12を介して、透気
容器2内へと送り込むことにより行なわれる。透気容器
2内において、被測定試料を通過した水は、第2ペレス
タイル6の流路を通じて透気容器外部へと導かれ、この
第2ペレスタイル6の流路に連通する計測部Bのライン
b1を通じて上部エアートラップ17へと送られる。透
水係数測定時において、上部エアートラップ17には予
め水が完全に充填されており、流入量と同量の水が、ラ
インLb2を通じて流出され、密閉ビューレット18へと
送り込まれる。従って、密閉ビューレットにおける測定
開始時との水位差により透水量が求められ、この値を前
記式(2)に導入することにより透水係数を求める。
As shown in FIG. 1, the permeability is measured by
Place the sample to be measured 1 in the air permeable container 2 as shown in
Compressor of the water flow ventilation part A under pressure
Predetermined pressure from 13, for example 0.1 to 10.0 kgf / cm
2 Line L with compressed air a5Through lower air tiger
To the top 14 where it is extruded by compressed air
Distilled water with line Lc2And through the connecting tube 12
It is carried out by feeding it into the container 2. Air-permeable container
The water that has passed through the sample to be measured in
It is guided to the outside of the air permeable container through the flow path of tile 6,
Line of the measuring unit B communicating with the flow path of the second Pelestyle 6
Lb1Is sent to the upper air trap 17. Transparent
When measuring the water coefficient, the upper air trap 17 is not
Water is completely filled, and the same amount of water as the inflow is
In Lb2Spilled through to the sealed burette 18
Sent in. Therefore, measurements in closed burettes
Permeability is calculated from the difference in water level from the start and this value is
The permeability coefficient is obtained by introducing the formula (2).

【0022】このようにして透水係数を測定したら、次
いで、透気係数の測定を開始するが、本発明の試験装置
においては、まず、透水係数測定終了後、前記ドレイン
水排出用ガス導入部DのラインLd1に、圧縮空気および
/またはガスを流し、ドレイン水排出用ガス供給管15
を通して、ガス吹き出し用通路15aの吹出口より第1
多孔質盤状部材7内へと導出させる。第1多孔質盤状部
材7および第1ペレスタイルに残留していたドレイン水
のほとんどは、この導入空気ないしガスによって通気抵
抗の低い下方へと向い、接続管12を通って透気容器2
外部へと流れ出る。接続管12と前記ラインLa1および
a2のそれぞれ先端に設けられた開閉バルブとの接続を
つかさどる取付ブロック19には、図示しないドレイン
ラインが別途設けられており、このドレインラインを通
じて、ドレイン水は系外へと排出される。勿論この逆方
向のドレインも可能である。
After the water permeability is measured in this way, the air permeability is then measured. In the test apparatus of the present invention, first, after the water permeability measurement is completed, the drain water discharge gas introducing portion D Compressed air and / or gas is caused to flow in the line L d1 of the
Through the outlet of the gas blowing passage 15a
It is led out into the porous disc-shaped member 7. Most of the drain water remaining in the first porous disc-shaped member 7 and the first Pellet style is directed to the lower side having a low ventilation resistance by the introduced air or gas, and passes through the connecting pipe 12 to the air permeable container 2
It flows to the outside. A drain line (not shown) is additionally provided in the mounting block 19 for controlling the connection between the connecting pipe 12 and the on-off valves provided at the respective ends of the lines L a1 and L a2 , and drain water is drained through this drain line. It is discharged to the outside of the system. Of course, the drain in the opposite direction is also possible.

【0023】ドレイン水が系外に排出されたら、前記通
水通気部Aのコンプレッサー13より圧縮空気をライン
a4を介してアキュームレータ20へと送り、またライ
ンL a3を介してガスボンベ21よりヘリウムガス、水素
ガス等の所定のガスを流し、アキュームレータ20によ
り所定圧、例えば0.1〜10.0kgf/cm2 程度
の圧力とされたガスおよび圧縮空気をラインLa1および
接続管12を介して、透気容器2内へと送り込む。透気
容器2内において、被測定試料を通過した圧縮空気およ
びガスは、第2ペレスタイル6の流路を通じて透気容器
外部へと導かれ、この第2ペレスタイル6の流路に連通
する計測部BのラインLb1を通じて上部エアートラップ
17へと送られる。上部エアートラップ17に圧縮空気
およびガスが導入されると、エアートラップ17に貯溜
されていた水が、圧縮空気およびガスの流入量に応じ
て、ラインLb2を通じて流出され、密閉ビューレット1
8へと送り込まれる。従って、密閉ビューレットにおけ
る測定開始時との水位差により透気量が求められ、この
値を前記式(1)に導入することにより透気係数を求め
る。
When the drain water is discharged out of the system, the above
Compressed air is lined from the compressor 13 in the water vent A
La4To the accumulator 20 via the
L a3Helium gas, hydrogen from the gas cylinder 21 via
A predetermined gas such as gas is caused to flow, and the accumulator 20 is used.
Predetermined pressure, for example 0.1 to 10.0 kgf / cm2 degree
The pressure of gas and compressed air to line La1and
It is sent into the air permeable container 2 via the connecting pipe 12. Air permeability
In the container 2, compressed air passing through the sample to be measured and
And gas are permeable containers through the second Pelestyle 6 flow path.
It is guided to the outside and communicates with the flow path of this second Pelestyle 6.
Line L of measuring unit Bb1Through the upper air trap
Sent to 17. Compressed air in the upper air trap 17
When gas and gas are introduced, they are stored in the air trap 17.
The amount of water that was stored depends on the inflow of compressed air and gas.
Line Lb2Leaked through and closed burette 1
It is sent to 8. Therefore, keep it in a closed buret
The air permeability is calculated from the water level difference from the start of measurement.
The air permeability coefficient is calculated by introducing the value into the above equation (1).
It

【0024】さらに、上記したような透水係数と透気係
数の測定を数回交互にくりかえすことにより、試料の透
水に関する自己修復性を確認する。図4は、上記したよ
うな本発明に係る透水透気試験装置を用いて、放射性廃
棄物の地下水槽体に使用されるベントナイト混合土槽の
透水透気能を測定した結果の一例を示すグラフである。
図示するように、本発明に係る透水透気試験装置を用い
ると、このような測定に要する時間が非常に短縮化さ
れ、効率のよいことが明らかである。
Further, the self-healing property of the sample regarding the water permeability is confirmed by repeating the above-described measurement of the water permeability coefficient and the air permeability coefficient several times alternately. FIG. 4 is a graph showing an example of the results of measuring the water permeability of a bentonite mixed soil tank used for a groundwater tank body of radioactive waste using the water permeability test apparatus according to the present invention as described above. Is.
As shown in the figure, when the water permeation test apparatus according to the present invention is used, it is clear that the time required for such measurement is significantly shortened and the efficiency is high.

【0025】なお、本発明の透水透気試験装置の構成
は、上述した実施例に示す構成に何ら限定されるもので
はなく、ドレイン排出機構としても、水およびガス供給
系側に位置する流体流路形成部材の流路内および多孔質
支持体内に残留するドレイン水を水およびガス供給系側
を排出する構成を有するものである限り、いかなる構造
のものであってもよい。
The structure of the water permeation test apparatus according to the present invention is not limited to the structure shown in the above-mentioned embodiment, and the drain discharge mechanism may be a fluid flow located on the water and gas supply system side. Any structure may be used as long as it has a configuration in which drain water remaining in the flow passage of the passage forming member and in the porous support is discharged to the water and gas supply system side.

【0026】[0026]

【発明の効果】以上述べたように、本発明の透水透気試
験装置を用いることにより、土壌および岩石等の試料の
透水透気係数を測定するにおいて、透水係数測定から透
気係数測定に要する測定時間を短縮化し、かつその測定
操作が簡略化することができる。
As described above, by using the water permeation test apparatus of the present invention, in measuring the water permeation coefficient of a sample such as soil and rock, it is necessary to measure from the water permeability coefficient to the air permeability coefficient. The measurement time can be shortened and the measurement operation can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の一実施例に係る透水透気試験装
置の全体構成を概略示す装置構成図図である。
FIG. 1 is an apparatus configuration diagram schematically showing an overall configuration of a water permeation test apparatus according to an embodiment of the present invention.

【図2】図2は同実施例の透水透気試験装置の要部構成
を示す断面図である。
FIG. 2 is a cross-sectional view showing a main configuration of a water permeation test apparatus of the same example.

【図3】図3は図2におけるIII−III線断面図である。3 is a sectional view taken along line III-III in FIG.

【図4】図4は本発明に係る透水透気試験装置を用いて
測定した透水係数の変化を示すグラフである。
FIG. 4 is a graph showing changes in water permeability measured using the water permeability test apparatus according to the present invention.

【図5】図5は放射性廃棄物の貯蔵を行なう地下水槽体
の構造を示す断面図である。
FIG. 5 is a cross-sectional view showing the structure of a groundwater tank body for storing radioactive waste.

【図6】図6は従来の透水透気試験装置の一例の要部構
成を示す断面図である。
FIG. 6 is a cross-sectional view showing a main part configuration of an example of a conventional water permeation test apparatus.

【符号の説明】[Explanation of symbols]

1… 被測定試料 2… 透気容器 3… 透気容器本体部 4… 透気容器蓋体 6… 第1ペレスタイル 7… 第1多孔質盤状部材 8… 第2多孔質盤状部材 9… 第2ペレスタイル 10… ゴム膜 11… 水タンク 12… 接続管 13… コンプレッサー 14… 下部エアートラップ 15… ドレイン水排出用ガス供給管 15a… ガス吹き出し用通路 16… 環状溝 17… 上部エアトラップ 18… 密閉ビューレット 20… アキュームレータ 21… ガスボンベ 100… 地下水槽体 103… ベントナイト混合土槽 DESCRIPTION OF SYMBOLS 1 ... Sample to be measured 2 ... Air-permeable container 3 ... Air-permeable container main body 4 ... Air-permeable container lid 6 ... 1st Pelestyle 7 ... 1st porous disk-shaped member 8 ... 2nd porous disk-shaped member 9 ... 2nd Pelestyle 10 ... Rubber film 11 ... Water tank 12 ... Connection pipe 13 ... Compressor 14 ... Lower air trap 15 ... Drain water discharge gas supply pipe 15a ... Gas outlet passage 16 ... Annular groove 17 ... Upper air trap 18 ... Closed burette 20 ... Accumulator 21 ... Gas cylinder 100 ... Groundwater tank 103 ... Bentonite mixed soil tank

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一端部に水およびガス供給系が接続さ
れ、かつこれと対向する他端部に水およびガス測定系が
接続された密閉容器内に、流体流路形成部材および多孔
質支持体をそれぞれ前後に存在させて被測定試料を挟持
してなる透水透気試験装置において、透水試験を終了し
た後に、前記水およびガス供給系側に位置する流体流路
形成部材の流路内および多孔質支持体内に残留する流体
を排出するドレイン排出機構を備えたことを特徴とする
透水透気試験装置。
1. A fluid flow path forming member and a porous support in a closed container having a water and gas supply system connected to one end thereof and a water and gas measurement system connected to the other end opposite thereto. In the water permeation air permeability test apparatus in which the sample to be measured is sandwiched between the front and the back, respectively, after the water permeation test is completed, the inside of the flow channel of the fluid flow channel forming member located on the water and gas supply system side and the porous A water permeation / permeation test device comprising a drain discharge mechanism for discharging fluid remaining in the quality support.
【請求項2】 前記ドレイン排出機構が、水およびガス
供給系側に位置する流体流路形成部材の流路内にガスを
吹き付ける手段を有する請求項1に記載の透水透気試験
装置。
2. The water permeation / permeation test apparatus according to claim 1, wherein the drain discharge mechanism has means for blowing gas into the flow passage of the fluid flow passage forming member located on the water and gas supply system side.
JP06318813A 1994-12-21 1994-12-21 Permeability test equipment Expired - Fee Related JP3120674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06318813A JP3120674B2 (en) 1994-12-21 1994-12-21 Permeability test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06318813A JP3120674B2 (en) 1994-12-21 1994-12-21 Permeability test equipment

Publications (2)

Publication Number Publication Date
JPH08178827A true JPH08178827A (en) 1996-07-12
JP3120674B2 JP3120674B2 (en) 2000-12-25

Family

ID=18103236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06318813A Expired - Fee Related JP3120674B2 (en) 1994-12-21 1994-12-21 Permeability test equipment

Country Status (1)

Country Link
JP (1) JP3120674B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139326A (en) * 2008-01-29 2008-06-19 Shimizu Corp Method for testing acuiclude earth material
CN102288528A (en) * 2011-08-05 2011-12-21 张振华 Soil saturated hydraulic conductivity and gas conductivity in situ measurement system
KR101248531B1 (en) * 2011-12-05 2013-04-03 한국지질자원연구원 Apparatus and method for measuring porosity and permeability of dioxide carbon underground storage medium
CN103091199A (en) * 2013-01-24 2013-05-08 张振华 Non-invasive instant measuring system and method for air conductivity of soil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841610B2 (en) * 2008-12-04 2011-12-21 強化土エンジニヤリング株式会社 Apparatus and method for producing chemical injection specimen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139326A (en) * 2008-01-29 2008-06-19 Shimizu Corp Method for testing acuiclude earth material
CN102288528A (en) * 2011-08-05 2011-12-21 张振华 Soil saturated hydraulic conductivity and gas conductivity in situ measurement system
KR101248531B1 (en) * 2011-12-05 2013-04-03 한국지질자원연구원 Apparatus and method for measuring porosity and permeability of dioxide carbon underground storage medium
US9291541B2 (en) 2011-12-05 2016-03-22 Korea Institute Of Geoscience And Mineral Resources Apparatus and method of measuring porosity and permeability of dioxide carbon underground storage medium
CN103091199A (en) * 2013-01-24 2013-05-08 张振华 Non-invasive instant measuring system and method for air conductivity of soil

Also Published As

Publication number Publication date
JP3120674B2 (en) 2000-12-25

Similar Documents

Publication Publication Date Title
Daniel et al. Fixed-wall versus flexible-wall permeameters
US9341558B1 (en) System and method for measuring permeation properties of concrete and porous materials
Daniell STATE-OF-THE-ART: FOR SATURATED SOILS
Daniel In situ hydraulic conductivity tests for compacted clay
Black et al. Saturating laboratory samples by back pressure
US2705418A (en) Apparatus for measuring charateristics of core samples under compressive stresses
CN108181220A (en) The experimental rig of coarse-grained soil horizontal direction and vertical saturation permeability coefficient under different pressures is tested in a kind of interior simultaneously
US20190128792A1 (en) Horizontal soil permeability testing device
JPH07198582A (en) Water permeation tester and method of inspecting water channel
US6935159B2 (en) Centrifugal permeameter
CN207779861U (en) It is a kind of indoor to test the experimental rig of coarse-grained soil horizontal direction and vertical saturation permeability coefficient under different pressures simultaneously
KR20090020392A (en) Penetrability test apparatus for variable water level
CN112858139A (en) Multi-connected flexible wall permeameter injected with infinite volume under graded confining pressure and test method
JP2001183285A (en) Permeability test apparatus and permeability test method
JPH08178827A (en) Tester equipment for water permeability and gas permeability
JPH08178828A (en) Tester equipment for water permeability and gas permeability
CN110658120B (en) Method and device for testing permeability coefficient of foam-improved sandy residue soil under high water pressure
CN115112531A (en) Multifunctional osmotic piping test device and method
US20240175796A1 (en) French press permeameter
JPH02268249A (en) Water permeability testing method
JPH06294792A (en) Device for testing movement of nuclear species in soil
Ho Experimental and numerical investigation of infiltration ponding in one-dimensional sand-geotextile columns
Bishop Hydraulic properties of vesicular basalt
CN210982436U (en) Slurry shield excavation surface stratum simulation device
Daniel¹ et al. Measurement of hydraulic properties of geosynthetic clay liners using a flow box

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000919

LAPS Cancellation because of no payment of annual fees