JPH08178651A - Azimuth detecting device for moving body - Google Patents

Azimuth detecting device for moving body

Info

Publication number
JPH08178651A
JPH08178651A JP6321872A JP32187294A JPH08178651A JP H08178651 A JPH08178651 A JP H08178651A JP 6321872 A JP6321872 A JP 6321872A JP 32187294 A JP32187294 A JP 32187294A JP H08178651 A JPH08178651 A JP H08178651A
Authority
JP
Japan
Prior art keywords
light
image pickup
moving body
angle
azimuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6321872A
Other languages
Japanese (ja)
Inventor
Masanori Fujiwara
正徳 藤原
Ryozo Kuroiwa
良三 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP6321872A priority Critical patent/JPH08178651A/en
Publication of JPH08178651A publication Critical patent/JPH08178651A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To enable the azimuth of a moving body to be detected on a ground side with high precision while avoiding complicated control configuration by separately providing plural light emitting bodies for emitting light with their different natures, respectively. CONSTITUTION: Plural light emitting bodies T0 to T3 provided with electric bulbs 20 are installed on a work vehicle A (moving body). At its center, light emitting bodies T1, T2, and T3 are installed, respectively, at each vertex of a right triangle. The four light emitting bodies T0 to T3 are thereby separately provided within the installation range against a reference position (car body center). Each light with their different natures (deflecting status) is emitted from the four light emitting bodies T0 to T3. Each light enters into an image pickup part 15 of an image pickup unit S on the ground side passes through the four light transmitting means, respectively, at a transmission rate differing depending on the difference in the nature of each light, and each image is picked up by means of image sensors S0 to S3. The azimuth of the work car A is obtained by means of calculation from position information, image pickup angle information, etc., on these image pickup screens, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、移動する移動体の方位
を検出する方位検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an azimuth detecting device for detecting the azimuth of a moving moving body.

【0002】[0002]

【従来の技術】かかる移動体の方位検出装置では、従
来、地上側に、移動体としての自動走行式の作業車等が
走行する作業行程の方向を基準方位に設定するととも
に、例えば地磁気利用の方位センサ等の方位検出手段を
作業車側に設置して、上記基準方位に対する移動体の方
位(即ち、車体の向き)を検出するようにしていた。因
みに、この車体方位情報は、例えば、通信手段を介して
移動体側から地上側に設けた移動体の位置測定及び誘導
走行用の制御装置等に対して送信され、例えば、移動体
側に設けた電球等の発光体を地上側の撮像手段(イメー
ジセンサ等)で撮像した情報や移動体までの距離情報等
に基づいて、地上側において上記制御装置等が検出した
移動体の位置情報と、上記移動体から送信された車体方
位情報とが、移動体を設定経路に沿って誘導走行させる
ための制御情報として使用される。
2. Description of the Related Art Conventionally, in such an azimuth detecting device for a moving body, on the ground side, while setting the direction of a work process in which an automatic traveling work vehicle or the like as a moving body travels as a reference azimuth, for example, using a geomagnetic field, An azimuth detecting means such as an azimuth sensor is installed on the work vehicle side to detect the azimuth of the moving body (that is, the direction of the vehicle body) with respect to the reference azimuth. Incidentally, this vehicle body orientation information is transmitted, for example, via the communication means from the moving body side to a control device or the like for measuring the position of the moving body and guiding traveling provided on the ground side, and for example, a light bulb provided on the moving body side. The position information of the moving body detected by the control device or the like on the ground side based on the information obtained by imaging the light-emitting body such as The vehicle body direction information transmitted from the body is used as control information for guiding and moving the moving body along the set route.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術では、移動体側に方位センサ等を設置し、又、そ
の方位情報を地上側に送る場合には、移動体側と地上側
の双方に通信手段を設ける必要があり、制御構成が複雑
化する欠点があるとともに、例えば地磁気利用の方位セ
ンサでは、周囲の金属体等の影響を受けやすく、例えば
誘導走行をさせるための制御情報としては検出精度が充
分でないという不具合があった。
However, in the above-mentioned prior art, when an azimuth sensor or the like is installed on the moving body side and the azimuth information is sent to the ground side, communication means is provided on both the moving body side and the ground side. However, in the case of a azimuth sensor using geomagnetism, for example, it is easy to be affected by surrounding metal bodies, and for example, the detection accuracy as control information for guiding travel is low. There was a problem that it was not enough.

【0004】本発明は、上記実情に鑑みてなされたもの
であって、その目的は、従来技術の不具合を解消すべ
く、制御構成(特に移動体側)の複雑化を回避しなが
ら、地上側において極力高精度で移動体の方位検出がで
きるようにすることにある。
The present invention has been made in view of the above circumstances, and an object thereof is to eliminate the problems of the prior art while avoiding complication of the control configuration (particularly on the moving body side) and on the ground side. It is to be able to detect the direction of a moving body with the highest possible accuracy.

【0005】[0005]

【課題を解決するための手段】本発明による移動体の方
位検出装置の第1の特徴構成は、前記移動体に、互いに
異なる性質の光を発光する複数個の発光体が、平面視に
おいて基準位置に対する設定配置関係で分散して設けら
れ、地上側に、前記複数個の発光体からの各光夫々に対
応させて設けられて、前記複数個の発光体からの各光の
性質の違いによって、そのうちの対応する光を他の光よ
りも通過率が大きな状態で通過させる複数個の光通過手
段と、その複数個の光通過手段夫々を通過した各光を各
別に撮像する複数個の撮像手段と、前記複数個の撮像手
段の撮像方向が基準方位に対してなす角度を検出する撮
像角度検出手段と、前記複数個の撮像手段から前記移動
体の基準位置までの距離を検出する距離検出手段と、前
記複数個の発光体の配置情報、前記複数個の発光体の前
記複数個の撮像手段の撮像画面夫々における位置情報、
前記距離検出手段の距離情報、及び、前記撮像角度検出
手段の撮像角度情報に基づいて、前記移動体の方位を演
算する方位演算手段とが設けられている点にある。
According to a first characteristic configuration of an apparatus for detecting a direction of a moving body according to the present invention, a plurality of light emitting bodies, which emit light having different properties from each other, are a reference in plan view. Depending on the difference in the nature of each light from the plurality of light emitters, it is provided in a distributed manner according to the set arrangement relationship with respect to the position, and is provided on the ground side so as to correspond to each light from the plurality of light emitters. , A plurality of light passing means for passing corresponding light among them in a state of having a higher transmission rate than other light, and a plurality of imaging for individually photographing each light passing through each of the plurality of light passing means Means, imaging angle detection means for detecting an angle formed by the imaging directions of the plurality of imaging means with respect to a reference azimuth, and distance detection for detecting a distance from the plurality of imaging means to a reference position of the moving body. Means and the plurality of light emitters Arrangement information, position information in people imaging screen each of said plurality of image pickup means of the plurality of light emitters,
An azimuth calculating unit that calculates the azimuth of the moving body based on the distance information of the distance detecting unit and the image capturing angle information of the image capturing angle detecting unit is provided.

【0006】又、第2の特徴構成は、上記第1の特徴構
成において、前記複数個の発光体の夫々に、それからの
各光を互いに異なる偏光角方向に偏光させる偏光手段が
備えられ、前記複数個の光通過手段が、前記異なる偏光
角方向に偏光された前記複数個の発光体からの光を互い
に異なる検光角方向で検光する複数個の検光手段にて構
成されている点にある。
A second characteristic configuration is the same as the first characteristic configuration, wherein each of the plurality of light emitters is provided with a polarization means for polarizing the light emitted from the light emitters in different polarization angle directions. The plurality of light passing means is composed of a plurality of light detecting means for detecting light from the plurality of light emitting bodies polarized in the different polarization angle directions in different detection angle directions. It is in.

【0007】又、第3の特徴構成は、上記第1又は第2
の特徴構成において、前記複数個の撮像手段が、同期状
態で撮像作動するように構成されている点にある。
A third characteristic configuration is the first or second aspect described above.
In the characteristic configuration of (3), the plurality of image pickup means are configured to perform image pickup operations in a synchronized state.

【0008】又、第4の特徴構成は、上記第1、第2又
は第3の特徴構成において、前記複数個の撮像手段のう
ちの少なくとも1つの撮像情報に基づいて、その撮像画
面内の所定位置に前記複数個の発光体のうちの対応する
発光体を捉えるように、前記撮像手段の撮像角度変更手
段を作動させる追尾制御手段が設けられている点にあ
る。
According to a fourth characteristic configuration, in the first, second, or third characteristic configuration, based on the image information of at least one of the plurality of image pickup means, a predetermined image in the image pickup screen is obtained. A tracking control means for activating the imaging angle changing means of the imaging means is provided so as to catch the corresponding luminous body of the plural luminous bodies at the position.

【0009】又、第5の特徴構成は、上記第4の特徴構
成において、前記複数個の光通過手段の夫々が、前記複
数個の撮像手段の夫々に対して一体状態で付設され、前
記撮像角度変更手段が、前記複数個の光通過手段が付設
された前記複数個の撮像手段を一体のものとして角度変
更するように構成されている点にある。
A fifth characteristic configuration is the same as the fourth characteristic configuration, wherein each of the plurality of light passing means is attached integrally to each of the plurality of image pickup means, and the image pickup is performed. The angle changing means is configured to change the angle of the plurality of image pickup means provided with the plurality of light passing means as one body.

【0010】[0010]

【作用】本発明による移動体の方位検出装置の第1の特
徴構成によれば、移動体に平面視において基準位置に対
する設定配置関係で分散して設けた複数個の発光体か
ら、互いに異なる性質の光が発光され、地上側におい
て、その複数個の発光体からの各光が、その各光夫々に
対応させた複数個の光通過手段夫々を、その各光の性質
の違いによって他の光よりも大きな通過率で通過し、そ
の大きな通過率で通過した各光が、各別に複数個の撮像
手段にて撮像される。また、地上側において、複数個の
撮像手段の基準方位に対してなす角度、及び複数個の撮
像手段から移動体の基準位置までの距離が検出され、複
数個の発光体の上記設置情報と、複数個の発光体の複数
個の撮像手段の撮像画面夫々での位置情報と、上記撮像
角度情報と、上記距離情報とから移動体の方位が演算に
よって求められる。
According to the first characteristic configuration of the moving body azimuth detecting apparatus according to the present invention, a plurality of light emitting bodies distributed in the moving body in a set arrangement relationship with respect to the reference position in plan view have different properties. Light is emitted, and on the ground side, each light from the plurality of light emitters passes through each of the plurality of light passing means corresponding to each light, and the other light depending on the property of each light. The light that has passed through at a higher pass rate than that of the above, and each of the lights that have passed through at the high pass rate is individually imaged by a plurality of imaging means. Further, on the ground side, the angle formed with respect to the reference azimuth of the plurality of image pickup means and the distance from the plurality of image pickup means to the reference position of the moving body are detected, and the installation information of the plurality of light emitters, The azimuth of the moving body is calculated from the position information of each of the plurality of light emitting bodies on each of the image pickup screens of the plurality of image pickup means, the image pickup angle information, and the distance information.

【0011】又、第2の特徴構成によれば、上記第1の
特徴構成において、複数個の発光体の夫々に設けた偏光
手段によって、複数個の発光体から、互いに異なる性質
の光として互いに異なる偏光角方向に偏光された各光が
発光され、地上側において、互いに異なる偏光角方向に
偏光された複数個の発光体からの各光が、その各光夫々
に対応させて設けられて互いに異なる検光角方向で検光
する複数個の検光手段夫々を、その各光の偏光角方向の
違いによって他の光よりも大きな通過率で通過して、各
別に複数個の撮像手段にて撮像される。そして、複数個
の発光体の設置情報と、複数個の発光体の複数個の撮像
手段の撮像画面夫々での位置情報と、撮像角度情報と、
距離情報とから移動体の方位が演算によって求められ
る。
According to the second characteristic configuration, in the first characteristic configuration, the plurality of light emitting bodies emit light having different properties from each other by the polarizing means provided in each of the plurality of light emitting bodies. Lights polarized in different polarization directions are emitted, and on the ground side, lights from a plurality of light emitters polarized in different polarization directions are provided corresponding to the respective lights. The light passes through a plurality of light detecting means that detect light in different light detecting angle directions with a greater pass rate than other light due to the difference in the polarization angle direction of each light, and a plurality of image capturing means are provided separately. It is imaged. Then, the installation information of the plurality of light emitters, the position information of each of the plurality of image pickup means of the plurality of light emitters on the image pickup screen, and the image pickup angle information,
The azimuth of the moving body is calculated from the distance information.

【0012】又、第3の特徴構成によれば、上記第1又
は第2の特徴構成において、複数個の発光体からの各光
のうちで他の光よりも大きな通過率で光通過手段を通過
した各光が、複数個の撮像手段によって同期状態で各別
に撮像される。
Further, according to the third characteristic constitution, in the first or second characteristic constitution, the light passage means is made to have a greater passage ratio than the other light among the respective lights from the plurality of light emitters. Each light passing through is imaged separately by a plurality of imaging means in a synchronized state.

【0013】又、第4の特徴構成によれば、上記第1、
第2又は第3の特徴構成において、複数個の撮像手段の
うちの少なくとも1つの撮像手段の撮像画面内の所定位
置にその撮像手段に対応する発光体を捉えるように、撮
像手段の撮像角度を変更する追尾制御が行われる。
According to the fourth characteristic configuration, the first,
In the second or third characteristic configuration, the image capturing angle of the image capturing unit is set so that the light emitting body corresponding to the image capturing unit is captured at a predetermined position in the image capturing screen of at least one of the plurality of image capturing units. The tracking control to change is performed.

【0014】又、第5の特徴構成によれば、上記第4の
特徴構成において、複数個の光通過手段の夫々が複数個
の撮像手段の夫々に対して一体状態で付設されたその複
数個の撮像手段のうちの少なくとも1つの撮像手段の撮
像画面内の所定位置に、その撮像手段に対応する発光体
を捉えるように、複数個の撮像手段が一体のものとして
角度変更されて撮像手段の撮像角度を変更する追尾制御
がなされる。
According to a fifth characteristic configuration, in the fourth characteristic configuration, each of the plurality of light passing means is attached integrally to each of the plurality of image pickup means. Of at least one of the image pickup means, the angle of the plurality of image pickup means is integrally changed so that the light emitting body corresponding to the image pickup means is captured at a predetermined position in the image pickup screen of the image pickup means. Tracking control for changing the imaging angle is performed.

【0015】[0015]

【発明の効果】本発明の第1の特徴構成によれば、移動
体には互いに異なる性質の光を発光する複数個の発光体
を設置するだけで、地上側において、上記光の性質の違
いによって各光を区別して分離した複数の撮像情報等の
情報から移動体の方位を検出することができるので、従
来のように、移動体側に方位センサ等を設置し、又、そ
の方位情報を地上側に送る場合には移動体側と地上側の
双方に通信手段を設けるために制御構成が複雑化する欠
点が解消され、あるいは、地磁気利用の方位センサ等で
は、周囲の影響を受けて検出精度が低下して誘導走行用
の制御情報としては精度が充分でないという不具合もな
く、もって、制御構成の複雑化を回避しながら、極力高
精度で移動体の方位検出ができる。
According to the first characteristic construction of the present invention, the difference in the above-mentioned property of light on the ground side can be obtained only by installing a plurality of light-emitters which emit light having different properties in the moving body. Since it is possible to detect the azimuth of a moving body from information such as multiple pieces of imaging information that distinguishes and separates each light, install a direction sensor etc. on the moving body side as in the past, and also obtain the azimuth information from the ground. When sending to the side, the disadvantage that the control configuration becomes complicated because communication means is provided on both the mobile side and the ground side, or in the direction sensor using geomagnetism etc., the detection accuracy is affected by the surroundings. It is possible to detect the azimuth of the moving body with the highest accuracy while avoiding the complication of the control configuration without the problem that the accuracy of the control information for guiding and traveling is insufficient.

【0016】又、第2の特徴構成によれば、発光体側に
偏光フィルター等の偏光手段を設け、撮像手段側に同様
な偏光フィルター等の検光手段を設けるという簡素な手
段によって、各発光体から互いに異なる性質の光を発光
させ、且つ、その光の性質の違いによって各光を区別し
て分離した複数の撮像情報等の情報から移動体の方位を
検出することができ、もって、上記第1の特徴構成を実
施する際の好適な手段が得られる。
Further, according to the second characteristic construction, each light-emitting body is provided by a simple means in which the light-emitting body side is provided with polarization means such as a polarization filter and the image pickup means side is provided with similar light-detection means such as a polarization filter. It is possible to emit light having different properties from each other, and to detect the azimuth of the moving body from information such as a plurality of pieces of imaging information in which each light is distinguished and separated according to the difference in the properties of the light. Suitable means for implementing the characteristic construction of

【0017】又、第3の特徴構成によれば、同期作動に
よって時間的な誤差がない複数個の撮像情報を用いて移
動体の方位検出を行うので、例えば、非同期作動によっ
て得た複数個の撮像情報を用いて移動体の方位検出を行
うと、移動体の移動速度が大きい条件では、各撮像画面
内での各発光体の位置にその撮像時間差内に移動体が動
いた分の誤差が加わってその検出精度が低下するという
不具合も発生せず、もって、上記第1又は第2の特徴構
成を実施する際の好適な手段が得られる。
Further, according to the third characteristic configuration, since the azimuth detection of the moving body is performed by using the plurality of image pickup information having no time error due to the synchronous operation, for example, the plural azimuths obtained by the asynchronous operation are obtained. When the azimuth detection of the moving body is performed using the image pickup information, under the condition that the moving speed of the moving body is high, there is an error in the position of each light emitting body in each image pickup screen due to the movement of the moving body within the image pickup time difference. In addition, the problem that the detection accuracy is lowered does not occur, and therefore, suitable means for implementing the first or second characteristic configuration can be obtained.

【0018】又、第4の特徴構成によれば、複数個の撮
像手段のうちの少なくとも1つの撮像画面の所定位置
(例えば、その画面中心)に対応する発光体を捉えるよ
うに追尾されるので、他の撮像手段の撮像画面内におい
ても、対応する各発光体が画面端部ではなく比較的位置
検出精度の高い画面中央寄りに位置する良好な条件で、
精度良く移動体の方位検出を行うことができ、もって、
上記第1、第2又は第3の特徴構成を実施する際の好適
な手段が得られる。
Further, according to the fourth characteristic configuration, the light-emitting body corresponding to a predetermined position (for example, the center of the screen) of at least one of the plurality of imaging means is tracked so as to be tracked. In the image pickup screen of other image pickup means, the corresponding light emitters are not located at the screen edges but are located near the center of the screen where the position detection accuracy is relatively high.
It is possible to detect the direction of a moving object with high accuracy.
Suitable means for implementing the first, second or third characteristic configuration can be obtained.

【0019】又、第5の特徴構成によれば、複数個の光
通過手段の夫々が複数個の撮像手段の夫々に対して一体
状態で付設されるので、例えば、複数個の光通過手段が
複数個の撮像手段に対して一体状態でないものでは、上
記追尾制御のために撮像手段の撮像角度を変更したとき
に、複数個の光通過手段を通過した光が適正な入射状態
で複数個の撮像手段にて撮像されないおそれがあるのに
対して、そのような不具合もなく良好な状態で各光を撮
像手段にて撮像することができ、もって、上記第4の特
徴構成を実施する際の好適な手段が得られる。
Further, according to the fifth characteristic configuration, since each of the plurality of light passing means is attached integrally to each of the plurality of image pickup means, for example, the plurality of light passing means are provided. In the case where the plurality of image pickup means is not in an integrated state, when the image pickup angle of the image pickup means is changed for the tracking control, the light passing through the plurality of light passage means is properly incident to the plurality of image pickup means. While there is a possibility that the image is not picked up by the image pickup means, each light can be picked up by the image pickup means in a good state without such a problem. Therefore, when the fourth characteristic configuration is performed, Suitable means are available.

【0020】[0020]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1及び図2に示すように、移動体としての自動
走行式の作業車A(例えば、田植え用の作業車)に、発
光部である円形の電球20を備えた複数個の発光体が設
置されている。具体的には、作業車Aの車体中央上部に
1個の発光体T0が設置され、この発光体T0が中心に
位置し且つその底辺が車体横方向に沿う正三角形の底辺
の両側の各頂点に2個の発光体T2,T3が、車体前部
側の正三角形の頂点に1個の発光体T1が夫々設置さ
れ、これにより、4個の発光体T0,T1,T2,T3
が、平面視において基準位置(この例では、車体中央の
発光体T0の中心を基準位置とする)に対する設定配置
関係で分散して設けられることになる。尚、車体中央の
発光体T0と他の発光体T1,T2,T3との中心間の
距離はrである。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1 and FIG. 2, a plurality of light emitters provided with a circular light bulb 20 as a light emitting unit are installed in an automatic traveling work vehicle A (for example, a work vehicle for rice planting) as a moving body. Has been done. Specifically, one light-emitting body T0 is installed in the upper center of the vehicle body of the work vehicle A, and the light-emitting body T0 is located at the center of the vehicle. Two light emitters T2, T3 are installed in the vehicle body, and one light emitter T1 is installed at each apex of the equilateral triangle on the front side of the vehicle body. As a result, four light emitters T0, T1, T2, T3 are provided.
However, in a plan view, they are distributed in a set arrangement relationship with respect to a reference position (in this example, the center of the light emitting body T0 at the center of the vehicle body is the reference position). The distance between the centers of the light emitter T0 at the center of the vehicle body and the other light emitters T1, T2, T3 is r.

【0021】又、車体中央の発光体T0を支持する円柱
19の外周面には、地上側のレーザ測長器13から投射
される距離検出用のビーム光bをその入射方向へ向けて
反射する反射シート19aが形成されている。尚、円柱
19は、その外周面が周囲に位置する3個の発光体T
1,T2,T3が構成する正三角形の各辺に内接するよ
うな直径に形成されており、これによって、地上側から
上記4個の発光体T0,T1,T2,T3を見たとき
に、見る方向の正面側に位置する発光体T0,T1,T
2,T3だけが見えて、見る方向の背面側に位置する発
光体は円柱19に隠れて見えなくなり、後述の車体方位
の検出処理において選択する発光体として、見る方向の
正面側に位置する発光体T0,T1,T2,T3の中か
ら選択できることになる(図6及び図9参照)。
Further, on the outer peripheral surface of the cylinder 19 which supports the light emitter T0 in the center of the vehicle body, the beam light b for distance detection projected from the laser length measuring device 13 on the ground side is reflected in the incident direction. The reflection sheet 19a is formed. The cylinder 19 has three light-emitting bodies T whose outer peripheral surfaces are located around the circumference.
1, T2, T3 are formed in such a diameter that they are inscribed on the respective sides of the equilateral triangle, so that when the four light emitters T0, T1, T2, T3 are viewed from the ground side, Light emitters T0, T1, T located on the front side in the viewing direction
Only the light emitting bodies 2, 2 and T3 are visible, and the light emitting body located on the back side in the viewing direction is hidden by the cylinder 19 and disappears, and the light emitting body located on the front side in the viewing direction is selected as the light emitting body to be selected in the processing for detecting the vehicle body direction described later. The body can be selected from T0, T1, T2, T3 (see FIGS. 6 and 9).

【0022】前記4個の発光体T0,T1,T2,T3
から、互いに異なる性質(後述の偏光状態)の光を発光
させるようにするために、各発光体T0,T1,T2,
T3の夫々の外周位置に、それからの各光を互いに異な
る偏光角方向に偏光させる偏光手段としての円筒状の偏
光フィルターf0,f1,f2,f3が備えられてい
る。具体的には、図3に示すように、車体中央の発光体
T0からの光が偏光フィルターf0にて垂直方向(これ
を0°とする)に直線偏光され、他の3個の発光体T
1,T2,T3からの各光が、各偏光フィルターf1,
f2,f3にて上記発光体T0の偏光方向から45°づ
つ順次回転した方向、つまり、45°、90°、135
°の方向に直線偏光されている。
The four light emitters T0, T1, T2, T3
Therefore, in order to emit lights having different properties (polarization states described later), the respective light-emitting members T0, T1, T2,
Cylindrical polarizing filters f0, f1, f2, and f3 as polarizing means for polarizing the respective lights from T3 in different polarization angle directions are provided at the respective outer peripheral positions of T3. Specifically, as shown in FIG. 3, the light from the light emitter T0 in the center of the vehicle body is linearly polarized in the vertical direction (this is 0 °) by the polarization filter f0, and the other three light emitters T0.
Each light from 1, T2, T3 is converted into each polarization filter f1,
At f2 and f3, the directions are sequentially rotated by 45 ° from the polarization direction of the light emitting body T0, that is, 45 °, 90 °, 135.
It is linearly polarized in the direction of °.

【0023】一方、地上側には、前記作業車Aを追尾し
ながらその位置等を測定し、且つ作業車Aが所定経路に
沿って誘導走行させるための自動追尾式の位置測定及び
誘導走行用の制御装置Bが設置されている。その制御装
置Bには、前記発光体T0,T1,T2,T3を含む所
定範囲を撮像する撮像装置S、及び、前記撮像装置Sの
撮像方向に沿って検出光bの投射方向を設定した状態で
撮像装置Sから作業車A側の前記円柱19までの距離等
を検出するレーザ測長器13が、設置台9上に一体のも
のとして固定設置されている。以上より、レーザ測長器
13にて、撮像装置S(後述の複数個の撮像手段S0,
S1,S2,S3)から移動車Aの基準位置(即ち円柱
19)までの距離を検出する距離検出手段が構成され
る。
On the other hand, on the ground side, the position of the work vehicle A is measured while the work vehicle A is being tracked, and the position of the work vehicle A is automatically tracked for guiding and traveling along a predetermined route. The control device B is installed. In the control device B, an imaging device S for imaging a predetermined range including the light emitters T0, T1, T2, T3, and a state in which the projection direction of the detection light b is set along the imaging direction of the imaging device S. The laser length-measuring device 13, which detects the distance from the image pickup device S to the cylinder 19 on the side of the work vehicle A, is fixedly installed on the installation table 9 as an integral unit. From the above, the laser length measuring device 13 causes the imaging device S (a plurality of imaging means S0,
Distance detection means for detecting the distance from S1, S2, S3) to the reference position of moving vehicle A (that is, cylinder 19) is configured.

【0024】上記設置台9を縦軸芯θ周りに旋回させる
旋回用モータ11と、設置台9を横軸芯φ周りに首振り
動作させる首振り用モータ12とが設けられ、この旋回
用モータ11及び首振り用モータ12によって、前記撮
像装置Sの撮像角度を変更する撮像角度変更手段11,
12が構成される。又、上記旋回用モータ11及び首振
り用モータ12には、夫々エンコーダ11a,12aが
内蔵されており(図5参照)、このエンコーダ11a,
12aの情報に基づいて撮像装置Sの撮像方向が検出さ
れるようになっている。従って、前記エンコーダ11
a,12aによって、前記撮像装置S(後述の複数個の
撮像手段S0,S1,S2,S3)の撮像方向が基準方
位(例えば、図11に示す作業行程の方向K)に対して
なす角度を検出する撮像角度検出手段11a,12aが
構成される。
A swivel motor 11 for swiveling the installation table 9 around the vertical axis θ and a swing motor 12 for swiveling the installation table 9 around the horizontal axis φ are provided. Imaging angle changing means 11 for changing the imaging angle of the imaging device S by means of 11 and a swinging motor 12.
12 are configured. The turning motor 11 and the swinging motor 12 have encoders 11a and 12a built therein (see FIG. 5).
The imaging direction of the imaging device S is detected based on the information of 12a. Therefore, the encoder 11
a, 12a, an angle formed by the imaging direction of the imaging device S (a plurality of imaging means S0, S1, S2, S3 described later) with respect to a reference azimuth (for example, the direction K of the work process shown in FIG. 11). The imaging angle detection means 11a and 12a for detecting are comprised.

【0025】図4に示すように、前記撮像装置Sには、
光学系を構成する電動ズームレンズ14と、電子シャッ
ター搭載の白黒式のCCDセンサ等を備えた撮像部15
とが設けられている。電動ズームレンズ14には、フォ
ーカス駆動モータ33と、フォーカス位置検出センサで
ある第1ポテンショメータ34と、ズーム駆動モータ3
5と、ズーム位置検出センサである第2ポテンショメー
タ36とが設けられ、電動ズームレンズ14及びこの後
方側に設けられた光学フィルター24を通過した光が、
撮像部15に入射して撮像素子であるCCD素子27上
に結像するように構成されている。尚、上記光学フィル
ター24は、電球20の発光波長に対して透過率が大き
くなるようにしてある。
As shown in FIG. 4, the image pickup device S includes
An electric zoom lens 14 forming an optical system, and an image pickup unit 15 including a monochrome CCD sensor equipped with an electronic shutter
Are provided. The electric zoom lens 14 includes a focus drive motor 33, a first potentiometer 34 which is a focus position detection sensor, and a zoom drive motor 3.
5 and a second potentiometer 36, which is a zoom position detection sensor, are provided, and the light passing through the electric zoom lens 14 and the optical filter 24 provided on the rear side of the electric zoom lens 14 is
It is configured to enter the image pickup section 15 and form an image on the CCD element 27 which is an image pickup element. The optical filter 24 has a large transmittance with respect to the emission wavelength of the light bulb 20.

【0026】前記撮像部15に入射した光は、光分離用
の第1プリズム37Aにて各50%づつの透過率及び反
射率で透過及び反射され、さらに各透過光及び反射光が
第2及び第3プリズム37B,37Cにて夫々透過及び
反射されるとともに一部の光がミラー39にて反射され
て、最終的に同一光強度の4つの光に分離される。そし
て、その各分離光は、複数個のイメージセンサS0,S
1,S2,S3の前部側に備えた検光用の偏光フィルタ
ーp0,p1,p2,p3を通過して、各CCD素子2
7上に入射するように構成されている。
The light incident on the image pickup unit 15 is transmitted and reflected by the first prism 37A for light separation with a transmittance and a reflectance of 50% each, and further, each transmitted light and reflected light is second and third. Part of the light is transmitted and reflected by the third prisms 37B and 37C, respectively, and a part of the light is reflected by the mirror 39 to be finally separated into four lights having the same light intensity. Then, each of the separated lights includes a plurality of image sensors S0, S.
1, S2, S3 passing through the polarization filters p0, p1, p2, p3 for detection provided on the front side of each CCD element 2
7 is configured to be incident on.

【0027】ここで、上記偏光フィルターp0,p1,
p2,p3は、前記作業車A側にて異なる偏光角方向に
偏光された各発光体T0,T1,T2,T3からの光を
互いに異なる検光角方向で検光するように構成されてい
る。具体的には、各発光体T0,T1,T2,T3から
の光を最大の通過率で通過させるようにするために、各
偏光フィルターp0,p1,p2,p3の検光角方向
が、図3に示す作業車A側の対応する各偏光フィルター
f0,f1,f2,f3の偏光角方向と同じ偏光角方向
に設定されている。
Here, the polarizing filters p0, p1,
The p2 and p3 are configured to detect the lights from the respective light emitters T0, T1, T2 and T3 which are polarized in different polarization angle directions on the side of the work vehicle A in different detection angle directions. . Specifically, in order to allow the light from each of the light emitters T0, T1, T2, and T3 to pass through at the maximum transmission rate, the polarization angle directions of the polarization filters p0, p1, p2, and p3 are The polarization angle directions of the corresponding polarization filters f0, f1, f2, and f3 on the side of the work vehicle A shown in FIG.

【0028】以上より、前記偏光フィルターp0,p
1,p2,p3にて、前記4個の発光体T0,T1,T
2,T3からの各光夫々に対応させて設けられて、前記
4個の発光体T0,T1,T2,T3からの各光の性質
即ち偏光状態の違いによって、そのうちの対応する光を
他の光よりも通過率が大きな状態で通過させる複数個の
光通過手段が構成され、又、複数個のイメージセンサS
0,S1,S2,S3にて、前記4個の光通過手段(偏
光フィルターp0,p1,p2,p3)夫々を通過した
各光を各別に撮像する複数個の撮像手段が構成され、さ
らに、その複数個の光通過手段p0,p1,p2,p3
と複数個のイメージセンサS0,S1,S2,S3とが
一体状態に構成される。そして、前記撮像角度変更手段
11,12が、上記一体状態の複数個の光通過手段p
0,p1,p2,p3と複数個のイメージセンサS0,
S1,S2,S3とを一体的に角度変更する。
From the above, the polarization filters p0, p
1, p2, p3, the four light emitters T0, T1, T
2 and T3 are provided so as to correspond to the respective lights, and the corresponding lights among the four light emitters T0, T1, T2, and T3 are different from each other depending on the property of each light, that is, the polarization state. A plurality of light passing means for passing the light in a state where the light passing rate is larger than that of the light are configured, and a plurality of image sensors S are provided.
At 0, S1, S2, S3, a plurality of image pickup means for individually taking an image of each light passing through each of the four light passing means (polarization filters p0, p1, p2, p3) is configured. The plurality of light passing means p0, p1, p2, p3
And a plurality of image sensors S0, S1, S2 and S3 are integrally formed. Then, the imaging angle changing means 11 and 12 are provided with the plurality of light passing means p in the integrated state.
0, p1, p2, p3 and a plurality of image sensors S0,
The angles of S1, S2 and S3 are integrally changed.

【0029】次に、図5に基づいて、前記制御装置Bの
制御構成について説明すれば、撮像角度コントローラ4
9、イメージセンサコントローラ50、レーザ測長器コ
ントローラ51、及び、これらのコントローラ49,5
0,51を制御するメインコントローラCが設けられて
いる。撮像角度コントローラ49には、前記エンコーダ
11a,12aからの前記撮像装置Sの撮像角度情報が
入力されるとともに、前記旋回用モータ11及び首振り
用モータ12に対する駆動信号が出力されている。イメ
ージセンサコントローラ50には、前記各イメージセン
サS0,S1,S2,S3からの撮像情報と、前記第1
及び第2ポテンショメータ34,36の検出情報が入力
され、又、各イメージセンサS0,S1,S2,S3を
同期状態で作動させるための駆動信号と、フォーカス駆
動モータ33及びズーム駆動モータ35に対する駆動信
号とが出力されている。レーザ測長器コントローラ51
には、レーザ測長器13からの距離検出情報が入力さ
れ、又、メインコントローラCには、作業車Aとの間で
通信するための送受信機10が接続されている。
Next, referring to FIG. 5, the control configuration of the control device B will be explained.
9, image sensor controller 50, laser length measuring device controller 51, and these controllers 49, 5
A main controller C for controlling 0, 51 is provided. The image pickup angle controller 49 receives the image pickup angle information of the image pickup device S from the encoders 11a and 12a, and outputs drive signals for the turning motor 11 and the swinging motor 12. The image sensor controller 50 includes the image pickup information from each of the image sensors S0, S1, S2, and S3 and the first image information.
And the detection information of the second potentiometers 34 and 36 are input, and a drive signal for operating the image sensors S0, S1, S2 and S3 in a synchronous state, and a drive signal for the focus drive motor 33 and the zoom drive motor 35. And are output. Laser length measuring device controller 51
The distance detection information from the laser length measuring machine 13 is input to the main controller C, and the transceiver 10 for communicating with the work vehicle A is connected to the main controller C.

【0030】前記イメージセンサコントローラ50を利
用して、各イメージセンサS0,S1,S2,S3の撮
像情報に基づいて、各発光体T0,T1,T2,T3の
各イメージセンサS0,S1,S2,S3の撮像画面夫
々における位置を検出する画像処理手段Tが構成されて
いる。即ち、図6に示すように、各イメージセンサの撮
像画面29の中心点Oを原点として画面横方向をx’
軸、画面縦方向をy’軸に設定して、各発光体T0,T
1,T2,T3(実際は電球20)に対応する円形領域
を2値化処理にて抽出し、その重心位置Gを各発光体の
撮像画面夫々における位置情報とする。ここで、図3に
示す発光側の各偏光フィルターf0,f1,f2,f3
及び受光側の各偏光フィルターp0,p1,p2,p3
の偏光角方向の関係から、イメージセンサS0の画像
(イ)には、T0以外にT1とT3からの画像が薄く見
えるが、上記2値化処理の閾値を適切に設定することで
消去される。その他のイメージセンサS1,S2,S3
の各画面(ロ),(ハ),(ニ)についても、同様にし
て不要な発光体の画像情報が消去される。尚、図6は、
後述の追尾制御によって、イメージセンサS0の画面横
方向の中央に対応する発光体T0の重心Gが位置して、
追尾誤差がない理想的な状態を例示する。
Using the image sensor controller 50, each image sensor S0, S1, S2 of each light emitter T0, T1, T2, T3 is based on the image pickup information of each image sensor S0, S1, S2, S3. Image processing means T for detecting the position on each of the image pickup screens in S3 is configured. That is, as shown in FIG. 6, with the center point O of the imaging screen 29 of each image sensor as the origin, the horizontal direction of the screen is x ′.
Axis, screen vertical direction is set to y'axis, each light emitter T0, T
The circular regions corresponding to 1, T2, T3 (actually, the light bulb 20) are extracted by the binarization process, and the center of gravity position G thereof is used as the position information on the image pickup screen of each light emitter. Here, the polarization filters f0, f1, f2, f3 on the light emitting side shown in FIG.
And each polarization filter p0, p1, p2, p3 on the light receiving side
From the relationship of the polarization angle direction, the images from T1 and T3 other than T0 appear lighter in the image (a) of the image sensor S0, but they are erased by appropriately setting the threshold value of the binarization process. . Other image sensors S1, S2, S3
In each of the screens (b), (c), and (d), unnecessary image information of the light emitter is deleted in the same manner. In addition, FIG.
By the tracking control described later, the center of gravity G of the light emitter T0 corresponding to the center of the image sensor S0 in the horizontal direction of the screen is positioned,
An ideal state in which there is no tracking error is illustrated.

【0031】前記メインコントローラCは、前記レーザ
測長器13による前記作業車Aまでの距離情報に基づい
て、撮像装置Sの撮像倍率を変更調節するように構成さ
れている。即ち、作業車Aまでの距離が遠くなると撮像
倍率を上げる一方、作業車Aまでの距離が近くなると撮
像倍率を下げるように電動ズーム14のレンズ位置を移
動させることにより、撮像画面内での発光体T0,T
1,T2,T3の大きさを適正な大きさに維持するよう
にしている。具体的に説明すれば、図7に示すように
(図の縦軸は、ズーム駆動モータ35の駆動電圧(V)
を示す)、距離対レンズ位置の標準特性Mから、電球2
0までの距離がL(m)であるときに適正レンズ位置に
するための駆動電圧はd(V)であり、この適正駆動電
圧d(V)の上下±1/2Δdの範囲に入るように制御
する。更に、前記発光体T0のイメージセンサS0の撮
像画面内での移動方向が横方向であるときには、上記標
準特性Mに沿った制御経路40で制御するが、上記移動
方向が遠近方向であるときには、つまり、撮像画面内で
の発光体T0の位置はあまり変わらずに距離が変化する
ときには、上記標準特性Mに沿った制御経路40よりも
急速な制御経路41,42(41は遠方側への移動時、
42は接近側への移動時の経路である)にて制御するよ
うにしている。これにより、追尾制御の遅れを極力小さ
くしている。
The main controller C is configured to change and adjust the imaging magnification of the imaging device S based on the distance information to the work vehicle A by the laser length measuring device 13. That is, by moving the lens position of the electric zoom 14 so that the imaging magnification is increased when the distance to the work vehicle A is increased, and the imaging magnification is decreased when the distance to the work vehicle A is shortened, light emission in the imaging screen is performed. Body T0, T
The sizes of 1, T2 and T3 are maintained at appropriate sizes. More specifically, as shown in FIG. 7, (the vertical axis in the figure represents the drive voltage (V) of the zoom drive motor 35).
From the standard characteristic M of the distance to the lens position,
When the distance to 0 is L (m), the drive voltage for setting the proper lens position is d (V), and the drive voltage should be within ± 1 / 2Δd above and below this proper drive voltage d (V). Control. Further, when the moving direction of the light emitting body T0 in the image pickup screen of the image sensor S0 is the lateral direction, the control path 40 along the standard characteristic M is used for control, but when the moving direction is the perspective direction, That is, when the distance changes without changing the position of the light emitter T0 in the imaging screen, the control paths 41 and 42 (41 is moved to the far side) more rapidly than the control path 40 along the standard characteristic M. Time,
42 is a route when moving to the approaching side). This minimizes the delay in tracking control.

【0032】又、前記メインコントローラCを利用し
て、前記複数個の発光体T0,T1,T2,T3の配置
情報、前記画像処理手段Tによる前記複数個の発光体T
0,T1,T2,T3の前記複数個のイメージセンサS
0,S1,S2,S3の撮像画面夫々における位置情
報、前記レーザー測長器13の距離情報、及び、前記エ
ンコーダ11a,12aの撮像角度情報に基づいて、前
記作業車Aの方位(車体の向き)を演算する方位演算手
段100と、前記複数個のイメージセンサS0,S1,
S2,S3のうちの少なくとも1つ(この例では、イメ
ージセンサS0)の撮像情報に基づいて、その撮像画面
内の所定位置、具体的にはその撮像画面29の横方向の
中央位置に前記複数個の発光体T0,T1,T2,T3
のうちの対応する発光体T0を捉えるように、前記旋回
用モータ11及び首振り用モータ12を作動させる追尾
制御手段101とが構成されている。
Further, by using the main controller C, the arrangement information of the plurality of light emitters T0, T1, T2, T3 and the plurality of light emitters T by the image processing means T.
The plurality of image sensors S of 0, T1, T2, T3
The orientation of the work vehicle A (the direction of the vehicle body) based on the position information of the image pickup screens 0, S1, S2, and S3, the distance information of the laser length measuring device 13, and the image pickup angle information of the encoders 11a and 12a. ), And the plurality of image sensors S0, S1,
Based on the image pickup information of at least one of S2 and S3 (in this example, the image sensor S0), the plurality of the plurality of images are provided at a predetermined position in the image pickup screen, specifically, in the lateral center position of the image pickup screen 29. Individual light emitters T0, T1, T2, T3
The tracking control means 101 for activating the turning motor 11 and the swinging motor 12 is configured so as to catch the corresponding light emitter T0.

【0033】前記方位演算手段100について、図9に
基づいて説明する。先ず、車体中央の発光体T0の位置
と他の3個の発光体T1,T2,T3の位置との画面横
方向での距離を夫々求め、そのうちの最小の距離Df
(画素数で表される)にある発光体T3を選ぶ(図6参
照)。ここで、発光体T1,T2,T3のうちの1つ
が、イメージセンサS0,S1,S2,S3の撮像方向
に対して後方側に位置して、その発光体と車体中央の発
光体T0との画面横方向での距離が最小になるとして
も、前述のように、実際には、その後方側の発光体は円
柱19に隠れて見えないので、前面側に位置する発光体
T1,T2,T3の中から選択して、後述の計算処理に
誤りが生じないことになる。そして、上記選択された発
光体T3と車体中央の発光体T0との画面横方向での距
離Dfを、次式により角度差θgに変換する。式中、G
HはイメージセンサS0,S1,S2,S3の画面横方
向の画角、RESはイメージセンサS0,S1,S2,
S3の画面横方向での解像度(画素数で表される)であ
る。尚、後の計算のために、下式にて、αに置き換えて
いる。
The azimuth calculating means 100 will be described with reference to FIG. First, the distances in the lateral direction of the screen between the position of the light emitter T0 at the center of the vehicle body and the positions of the other three light emitters T1, T2, T3 are respectively obtained, and the minimum distance Df of them is calculated.
Select a light emitter T3 (represented by the number of pixels) (see FIG. 6). Here, one of the light emitters T1, T2, T3 is located on the rear side with respect to the imaging direction of the image sensors S0, S1, S2, S3, and the light emitter and the light emitter T0 at the center of the vehicle body are Even if the distance in the horizontal direction of the screen is minimized, as described above, the light emitters on the rear side are actually hidden behind the cylinder 19 and cannot be seen. Therefore, the light emitters T1, T2, T3 located on the front side are not visible. Error will not occur in the calculation process described later. Then, the distance Df in the lateral direction of the screen between the selected light emitter T3 and the light emitter T0 at the center of the vehicle body is converted into an angle difference θg by the following equation. In the formula, G
H is the horizontal field angle of view of the image sensors S0, S1, S2, S3, and RES is the image sensors S0, S1, S2.
It is the resolution (represented by the number of pixels) in the horizontal direction of the screen in S3. In addition, in the following equation, it is replaced with α for later calculation.

【0034】[0034]

【数1】θg=(GH/RES)×Df α=tan(θg)## EQU1 ## θg = (GH / RES) × Df α = tan (θg)

【0035】次に、上記α(角度差θg)、車体中央の
発光体T0と発光体T3間の距離r、イメージセンサS
0,S1,S2,S3の位置から車体中央の発光体T0
までの距離Dtの各情報から、イメージセンサS0,S
1,S2,S3の回転中心Tcと車体中央の発光体T0
を結ぶ直線に対して車体中央の発光体T0と発光体T3
を結ぶ線がなす角度θtを、下式にて求める。
Next, the above α (angle difference θg), the distance r between the light emitter T0 and the light emitter T3 at the center of the vehicle body, and the image sensor S.
0, S1, S2, S3 from the position of the light emitter T0 in the center of the vehicle body
From each information of the distance Dt to the image sensor S0, S
Rotation center Tc of 1, S2 and S3 and light emitter T0 in the center of the vehicle body
The light emitter T0 and the light emitter T3 in the center of the vehicle body with respect to the straight line connecting
The angle θt formed by the line connecting the lines is calculated by the following formula.

【0036】[0036]

【数2】δ=(Dt×α2+ [Dt2 ×α4 −β× [α2 ×Dt
2 −r2] ]1/2)/(β×r) ここで、β=α2 +1 θt=cos-1(δ)
[Formula 2] δ = (Dt × α 2 + [Dt 2 × α 4 −β × [α 2 × Dt
2 −r 2 ]] 1/2 ) / (β × r) where β = α 2 +1 θt = cos −1 (δ)

【0037】車体中央の発光体T0と発光体T3を結ぶ
線が車体前後方向に対してなす角度は、車体中央の発光
体T0が2つの発光体T2,T3との間でなす角度(1
20°)の半分の角度60°であるので、作業車Aの車
体前後方向が地上側の基準方位Kに対してなす角度即ち
車体方位角をθH とすると、この角度θH は、60°か
ら上記θtを引いた角度(60−θt)と、イメージセ
ンサS0,S1,S2,S3の撮像角度θC と、イメー
ジセンサS0の画面横方向の中央に対応する発光体T0
の重心Gが位置していない場合には、その画面横方向の
偏差Xに相当する角度ΔθC を足した角度として求ま
る。尚、図9は、ΔθC が0である場合を示す。
The angle formed by the line connecting the light emitter T0 in the center of the vehicle body and the light emitter T3 with respect to the front-rear direction of the vehicle body is the angle (1 between the light emitter T0 in the center of the vehicle body and the two light emitters T2, T3).
Since the angle is 60 °, which is a half of 20 °), the angle formed by the vehicle front-rear direction of the work vehicle A with respect to the reference azimuth K on the ground side, that is, the vehicle azimuth is θH. An angle (60−θt) minus θt, an imaging angle θC of the image sensors S0, S1, S2, S3, and a light emitter T0 corresponding to the center of the image sensor S0 in the horizontal direction of the screen.
If the center of gravity G is not located, the angle ΔθC corresponding to the deviation X in the horizontal direction of the screen is obtained as an angle. Note that FIG. 9 shows a case where ΔθC is 0.

【0038】[0038]

【数3】θH =θC +(60−θt)+ΔθC[Equation 3] θH = θC + (60−θt) + ΔθC

【0039】前記追尾制御手段101について説明すれ
ば、前記画像処理手段Tによる画面内位置検出には所定
の処理時間を要するので、図8に示すように、前記発光
体T0の位置(図では、縦軸芯θ周りでの角度で示され
る)は、間隔を置いた不連続な検出点での位置として得
られる。図では、発光体T0が、現在の角度検出時点t
0より2つ前の角度検出時点t2で縦軸芯θ周りの角度
θ2に位置し、現在の角度検出時点t0より1つ前の角
度検出時点t1で縦軸芯θ周りの角度θ1に位置し、現
在の角度検出時点t0で縦軸芯θ周りの角度θ0に位置
するように軌跡J上を移動しているとする。尚、上記縦
軸芯θ周りの角度は、上から見て右回り(時計回り)を
プラスの方向とし、又、発光体T0の横軸芯φ周りの角
度位置は変化しないものとする。上記より、現在の角度
検出時点t0より1つ前の角度検出時点t1から現在の
角度検出時点t0までの発光体T0の縦軸芯θ周りの角
度位置の変化率θvは次式で与えられる。
Explaining the tracking control means 101, it takes a predetermined processing time to detect the position in the screen by the image processing means T. Therefore, as shown in FIG. 8, the position of the light emitter T0 (in the figure, (Indicated by the angle around the vertical axis θ) is obtained as the position at discrete detection points at intervals. In the figure, the light emitter T0 indicates that the current angle detection time t
It is located at an angle θ2 around the vertical axis θ at an angle detection time t2 two points before 0, and at an angle θ1 around the vertical axis θ at an angle detection time t1 one before the current angle detection time t0. It is assumed that the vehicle is moving on the locus J so as to be positioned at the angle θ0 around the vertical axis θ at the current angle detection time t0. It should be noted that the angle around the vertical axis θ is positive in the clockwise direction when viewed from above, and the angular position around the horizontal axis φ of the light emitter T0 does not change. From the above, the rate of change θv of the angular position around the vertical axis θ of the light emitting body T0 from the angle detection time t1 immediately before the current angle detection time t0 to the current angle detection time t0 is given by the following equation.

【0040】[0040]

【数4】θv=(θ0−θ1)/(t0−t1)## EQU00004 ## .theta.v = (. Theta.0-.theta.1) / (t0-t1).

【0041】そこで、現在の角度検出時点t0の次の角
度検出時点で発光体T0を画面横方向の中央位置に捉え
るようにするために、前記画像処理手段Tによって検出
したx’軸方向の偏差Xに対する修正量と、上記の縦軸
芯θ周りの角度位置の変化率θvと、さらに、設定経路
(前記作業行程の方向Kに向く経路)に作業車Aを沿わ
せるために作業車Aに対して送信されるステアリング角
θstの情報とを考慮して縦軸芯θ周りの旋回量Δθを
次式のように定め、この旋回量Δθで旋回用モータ11
を作動させるのである。尚、a1,a2,a3は所定の
ゲイン係数である(a1>0,a2>0,a3>0)。
Therefore, in order to catch the light emitting body T0 at the center position in the horizontal direction of the screen at the angle detection time point next to the current angle detection time point t0, the deviation in the x'-axis direction detected by the image processing means T. The correction amount with respect to X, the rate of change θv of the angular position around the vertical axis θ, and the work vehicle A in order to follow the set route (the route facing the direction K of the work process). The turning amount Δθ around the vertical axis θ is determined by the following equation in consideration of the information on the steering angle θst transmitted to the turning motor 11 with the turning amount Δθ.
To operate. Note that a1, a2, and a3 are predetermined gain coefficients (a1> 0, a2> 0, a3> 0).

【0042】[0042]

【数5】Δθ=a1・X+a2・θv+a3・θst[Formula 5] Δθ = a1 · X + a2 · θv + a3 · θst

【0043】そして、前記メインコントローラCは、前
記作業車Aまでの距離Dtの情報と、前記撮像装置Sの
撮像角度θC の情報(イメージセンサS0の画面横方向
の中央に対応する発光体T0の重心Gが位置していない
場合には、その画面横方向の偏差Xに相当する角度Δθ
C を足した角度)とに基づいて、前記作業車Aの位置を
算出するように構成されている。
Then, the main controller C informs the information of the distance Dt to the work vehicle A and the information of the imaging angle θC of the imaging device S (of the light emitter T0 corresponding to the center of the image sensor S0 in the horizontal direction of the screen). When the center of gravity G is not located, the angle Δθ corresponding to the deviation X in the horizontal direction of the screen.
The position of the work vehicle A is calculated based on the angle C plus the angle C).

【0044】次に、図10に基づいて、作業車A側の制
御構成について説明すれば、マイクロコンピュータ利用
の作業車コントローラHが設けられ、この作業車コント
ローラHに、前記地上側の送受信機10との間で情報を
送受する移動体側の送受信機16が接続されている。作
業車コントローラHからは、走行用の変速装置18を変
速操作するための走行用モータ17、ステアリング装置
22を操作するためのステアリング用モータ21、及び
作業装置25を作動させる(例えば、田植え機の場合の
作業装置である植え付け装置を昇降等させる)ための作
業装置用アクチュエータ26に対する駆動信号が出力さ
れている。そして、前記作業車コントローラHは、送受
信機16の受信情報(即ち、地上側の送受信機10から
送信される操向制御情報)に基づいて作業車Aを操向す
るように構成されている。
Next, referring to FIG. 10, a control configuration on the side of the work vehicle A will be described. A work vehicle controller H using a microcomputer is provided, and the work vehicle controller H is provided with the transceiver 10 on the ground side. A transmitter / receiver 16 on the mobile body side for transmitting / receiving information to and from is connected. From the work vehicle controller H, the traveling motor 17 for shifting the traveling transmission device 18, the steering motor 21 for operating the steering device 22, and the working device 25 are operated (for example, in a rice transplanter). A drive signal is output to the working device actuator 26 for raising and lowering the planting device, which is the working device in this case). The work vehicle controller H is configured to steer the work vehicle A based on the reception information of the transceiver 16 (that is, the steering control information transmitted from the ground transceiver 10).

【0045】地上側には、図11に示すように、作業車
Aが苗の植え付け作業等を行いながら誘導走行される1
区画の長方形状の圃場Fが設けられている。作業車Aは
圃場Fの長手方向(x軸方向)に沿う状態で短手方向
(y軸方向)に並置された複数の作業行程夫々を作業走
行しながら、各作業行程の端部で隣接する作業行程に1
80度旋回して移動し、今度はその作業行程を逆方向に
走行する往復走行を繰り返して、上記圃場Fの全範囲を
走行するように誘導制御される。図中、k0は、圃場F
に対する作業車Aの出入口である。
On the ground side, as shown in FIG. 11, a work vehicle A is guided to travel while planting seedlings and the like.
A rectangular field F of the section is provided. The work vehicle A is adjacent to each other at the end of each work stroke while running along a plurality of work strokes juxtaposed in the short-side direction (y-axis direction) along the longitudinal direction (x-axis direction) of the field F. 1 in work process
It is guided and controlled so as to travel through the entire range of the field F by repeating the reciprocal traveling in which the vehicle travels by turning 80 degrees and traveling in the opposite direction in the working stroke. In the figure, k0 is the field F
Is the entrance and exit of the work vehicle A.

【0046】前記圃場Fの長手方向の1端側(図でk
2,k3で示す辺)には、圃場の両角位置k2,k3付
近の予め決められた位置に、その基準位置を表示するた
めの基準ポールP1,P2が設けられている。この基準
ポールP1,P2は、図12に示すように、地上所定高
さに支柱28Aにて支持された円柱状の光反射板28に
て構成され、その光反射板28の具体構成は、前記作業
車Aに設けた反射シート19aと同様に、入射する光を
その入射方向に反射する特性を有している。
One end side in the longitudinal direction of the field F (k in the figure)
2 and k3), reference poles P1 and P2 for displaying the reference position are provided at predetermined positions near both corner positions k2 and k3 of the field. As shown in FIG. 12, each of the reference poles P1 and P2 is composed of a columnar light reflecting plate 28 supported by a support 28A at a predetermined height above the ground. Like the reflection sheet 19a provided on the work vehicle A, it has a characteristic of reflecting incident light in the incident direction.

【0047】前記圃場Fの前記基準ポールP1,P2が
設置されている側とは反対側の長手方向端部側(図でk
1,k4で示す辺)には、前記制御装置Bが設置され
る。そして、制御装置B内には、基準ポールP1,P2
にて表示された基準位置、即ち、予め位置を設定して設
置した基準ポールP1,P2の配置位置を検出する基準
位置検出手段PKと、前記基準ポールP1,P2の配置
位置を含む地上側情報を記憶する地上側情報記憶手段R
とが設けられている。そして、上記基準位置検出手段P
Kは、基準ポールP1,P2の光反射板28に向けて検
出光の投射方向を設定した状態でその光反射板28まで
の距離を検出する光式の距離検出手段としての前記レー
ザ測長器13を備え、且つ、前記レーザ測長器コントロ
ーラ51及びメインコントローラCを利用して構成さ
れ、又、上記地上側情報記憶手段Rは、前記メインコン
トローラCを利用して構成されている(図5参照)。
The end of the field F in the longitudinal direction on the side opposite to the side on which the reference poles P1 and P2 are installed (k in the figure).
The controller B is installed on the side indicated by 1, k4). Then, in the control device B, the reference poles P1 and P2 are
The reference position displayed by, that is, the reference position detecting means PK for detecting the arrangement position of the reference poles P1 and P2 set and set in advance, and the ground side information including the arrangement position of the reference poles P1 and P2. Information storage means R for storing information
Are provided. Then, the reference position detection means P
K is the laser length measuring device as an optical distance detecting means for detecting the distance to the light reflecting plate 28 in the state where the projection direction of the detection light is set toward the light reflecting plate 28 of the reference poles P1 and P2. 13 and is configured by using the laser length measuring device controller 51 and the main controller C, and the ground side information storage means R is configured by using the main controller C (FIG. 5). reference).

【0048】上記地上側情報としては、基準ポールP
1,P2の座標、圃場Fの各角部k1,k2,k3,k
4の座標、出入口k0の位置、前記作業行程の情報(行
程幅、行程長さ、行程数等)、作業車Aに対するデフォ
ルト位置kd(標準の作業開始位置)の座標等が記憶さ
れる。従って、前記基準位置検出手段PKの検出情報及
び前記地上側情報記憶手段Rの記憶情報に基づいて、つ
まり、予め判っている基準ポールP1,P2の設置位置
情報と基準ポールP1,P2夫々に対して検出される距
離情報とから制御装置Bの設置位置が判別され、その判
別された自己の位置を基準として前記作業車Aの位置が
測定される。
As the above ground side information, the reference pole P
1, P2 coordinates, each corner k1, k2, k3, k of the field F
The coordinates of No. 4, the position of the entrance / exit k0, the information of the work stroke (stroke width, stroke length, the number of strokes, etc.), the coordinates of the default position kd (standard work start position) for the work vehicle A, and the like are stored. Therefore, based on the detection information of the reference position detection means PK and the storage information of the ground side information storage means R, that is, for the installation position information of the reference poles P1 and P2 and the reference poles P1 and P2 which are known in advance. The installation position of the control device B is discriminated from the distance information thus detected, and the position of the work vehicle A is measured on the basis of the discriminated self position.

【0049】次に、図13及び図14に示すフローチャ
ートに基づいて制御装置Bによる作業車Aの位置測定、
及び、作業車Aの誘導走行の具体構成について説明す
る。
Next, based on the flow charts shown in FIGS. 13 and 14, the position measurement of the work vehicle A by the controller B is performed,
A specific configuration of the guided traveling of the work vehicle A will be described.

【0050】メインルーチン(図13)では、最初に、
制御装置Bを圃場に設置するが、その設置位置は、通
常、図11に示すように、k1,k4で示す辺の中点付
近である。次に、前記地上側情報記憶手段Rに記憶され
ている地上側情報(以後、マップファイルと呼ぶ)のう
ちで、現在の圃場のマップファイルを選択して読み込
む。そして、レーザー測長器13にて各基準ポールP
1,P2までの距離を検出し、その距離情報と上記マッ
プファイル情報に基づいて、前述の基準位置検出手段P
Kにて制御装置Bの設置位置が認識される。
In the main routine (FIG. 13), first,
The control device B is installed in a field, and its installation position is usually near the midpoint of the sides indicated by k1 and k4 as shown in FIG. Next, the map file of the current field is selected and read from the ground side information (hereinafter referred to as a map file) stored in the ground side information storage means R. Then, each reference pole P is set by the laser length measuring machine 13.
1, the distance to P2 is detected, and based on the distance information and the map file information, the above-mentioned reference position detecting means P
The installation position of the control device B is recognized by K.

【0051】次に、前記撮像装置S(イメージセンサS
0)の撮像画面の左右中央に作業車Aの車体中央の発光
体T0を捉えるように操作し、前記車体方位、及び車体
位置の検出を行った後、最初の軌道データ(行単位で記
憶されている)を読み込み、その軌道と車体位置のずれ
を計算する。そして、軌道ずれが設定値(例えば1m)
内でなければ、次の軌道データを読み込み、軌道ずれが
上記設定値内になるまで、順番に軌道データの読み込み
と軌道ずれの計算とを行う。ここで、ファイル内のすべ
ての軌道データを読み込んでも、軌道ずれが設定値内に
ならないときは、現在の車体位置が不適当と判断される
ので、誘導したい軌道まで手動で移動させるか、あるい
は、前記デフォルト位置kdまで移動させるようにして
車体位置を変更させる。そして、その移動後の作業車A
の車体方位と車体位置を検出し、上記軌道データの読み
込みと軌道ずれの計算とを再度行い、軌道ずれが設定値
内になる軌道データが見つかると、その軌道と車体方位
及び車体位置を図示しないTVモニター等に表示する。
この表示を見て、作業者等が誘導開始を指令すると、そ
の軌道に沿っての車体誘導が開始される一方、誘導開始
しないように指令すると、上記車体位置の変更からのフ
ローを繰り返す。
Next, the image pickup device S (image sensor S
0) The image pickup screen is operated so as to capture the light emitter T0 at the center of the vehicle body of the work vehicle A at the left and right centers, and the vehicle body direction and the vehicle body position are detected. Read) and calculate the deviation between the track and the car body position. And the orbital deviation is a set value (for example, 1 m)
If it is not within the range, the next orbital data is read, and the orbital data is sequentially read and the orbital displacement is calculated until the orbital displacement falls within the set value. Here, even if all track data in the file is read, if the track deviation does not fall within the set value, the current car body position is judged to be inappropriate, so move it manually to the track you want to guide, or The vehicle body position is changed by moving the vehicle body to the default position kd. And the work vehicle A after the movement
The vehicle body azimuth and vehicle body position are detected, the orbit data is read and the orbit deviation is calculated again, and when the orbit data within which the orbit deviation falls within the set value is found, the orbit, the vehicle body direction and the vehicle position are not shown. Display on TV monitor, etc.
Looking at this display, when the operator or the like commands the start of guidance, the vehicle guidance along the trajectory is started, while if the guidance is not started, the flow from the change of the vehicle position is repeated.

【0052】車体誘導(図14)では、前記軌道データ
を計算バッファにセットしてから、前記レーザ測長器1
3(PSRと略す)及び前記画像処理手段T(VSXと
略す)に対してデータを要求する。ここで、VSXの処
理は時間がかかるので、その処理完了までの時間待機し
た後、上記PSRからの距離データ、及びVSXからの
画面内位置データと、前記撮像角度コントローラ49か
ら前記エンコーダ11a,12aの撮像角度データとを
読み込む。そして、この画面内位置データと撮像角度デ
ータとから方位角を判別して、その方位角と上記距離デ
ータとから車体位置を計算し、又、前述のように、基準
方位Kに対する車体方位角θH を算出するとともに、自
動追尾のための制御量を求め、その制御量で追尾動作さ
せる。
In the vehicle body guidance (FIG. 14), the trajectory data is set in the calculation buffer and then the laser length measuring device 1 is used.
3 (abbreviated as PSR) and data to the image processing means T (abbreviated as VSX). Here, since processing of VSX takes time, after waiting for the time until the processing is completed, the distance data from the PSR and the in-screen position data from the VSX, and the imaging angle controller 49 to the encoders 11a and 12a. And the imaging angle data of. Then, the azimuth angle is discriminated from the in-screen position data and the imaging angle data, the vehicle body position is calculated from the azimuth angle and the distance data, and as described above, the vehicle body azimuth angle θH with respect to the reference azimuth K. Is calculated, a control amount for automatic tracking is obtained, and the tracking operation is performed with the control amount.

【0053】次に、上記算出した車体位置から軌道の終
端に位置しているか否かを調べる。軌道終端でなけれ
ば、車体方位角θH と、軌道に対する車体位置のずれと
から車体のステアリング角θstを算出し、そのステア
リング角θstのデータ、及び、その他の変速操作用や
作業機(植え付け装置等)操作用の制御情報を作業車A
に送信する。そして、車体側では、上記受信した制御情
報に従って、ステアリング、変速、及び作業機操作の制
御を行う。一方、軌道終端であれば、次の軌道データの
読み込みを行い、その軌道データに基づいて、上記ステ
アリング角算出からのフローを繰り返す。上記次の軌道
データの読み込みで、ファイル内のデータに対する処理
が終了している場合には、車体誘導の処理を終えて、メ
インルーチンに戻る。
Next, it is checked whether or not the calculated vehicle position is located at the end of the track. If it is not the end of the track, the steering angle θst of the vehicle body is calculated from the vehicle body azimuth angle θH and the deviation of the vehicle body position with respect to the track, and the data of the steering angle θst and other gear shifting operations and working machines (planting devices, etc.) are calculated. ) Control information for operation is provided to work vehicle A
Send to. Then, on the vehicle body side, control of steering, gear shifting, and work implement operation is performed according to the received control information. On the other hand, if it is the end of the track, the next track data is read, and the flow from the above steering angle calculation is repeated based on the track data. When the processing for the data in the file has been completed by the reading of the next track data, the processing for guiding the vehicle body is completed, and the process returns to the main routine.

【0054】〔別実施例〕次に別実施例を列記する。上
記実施例では、複数個の発光体T0,T1,T2,T3
からの光の互いに異なる性質として偏光状態が異なる各
光を発光させるべく、各発光体に電球等の発光部からの
光を互いに異なる偏光角方向に偏光させる偏光手段(偏
光フィルターf0,f1,f2,f3)を備えたものを
示したが、互いに異なる性質の光を発光させる手段とし
ては、これに限るものではない。例えば、各光の波長を
互いに異なるようにしてもよく、この場合の手段として
は、電球等の光に含まれる広範囲の波長のうちの一部の
波長の光だけを通過させるフィルター(つまり色フィル
ター)を、その通過波長が異なる(例えば、赤、青、
緑、黄等の色の)ものを複数用意し、各フィルターを上
記偏光手段(偏光フィルター)に代えて各発光体に備え
させる。尚、互いに異なる偏光角方向に偏光させる場合
においても、その具体的な条件は、上記実施例のよう
に、45°づつ偏光角方向をずらすものに限定されず、
発光体の個数等の各種条件に応じて適宜変更できる。
[Other Embodiments] Next, other embodiments will be listed. In the above embodiment, a plurality of light emitters T0, T1, T2, T3
Polarizing means (polarizing filters f0, f1, f2) for causing each light-emitting body to polarize the light from the light-emitting portion such as a light bulb in different polarization angle directions so as to emit light having different polarization states as different properties of the light from the , F3) are shown, but the means for emitting lights of different properties are not limited to this. For example, the wavelengths of the respective lights may be different from each other, and in this case, as a means, a filter that allows only a part of the wavelengths of a wide range of wavelengths included in the light of a light bulb or the like (that is, a color filter) ) With different passing wavelengths (eg red, blue,
A plurality of materials (of colors such as green and yellow) are prepared, and each filter is provided in each light-emitting body instead of the above-mentioned polarizing means (polarizing filter). Even in the case of polarization in polarization directions different from each other, the specific conditions are not limited to those in which the polarization angle directions are shifted by 45 ° as in the above embodiment.
It can be appropriately changed according to various conditions such as the number of light emitters.

【0055】又、上記実施例では、4個の発光体T0,
T1,T2,T3のうちの1個を車体中央に配置して基
準位置とするとともに、他の3個を周りに分散配置した
が、発光体の配置状態は、発光体の個数や車体形状等に
応じて種々変更できる。又、上記実施例では、車体方位
の検出する際に選択する発光体を、地上側から4個の発
光体を見たときに、見る方向の正面側に位置する発光体
から選択できるようにすべく、車体中央の発光体T0を
支持する円柱19で上記見る方向の背面側に位置する発
光体が隠れるように円柱19の直径を設定したが、円柱
19から縦長状の板材を突出させる等の手段で背面側の
発光体を隠すようにしてもよい。
Further, in the above embodiment, four light emitters T0,
One of T1, T2, and T3 was placed at the center of the vehicle body to be the reference position, and the other three were distributed around the other. However, the arrangement state of the light emitters depends on the number of light emitters, the shape of the vehicle body, and the like. It can be variously changed according to. Further, in the above-described embodiment, the light emitters to be selected when detecting the vehicle body direction can be selected from the light emitters located on the front side in the viewing direction when the four light emitters are viewed from the ground side. Therefore, the diameter of the cylinder 19 is set such that the cylinder 19 supporting the luminous body T0 at the center of the vehicle body hides the luminous body located on the back side in the above-mentioned viewing direction. You may make it hide the light-emitting body of the back side by a means.

【0056】上記実施例では、複数個の発光体T0,T
1,T2,T3からの光に対応させて地上側に設ける複
数個の光通過手段を、前記偏光手段に合わせて、異なる
偏光角方向に偏光された光を互いに異なる検光角方向で
検光する検光手段(偏光フィルターp0,p1,p2,
p3)で構成したが、例えば、上記のように、偏光手段
(偏光フィルター)に代えて色フィルターを各発光体に
備えさせる場合には、光通過手段も同様な色フィルター
で構成される。尚、上記検光手段で構成する場合におい
ても、その具体的な条件は、上記実施例のように、偏光
手段による偏光角方向と同じ方向の検光角方向にする必
要はなく、要は、対応する発光体T0,T1,T2,T
3からの光の通過率を他の光よりも大きい状態でつうか
させる条件であればよい。
In the above embodiment, a plurality of light emitters T0, T
A plurality of light passing means provided on the ground side corresponding to the light from 1, T2 and T3 are aligned with the polarizing means, and the light polarized in different polarization angle directions is detected in different detection angle directions. Light analyzing means (polarizing filters p0, p1, p2,
However, in the case where each illuminant is provided with a color filter instead of the polarizing means (polarizing filter) as described above, the light passing means is also constituted by the same color filter. Even in the case of being configured by the light detecting means, the specific condition does not need to be in the light detecting angle direction of the same direction as the polarization angle direction by the light polarizing means as in the above embodiment, and the point is, Corresponding luminous bodies T0, T1, T2, T
Any condition may be used as long as the transmittance of the light from No. 3 is greater than that of other lights.

【0057】上記実施例では、地上側に設ける複数個の
撮像手段として、白黒式のCCDセンサを用いるイメー
ジセンサS0,S1,S2,S3の場合を例示したが、
CCDセンサ以外に、例えば、PSDセンサ等を用いて
もよく、又、白黒式ではなく、カラー式のセンサを用い
るようにしてもよい。又、上記実施例では、複数個の撮
像手段を同期作動させているが、制御の簡素化のため
に、非同期で作動させてもよい。
In the above embodiment, the case where the image sensors S0, S1, S2 and S3 using the black and white CCD sensors are exemplified as the plurality of image pickup means provided on the ground side.
Other than the CCD sensor, for example, a PSD sensor or the like may be used, and a color type sensor may be used instead of the monochrome type sensor. Further, in the above embodiment, the plurality of image pickup means are operated synchronously, but they may be operated asynchronously for simplification of control.

【0058】上記実施例では、複数個の光通過手段(偏
光フィルターp0,p1,p2,p3)の夫々が、複数
個の撮像手段(イメージセンサS0,S1,S2,S
3)の夫々に一体状態で付設され、その複数個の光通過
手段が付設された複数個の撮像手段を一体のものとして
角度変更して撮像角度を変更させるようにしたものを示
したが、複数個の光通過手段の複数個の撮像手段に対す
る設置状態、及び、複数個の撮像手段の撮像角度変更の
具体構成は、上記のものに限らない。
In the above embodiment, each of the plurality of light passing means (polarization filters p0, p1, p2, p3) has a plurality of image pickup means (image sensors S0, S1, S2, S3).
Although the image pickup angle is changed by integrally changing the angle of the plurality of image pickup means provided with the plurality of light passing means, the image pickup means is changed. The installation state of the plurality of light passing means with respect to the plurality of image pickup means and the specific configuration of changing the image pickup angle of the plurality of image pickup means are not limited to the above.

【0059】上記実施例では、撮像手段S0,S1,S
2,S3の撮像角度変更手段を電動モータ11,12に
て構成したが、モータ以外に、他のアクチュエータを用
いることができる。
In the above embodiment, the image pickup means S0, S1, S
Although the imaging angle changing means for S2 and S3 is composed of the electric motors 11 and 12, other actuators can be used in addition to the motors.

【0060】又、上記実施例では、撮像手段S0,S
1,S2,S3の撮像角度検出手段を、上記モータ1
1,12に内蔵したエンコーダ11a,12aによって
構成したが、例えば、モータ11,12とは別体のポテ
ンショメータ等の角度検出手段を用いることも可能であ
る。尚、その際の基準方位としては、上記実施例のよう
に、地上側の作業行程の方向Kにする以外に適宜設定で
きる。
In the above embodiment, the image pickup means S0, S
1, S2, S3 imaging angle detection means, the motor 1
Although the encoders 11a and 12a are incorporated in the motors 1 and 12, it is possible to use an angle detecting means such as a potentiometer which is separate from the motors 11 and 12, for example. Incidentally, the reference azimuth at that time can be appropriately set other than the direction K of the ground-side work stroke as in the above embodiment.

【0061】上記実施例では、撮像手段S0,S1,S
2,S3から移動体Aの基準位置(実際は、そこに設け
た反射シート19a)までの距離を検出するために、地
上側の距離検出手段として、ビーム状の検出光を投射し
て移動体Aまでの距離を検出するレーザー測長器13に
て構成したが、これに限るものではない。
In the above embodiment, the image pickup means S0, S1, S
In order to detect the distance from 2, S3 to the reference position of the moving body A (actually, the reflection sheet 19a provided there), the moving body A is projected by projecting beam-like detection light as the distance detecting means on the ground side. Although it is configured by the laser length measuring device 13 that detects the distance up to, it is not limited to this.

【0062】上記実施例では、追尾制御手段101が、
複数個の撮像手段S0,S1,S2,S3のうちの1つ
の撮像手段S0の撮像情報に基づいて、その撮像画面の
所定位置として設定した画面中心点Oに対応する発光体
T0を捉えるように追尾制御する場合を例示したが、上
記撮像手段S0の撮像情報に加えて他の撮像手段S1,
S2,S3の撮像情報にも基づいて上記追尾制御を行う
ようにすることもできる。又、上記所定位置としては、
画面の中心点Oを含む所定範囲内に発光体T0を捉える
ようにすることもできる。又、追尾制御手段101が、
追尾のための情報として発光体T0の撮像画面内での位
置(中心点Oからの偏差X)、発光体T0の移動速度、
及び、移動体Aの車体方位角(車体の向き)の各情報を
使用した場合を示したが、発光体T0の撮像画面内での
位置情報にのみ基づくようにして制御の簡略化を図るこ
ともできる。
In the above embodiment, the tracking control means 101 is
Based on the image pickup information of one image pickup unit S0 of the plurality of image pickup units S0, S1, S2, S3, the light emitting body T0 corresponding to the screen center point O set as the predetermined position of the image pickup screen is captured. Although the case where the tracking control is performed has been illustrated, in addition to the image pickup information of the image pickup unit S0, another image pickup unit S1,
It is also possible to perform the tracking control based on the imaging information of S2 and S3. Further, as the predetermined position,
It is also possible to capture the light emitter T0 within a predetermined range including the center point O of the screen. Further, the tracking control means 101
As information for tracking, the position of the light emitter T0 in the imaging screen (deviation X from the center point O), the moving speed of the light emitter T0,
Also, although the case where each information of the vehicle body azimuth angle (direction of the vehicle body) of the moving body A is used is shown, simplification of control is achieved by being based only on the positional information of the light emitting body T0 in the imaging screen. You can also

【0063】上記実施例では、移動体として、自動走行
式の作業車Aの場合を例示したが、これ以外に、運転者
が搭乗して手動式に走行させる作業車であってもよい。
この場合は、車体の現在位置及び車体方位角の情報が表
示画面等に表示され、この表示情報に基づいて手動運転
することになる。
In the above embodiment, the moving body is the work vehicle A of the automatic traveling type, but other than this, the work vehicle may be a work vehicle that the driver rides on and manually travels.
In this case, information on the current position of the vehicle body and the vehicle body azimuth angle is displayed on a display screen or the like, and the vehicle is manually driven based on this display information.

【0064】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】移動体及び自動追尾式の位置測定誘導制御装置
を示す外観図
FIG. 1 is an external view showing a moving body and an automatic tracking type position measurement guidance control device.

【図2】発光体の配置を示す平面図FIG. 2 is a plan view showing the arrangement of light emitters.

【図3】発光体からの光の偏光方向を示す図FIG. 3 is a diagram showing polarization directions of light from a light emitting body.

【図4】撮像手段の構成を示す断面側面図FIG. 4 is a cross-sectional side view showing the configuration of the image pickup means.

【図5】自動追尾式の位置測定誘導制御装置の制御構成
を示すブロック図
FIG. 5 is a block diagram showing a control configuration of an automatic tracking type position measurement guidance control device.

【図6】撮像画面内における発光体の位置検出処理の説
明図
FIG. 6 is an explanatory diagram of a process for detecting the position of a light emitter in the image pickup screen.

【図7】ズーム作動を説明する特性図FIG. 7 is a characteristic diagram illustrating zoom operation.

【図8】追尾制御の説明図FIG. 8 is an explanatory diagram of tracking control.

【図9】移動体の車体方位検出処理の説明図FIG. 9 is an explanatory diagram of a vehicle body direction detection process of a moving body.

【図10】移動体側の制御構成を示すブロック図FIG. 10 is a block diagram showing a control configuration on the moving body side.

【図11】移動体が誘導走行される地上側の圃場を示す
平面図
FIG. 11 is a plan view showing a field on the ground side on which a mobile body is guided to travel.

【図12】基準位置表示手段を示す側面図FIG. 12 is a side view showing a reference position display means.

【図13】制御作動を説明するフローチャートFIG. 13 is a flowchart illustrating a control operation.

【図14】制御作動を説明するフローチャートFIG. 14 is a flowchart illustrating a control operation.

【符号の説明】[Explanation of symbols]

A 移動体 T0,T1,T2,T3 発光体 p0,p1,p2,p3 光通過手段 S0,S1,S2,S3 撮像手段 11a,12a 撮像角度検出手段 13 距離検出手段 100 方位演算手段 f0,f1,f2,f3 偏光手段 p0,p1,p2,p3 検光手段 11,12 撮像角度変更手段 101 追尾制御手段 A moving body T0, T1, T2, T3 light emitting body p0, p1, p2, p3 light passing means S0, S1, S2, S3 image pickup means 11a, 12a image pickup angle detection means 13 distance detection means 100 azimuth calculation means f0, f1, f2, f3 Polarizing means p0, p1, p2, p3 Light detecting means 11, 12 Imaging angle changing means 101 Tracking control means

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 移動する移動体(A)の方位を検出する
移動体の方位検出装置であって、 前記移動体(A)に、 互いに異なる性質の光を発光する複数個の発光体(T
0,T1,T2,T3)が、平面視において基準位置に
対する設定配置関係で分散して設けられ、 地上側に、 前記複数個の発光体(T0,T1,T2,T3)からの
各光夫々に対応させて設けられて、前記複数個の発光体
(T0,T1,T2,T3)からの各光の性質の違いに
よって、そのうちの対応する光を他の光よりも通過率が
大きな状態で通過させる複数個の光通過手段(p0,p
1,p2,p3)と、 その複数個の光通過手段(p0,p1,p2,p3)夫
々を通過した各光を各別に撮像する複数個の撮像手段
(S0,S1,S2,S3)と、 前記複数個の撮像手段(S0,S1,S2,S3)の撮
像方向が基準方位に対してなす角度を検出する撮像角度
検出手段(11a,12a)と、 前記複数個の撮像手段(S0,S1,S2,S3)から
前記移動体(A)の基準位置までの距離を検出する距離
検出手段(13)と、 前記複数個の発光体(T0,T1,T2,T3)の配置
情報、前記複数個の発光体(T0,T1,T2,T3)
の前記複数個の撮像手段(S0,S1,S2,S3)の
撮像画面夫々における位置情報、前記距離検出手段(1
3)の距離情報、及び、前記撮像角度検出手段(11
a,12a)の撮像角度情報に基づいて、前記移動体
(A)の方位を演算する方位演算手段(100)とが設
けられている移動体の方位検出装置。
1. An azimuth detecting device for a moving body for detecting the azimuth of a moving moving body (A), comprising: a plurality of light emitting bodies (T) emitting light having different properties to the moving body (A).
0, T1, T2, T3) are distributed in a set arrangement relationship with respect to a reference position in a plan view, and each light from the plurality of light emitters (T0, T1, T2, T3) is provided on the ground side. Are provided in correspondence with each other, and the corresponding light among the plurality of light emitters (T0, T1, T2, T3) has a greater transmittance than other lights due to the difference in the property of each light. A plurality of light passing means (p0, p)
1, p2, p3) and a plurality of image pickup means (S0, S1, S2, S3) for individually picking up each light passing through each of the plurality of light passage means (p0, p1, p2, p3). An imaging angle detecting means (11a, 12a) for detecting an angle formed by the imaging directions of the plurality of imaging means (S0, S1, S2, S3) with respect to a reference azimuth, and the plurality of imaging means (S0, S1, S2, S3) to a reference position of the moving body (A), a distance detecting means (13), and arrangement information of the plurality of light emitting bodies (T0, T1, T2, T3), Multiple light emitters (T0, T1, T2, T3)
Position information on each of the image pickup screens of the plurality of image pickup means (S0, S1, S2, S3), and the distance detection means (1
3) distance information and the imaging angle detection means (11)
a, 12a), the azimuth calculating means (100) for calculating the azimuth of the moving body (A) based on the imaging angle information of the moving body (A).
【請求項2】 前記複数個の発光体(T0,T1,T
2,T3)の夫々に、それからの各光を互いに異なる偏
光角方向に偏光させる偏光手段(f0,f1,f2,f
3)が備えられ、 前記複数個の光通過手段(p0,p1,p2,p3)
が、前記異なる偏光角方向に偏光された前記複数個の発
光体(T0,T1,T2,T3)からの光を互いに異な
る検光角方向で検光する複数個の検光手段(p0,p
1,p2,p3)にて構成されている請求項1記載の移
動体の方位検出装置。
2. The plurality of light emitters (T0, T1, T
2, T3), and polarizing means (f0, f1, f2, f) that polarize the respective lights therefrom in different polarization angle directions.
3) is provided, and the plurality of light passing means (p0, p1, p2, p3) are provided.
However, a plurality of light detecting means (p0, p) for detecting light from the plurality of light emitters (T0, T1, T2, T3) polarized in the different polarization angle directions in different detection angle directions.
1, p2, p3), the azimuth detecting device for a moving body according to claim 1.
【請求項3】 前記複数個の撮像手段(S0,S1,S
2,S3)が、同期状態で撮像作動するように構成され
ている請求項1又は2記載の移動体の方位検出装置。
3. The plurality of image pickup means (S0, S1, S)
2. The azimuth detecting device for a moving body according to claim 1, wherein the second and S3) are configured to perform image pickup operation in a synchronized state.
【請求項4】 前記複数個の撮像手段(S0,S1,S
2,S3)のうちの少なくとも1つの撮像情報に基づい
て、その撮像画面内の所定位置に前記複数個の発光体
(T0,T1,T2,T3)のうちの対応する発光体
(T0)を捉えるように、前記撮像手段(S0,S1,
S2,S3)の撮像角度変更手段(11,12)を作動
させる追尾制御手段(101)が設けられている請求項
1、2又は3記載の移動体の方位検出装置。
4. The plurality of image pickup means (S0, S1, S)
2, S3), the corresponding light emitter (T0) of the plurality of light emitters (T0, T1, T2, T3) is placed at a predetermined position in the image pickup screen based on at least one image pickup information. As can be seen, the imaging means (S0, S1,
4. The azimuth detecting device for a moving body according to claim 1, 2 or 3, further comprising a tracking control means (101) for operating the imaging angle changing means (11, 12) of S2, S3).
【請求項5】 前記複数個の光通過手段(p0,p1,
p2,p3)の夫々が、前記複数個の撮像手段(S0,
S1,S2,S3)の夫々に一体状態で付設され、 前記撮像角度変更手段(11,12)が、前記複数個の
光通過手段(p0,p1,p2,p3)が付設された前
記複数個の撮像手段(S0,S1,S2,S3)を一体
のものとして角度変更するように構成されている請求項
4記載の移動体の方位検出装置。
5. The plurality of light passing means (p0, p1,
p2, p3), each of the plurality of imaging means (S0,
S1, S2, S3) are attached in an integrated state to each other, and the imaging angle changing means (11, 12) is provided with the plurality of light passing means (p0, p1, p2, p3). The azimuth detecting device for a moving body according to claim 4, wherein the image pickup means (S0, S1, S2, S3) is integrated and the angle is changed.
JP6321872A 1994-12-26 1994-12-26 Azimuth detecting device for moving body Pending JPH08178651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6321872A JPH08178651A (en) 1994-12-26 1994-12-26 Azimuth detecting device for moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6321872A JPH08178651A (en) 1994-12-26 1994-12-26 Azimuth detecting device for moving body

Publications (1)

Publication Number Publication Date
JPH08178651A true JPH08178651A (en) 1996-07-12

Family

ID=18137350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6321872A Pending JPH08178651A (en) 1994-12-26 1994-12-26 Azimuth detecting device for moving body

Country Status (1)

Country Link
JP (1) JPH08178651A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008252643A (en) * 2007-03-30 2008-10-16 Toshiba Corp Mobile monitoring system and monitoring method thereof
JP2014145629A (en) * 2013-01-28 2014-08-14 Tohoku Electric Power Co Inc Underground radar system achieving three-dimensional display
JP2015094669A (en) * 2013-11-12 2015-05-18 株式会社日立産機システム Position detection system
JP2016516196A (en) * 2013-03-14 2016-06-02 ファロ テクノロジーズ インコーポレーテッド Structured optical scanner correction tracked in 6 degrees of freedom
KR20160100315A (en) * 2013-12-19 2016-08-23 악티에볼라겟 엘렉트로룩스 Robotic cleaning device with perimeter recording function

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008252643A (en) * 2007-03-30 2008-10-16 Toshiba Corp Mobile monitoring system and monitoring method thereof
JP2014145629A (en) * 2013-01-28 2014-08-14 Tohoku Electric Power Co Inc Underground radar system achieving three-dimensional display
JP2016516196A (en) * 2013-03-14 2016-06-02 ファロ テクノロジーズ インコーポレーテッド Structured optical scanner correction tracked in 6 degrees of freedom
JP2015094669A (en) * 2013-11-12 2015-05-18 株式会社日立産機システム Position detection system
KR20160100315A (en) * 2013-12-19 2016-08-23 악티에볼라겟 엘렉트로룩스 Robotic cleaning device with perimeter recording function

Similar Documents

Publication Publication Date Title
CN108871265B (en) Measuring system
US9523575B2 (en) Guide light device, survey apparatus having the guide light device, survey system using the survey apparatus, survey pole used in the survey system, and mobile wireless transceiver used in the survey system
EP2105705B1 (en) Surveying system
US20170168142A1 (en) Measuring Instrument
US10488519B2 (en) Polygon mirror, fan beam output device, and survey system
EP2618198A1 (en) Image-capturing apparatus having two images sensors for microscopes
JPH08178651A (en) Azimuth detecting device for moving body
JPH085344A (en) Three-dimensional shape input device
JP6205119B2 (en) Distance direction automatic measuring device with dual optical system
JPH09113603A (en) Position detector for mobile
US6041186A (en) Finder system
JP2660744B2 (en) Mobile vehicle stop position detection device
JPH08194534A (en) Guidance controller for mobile object
JPH08178615A (en) Position detecting device and guide device of moving body
US8885051B2 (en) Camera calibration method and camera calibration apparatus
JP4281177B2 (en) In-vehicle imaging device
JP2002059783A (en) Vehicular periphery visual confirmation device
JP2712420B2 (en) Optical space transmission equipment
JPH09113270A (en) Automatic moving-body-tracking device and position detecting device of tracking type
JPH06236209A (en) Automatic tracking position measuring instrument for mobile object
JPH08178616A (en) Position detecting device of moving body
JPH07191124A (en) Automatic moving body tracking device
JPH112679A (en) Collimating range finding optical system
JPH0756633A (en) Automatic tracking type position measuring device for mobile object
JP4518975B2 (en) Display quality measuring device for image display device