JPH08177859A - Bearing for fan - Google Patents

Bearing for fan

Info

Publication number
JPH08177859A
JPH08177859A JP6329073A JP32907394A JPH08177859A JP H08177859 A JPH08177859 A JP H08177859A JP 6329073 A JP6329073 A JP 6329073A JP 32907394 A JP32907394 A JP 32907394A JP H08177859 A JPH08177859 A JP H08177859A
Authority
JP
Japan
Prior art keywords
bearing
contact
range
bearing surface
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6329073A
Other languages
Japanese (ja)
Inventor
Hiromichi Serizawa
広道 芹沢
Shoichi Takada
晶一 高田
Kazumasa Tanaka
一正 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP6329073A priority Critical patent/JPH08177859A/en
Publication of JPH08177859A publication Critical patent/JPH08177859A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • F16C33/104Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing in a porous body, e.g. oil impregnated sintered sleeve

Abstract

PURPOSE: To form a proper oil film at all times by setting an oil absorptivity of pores in the area not made in contact with a rotating shaft larger than that in the area made in contact with the rotating shaft in a bearing surface. CONSTITUTION: An oil absorptivity is reduced in the area AR1 of a bearing surface 50 where is made in contact with a rotating shaft 6 so as to prevent the absorption of lubricating oil into a bearing 5, thus leaving oil film between the rotating shaft 6 and the bearing surface 50. Also, an oil absorptivity is increased in the area AR2 of the bearing surface 50 where is not made in contact with the rotating shaft 6 so as to increase the holding capacity of lubricating oil, thus increasing the amount of supply of lubricating oil from the inside of the bearing 5 when the rotating shaft 6 is rotated. By this, a proper oil film can be maintained at all times. Then the porosity of the bearing 5 is adjusted so that the oil absorptivity of pores in the area AR2 becomes larger by 20% or more than that in the area AR1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば車両用空調装置
のブロアファンの回転軸の支持に使用される軸受に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing used for supporting a rotary shaft of a blower fan of a vehicle air conditioner, for example.

【0002】[0002]

【従来の技術】車両用空調装置のインテークユニット内
に設けられたブロアファン駆動用のモータ(以下、ブロ
アモータ)の回転軸は、従来すべり軸受により回転自在
に支持されていた(例えば特開平2−223354号公
報、実開平63−105467号公報参照)。すべり軸
受には様々なタイプが存在するが、特に上記のブロアモ
ータ用の軸受には、焼結合金の気孔に潤滑油を含浸させ
たいわゆる焼結含油軸受が使用されている。この焼結含
油軸受の気孔率は軸受面の全周に渡って一定であった。
2. Description of the Related Art A rotary shaft of a blower fan driving motor (hereinafter referred to as a blower motor) provided in an intake unit of a vehicle air conditioner is conventionally rotatably supported by a slide bearing (for example, Japanese Unexamined Patent Publication No. Hei 2 (1999) -211). No. 223354, Japanese Utility Model Laid-Open No. 63-105467). Although there are various types of slide bearings, so-called sintered oil-impregnated bearings in which pores of a sintered alloy are impregnated with lubricating oil are used especially for the above-mentioned bearings for blower motors. The porosity of this sintered oil-impregnated bearing was constant over the entire circumference of the bearing surface.

【0003】[0003]

【発明が解決しようとする課題】すべり軸受は回転軸と
軸受面との間の油膜の圧力で荷重を支持するとともに、
油膜の潤滑作用で摩擦を減じるものである。従って、す
べり軸受の性能を確実に発揮させるには油膜の適切な管
理が必要不可欠である。ここで、上述した焼結含油軸受
は、回転軸が停止すると潤滑油が気孔内に吸収され、回
転軸の起動により気孔から潤滑油が吐き出される性質が
あり、潤滑油の移動量は気孔率が大きいほど増加する。
従って、気孔率を過度に大きくすると、回転軸の停止状
態で軸受面から軸受内部に潤滑油が多量に吸収され、回
転起動時に油膜切れの生じるおそれがある。気孔率を小
さくすれば軸受内へ潤滑油が吸収され難くなり、回転停
止時でも油膜が残り易い。しかしながら、気孔率が小さ
いと軸受の潤滑油の保持能力が低く、回転起動後に軸受
内部から軸受面に吐き出される油量が不足して十分な油
膜を形成できないおそれがある。
The slide bearing supports the load by the pressure of the oil film between the rotary shaft and the bearing surface, and
The lubrication action of the oil film reduces friction. Therefore, proper management of the oil film is indispensable to ensure the performance of the plain bearing. Here, the above-mentioned sintered oil-impregnated bearing has a property that when the rotating shaft stops, the lubricating oil is absorbed in the pores, and the lubricating oil is discharged from the pores when the rotating shaft is activated. The larger it is, the more it increases.
Therefore, if the porosity is excessively increased, a large amount of lubricating oil is absorbed from the bearing surface to the inside of the bearing when the rotating shaft is stopped, and the oil film may run out at the time of starting rotation. If the porosity is reduced, it becomes difficult for the lubricating oil to be absorbed into the bearing, and the oil film tends to remain even when the rotation is stopped. However, if the porosity is small, the bearing has a low lubricating oil holding capacity, and the amount of oil discharged from the inside of the bearing to the bearing surface after the rotation is started may be insufficient to form a sufficient oil film.

【0004】本発明の目的は、常に適切な油膜を形成で
きるファン用軸受を提供することにある。
An object of the present invention is to provide a fan bearing which can always form an appropriate oil film.

【0005】[0005]

【課題を解決するための手段】車両用空調装置のインテ
ークユニットのブロアファンのように送風方向が一定方
向に限定されたファンでは、回転軸に対する荷重の作用
方向が一定なため、回転軸と軸受面とが常に一定範囲で
油膜を介して接触し、その他の範囲では軸受面と回転軸
とが接触しない。本発明はこの点に着目し、軸受面の両
範囲で気孔の状態を変化させて上述した課題の解決を図
ったものである。すなわち、一実施例を示す図1および
図2に対応付けて説明すると、請求項1の発明は、ファ
ン2の回転軸6と対向する軸受面50上に潤滑油の保持
が可能な気孔が生成された焼結材料製のファン用軸受5
に適用され、軸受面50のうち回転軸6と接しない範囲
AR2の気孔の油吸収率が回転軸6と接する範囲AR1
の気孔の油吸収率よりも大きく設定されて上述した目的
を達成する。なお、油吸収率は、一定時間内に軸受5の
内部に吸収される油量の多少を適当な基準値と比較した
値である。請求項2の発明は請求項1のファン用軸受に
適用され、回転軸6と接しない範囲AR2の気孔の油吸
収率が、回転軸6と接する範囲AR1の油吸収率に対し
て20%以上大きく設定されている。図4(a)を参照
して説明すると、請求項3の発明は請求項1のファン用
軸受に適用され、軸受面50の回転軸6と接する範囲A
R1を構成する第1部材51と、軸受面50の回転軸6
と接しない範囲AR2を構成する第2部材52との結合
構造とした。また、図4(b)を参照して説明すると、
請求項4の発明は請求項1のファン用軸受に適用され、
軸受面50がその全周に渡って単一部材53上に設けら
れ、軸受面50の回転軸6と接する範囲AR1が、回転
軸6の接しない範囲AR2よりも油吸収率が小さくなる
ようにサイジング加工されている。図5を参照して説明
すると、請求項5の発明は請求項4のファン用軸受5に
適用され、組み付け時に軸受面50を周方向に位置決め
する位置決め手段13bを備える。
In a fan, such as a blower fan of an intake unit of a vehicle air conditioner, in which the blowing direction is limited to a fixed direction, the direction of the load acting on the rotating shaft is constant, so that the rotating shaft and the bearing are fixed. The surface always comes into contact with the surface through the oil film within a certain range, and the bearing surface and the rotary shaft do not come into contact with each other in other areas. The present invention focuses on this point and solves the above-mentioned problems by changing the state of the pores in both ranges of the bearing surface. That is, when it is described in association with FIG. 1 and FIG. 2 showing an embodiment, the invention of claim 1 creates pores capable of holding lubricating oil on the bearing surface 50 facing the rotating shaft 6 of the fan 2. Bearing 5 made of sintered material
And the oil absorption rate of the pores in the range AR2 of the bearing surface 50 which is not in contact with the rotary shaft 6 is in the range AR1 in which it is in contact with the rotary shaft 6.
Is set to be larger than the oil absorption rate of the pores to achieve the above-mentioned object. The oil absorption rate is a value obtained by comparing the amount of oil absorbed in the bearing 5 within a certain time with an appropriate reference value. The invention of claim 2 is applied to the fan bearing of claim 1, and the oil absorption rate of the pores in the range AR2 not in contact with the rotary shaft 6 is 20% or more with respect to the oil absorption rate in the range AR1 in contact with the rotary shaft 6. It is set large. Explaining with reference to FIG. 4A, the invention of claim 3 is applied to the fan bearing of claim 1, and the range A in which the bearing surface 50 is in contact with the rotating shaft 6 is described.
The first member 51 forming the R1 and the rotating shaft 6 of the bearing surface 50
The second member 52 forming the area AR2 that is not in contact with the second member 52 is connected. Further, with reference to FIG. 4B,
The invention of claim 4 is applied to the bearing for a fan of claim 1,
The bearing surface 50 is provided on the single member 53 over the entire circumference so that the range AR1 of the bearing surface 50 in contact with the rotary shaft 6 has a smaller oil absorption rate than the range AR2 of the rotary shaft 6 not in contact. It is sized. Referring to FIG. 5, the invention of claim 5 is applied to the fan bearing 5 of claim 4, and includes a positioning means 13b for positioning the bearing surface 50 in the circumferential direction during assembly.

【0006】[0006]

【作用】請求項1の発明では、軸受面50の回転軸6と
接する範囲AR1では油吸収率を小さくして軸受5内部
への潤滑油の吸収を防止し、回転軸6と軸受面50との
間に油膜が残るようにする。軸受面50の回転軸6と接
しない範囲AR2では油吸収率を高くして潤滑油の保持
能力を増大させ、回転軸6が回転するときの軸受5内部
から潤滑油の補給量を増加させる。以上により常に適切
な油膜を確保できる。請求項2の発明では、軸受面50
の回転軸6と接する範囲AR1と、接しない範囲AR2
とで油吸収率を変化させた効果を確実に生じさせること
ができる。請求項3の発明では、油吸収率の異なる第1
部材51と第2部材52とを別々に製造できる。請求項
4の発明では、軸受5の部品数を増加させることなく軸
受面50の油吸収率を変化させることができる。請求項
5の発明では、軸受5を組み付ける際、サイジング加工
された領域を回転軸6と接する範囲に正しく位置決めで
きる。
According to the first aspect of the invention, the oil absorption rate is reduced in the range AR1 of the bearing surface 50 in contact with the rotating shaft 6 to prevent the lubricating oil from being absorbed inside the bearing 5, and the rotating shaft 6 and the bearing surface 50 are Leave an oil film between them. In the range AR2 where the bearing surface 50 is not in contact with the rotating shaft 6, the oil absorption rate is increased to increase the lubricating oil holding capacity, and the amount of lubricating oil supplied from the inside of the bearing 5 when the rotating shaft 6 rotates is increased. As described above, an appropriate oil film can always be secured. In the invention of claim 2, the bearing surface 50
AR1 which is in contact with the rotation axis 6 and AR2 which is not in contact
With, the effect of changing the oil absorption rate can be surely produced. According to the invention of claim 3, the first oil absorption ratio is different.
The member 51 and the second member 52 can be manufactured separately. In the invention of claim 4, the oil absorption rate of the bearing surface 50 can be changed without increasing the number of parts of the bearing 5. According to the fifth aspect of the present invention, when the bearing 5 is assembled, the sized region can be correctly positioned within the range in contact with the rotary shaft 6.

【0007】なお、本発明の構成を説明する上記課題を
解決するための手段と作用の項では、本発明を分かり易
くするために実施例の図を用いたが、これにより本発明
が実施例に限定されるものではない。
Incidentally, in the section of means and action for solving the above problems for explaining the constitution of the present invention, the drawings of the embodiments are used for making the present invention easy to understand. It is not limited to.

【0008】[0008]

【実施例】図1〜図4を参照して本発明を車両用空調装
置のブロアファンの回転軸の軸受に適用した実施例を説
明する。図2は実施例に係る車両用空調装置のインテー
クユニットの断面を示し、1はファンスクロール、2は
ブロアファン、3はブロアモータである。ブロアモータ
3は、ビス4aによりファンスクロール1に固定される
略円筒形状のケーシング4と、ケーシング4の両端に配
置された軸受5と、軸受5により回転自在に支持され一
端がブロアファン2と連結された回転軸6とを備えてい
る。軸受5の詳細は後述する
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a bearing of a rotary shaft of a blower fan of a vehicle air conditioner will be described with reference to FIGS. FIG. 2 shows a cross section of an intake unit of a vehicle air conditioner according to an embodiment, where 1 is a fan scroll, 2 is a blower fan, and 3 is a blower motor. The blower motor 3 has a substantially cylindrical casing 4 fixed to the fan scroll 1 by screws 4 a, bearings 5 arranged at both ends of the casing 4, and rotatably supported by the bearings 5, one end of which is connected to the blower fan 2. And a rotating shaft 6. The details of the bearing 5 will be described later.

【0009】ケーシング4の内周にはマグネット7が周
方向に適宜間隔を開けて配置され、マグネット7と対向
する回転軸6上にはアーマチャ8が設けられている。不
図示の電源からブラシ9およびコンミュテータ10を介
してアーマチャ8の不図示のコイルに給電が行なわれる
と、回転軸6がマグネット7の磁界を横切るように回転
する。これにより、図2に矢印で示すようにファンスク
ロール1の開口1aから空気が取り込まれ、接続口1b
(図3)から後続する空調ユニット(不図示)に送風が
行なわれる。
Magnets 7 are arranged on the inner circumference of the casing 4 at appropriate intervals in the circumferential direction, and an armature 8 is provided on the rotary shaft 6 facing the magnet 7. When power is supplied to a coil (not shown) of the armature 8 from a power source (not shown) via the brush 9 and the commutator 10, the rotating shaft 6 rotates so as to cross the magnetic field of the magnet 7. As a result, air is taken in through the opening 1a of the fan scroll 1 as shown by the arrow in FIG.
The air is blown from (FIG. 3) to the subsequent air conditioning unit (not shown).

【0010】軸受5は焼結合金の気孔内に潤滑油を含浸
させたものである。軸受5の外周には潤滑油が適当量含
浸されたフエルト11が配置され、このフエルト11の
外側に軸受カバー12が取り付けられて軸受5およびフ
エルト11が所定位置に保持されている。ここで、図3
に示したように、本実施例ではブロアファン2からファ
ンスクロール1の接続口1bへ向けて常に一定の方向へ
送風が行なわれるので、ブロアファン2に作用する送風
方向と逆向きの荷重(反力)Pの方向も一定である。従
って、図1に示すように回転軸6の軸心Csも軸受5の
軸心Cmに対して常に同一方向へ偏心し、回転軸6と軸
受面50とはほぼ一定の接触点CPで接触する。なお、
接触点CPの位置は、回転軸6の回転数が高いほど軸心
Csに作用する荷重Pの作用線の延長上よりも回転方向
(矢印R方向)にずれる。このように接触点CPの位置
は軸受5の剛性や回転軸6の回転数、ファンスクロール
1の形状に応じて種々変化するので、実際の接触点は実
験やシュミレーション等で確認することが望ましい。
The bearing 5 is obtained by impregnating the pores of a sintered alloy with lubricating oil. A felt 11 impregnated with an appropriate amount of lubricating oil is arranged on the outer periphery of the bearing 5, and a bearing cover 12 is attached to the outside of the felt 11 to hold the bearing 5 and the felt 11 at predetermined positions. Here, FIG.
As described above, in this embodiment, since the blower fan 2 always blows air in a fixed direction from the blower fan 2 toward the connection port 1b of the fan scroll 1, the load (opposite to the blower direction acting on the blower fan 2) The direction of force P is also constant. Therefore, as shown in FIG. 1, the shaft center Cs of the rotary shaft 6 is always eccentric in the same direction with respect to the shaft center Cm of the bearing 5, and the rotary shaft 6 and the bearing surface 50 contact each other at a substantially constant contact point CP. . In addition,
The position of the contact point CP is displaced in the rotational direction (direction of arrow R) from the extension of the line of action of the load P acting on the shaft center Cs as the rotational speed of the rotary shaft 6 is higher. As described above, the position of the contact point CP changes variously depending on the rigidity of the bearing 5, the rotation speed of the rotary shaft 6, and the shape of the fan scroll 1. Therefore, it is desirable to confirm the actual contact point by an experiment or a simulation.

【0011】上記のように、軸受5と回転軸6との接触
点CPがほぼ一定なので、接触点CPから左右に90゜
ずつ合計180゜の範囲AR1を軸受面50が回転軸6
と接する範囲に、その反対側の範囲AR2を回転軸6と
接しない範囲として想定した。そして、範囲AR1の気
孔の油吸収率よりも範囲AR2の気孔の油吸収率が20
%以上大きくなるよう軸受5の気孔率を調整した。な
お、範囲AR1とAR2は、必ずしも180゜ずつ分け
る必要はない。油吸収率の差を20%以上としたのは、
油吸収率の変化による改善効果を確実に得るためであ
る。20%未満であっても油吸収率を軸受面50の全周
に渡って一定とする従来例に対して油膜の改善が期待で
きる場合もある。なお、図1では気孔を実際よりも誇張
した小丸で示しており、実際の気孔は図示よりも遥かに
微小である。
As described above, since the contact point CP between the bearing 5 and the rotary shaft 6 is substantially constant, the bearing surface 50 covers the rotary shaft 6 within the range AR1 of 90 ° to the left and right from the contact point CP in a total of 180 °.
The range AR2 on the opposite side to the range in contact with is assumed to be the range not in contact with the rotation axis 6. The oil absorption rate of the pores in the range AR2 is 20 than the oil absorption rate of the pores in the range AR1.
The porosity of the bearing 5 was adjusted so as to be larger than 0.1%. The ranges AR1 and AR2 do not necessarily have to be separated by 180 °. The reason why the difference in oil absorption rate is 20% or more is
This is because the improvement effect due to the change of the oil absorption rate is surely obtained. In some cases, even if it is less than 20%, improvement of the oil film can be expected as compared with the conventional example in which the oil absorption rate is constant over the entire circumference of the bearing surface 50. It should be noted that in FIG. 1, the pores are shown by small circles exaggerated from the actual size, and the actual pores are much smaller than those shown in the drawing.

【0012】以上の構成によれば、軸受面50の回転軸
6と接する範囲AR1では軸受5内部への潤滑油の吸収
が抑えられ、回転軸6と接しない範囲AR2では軸受5
内部から軸受面50と回転軸6との隙間への潤滑油の排
出が促進される。従って、軸受面50と回転軸6との間
に常に適切な油膜を介在させて軸受5の性能を高く維持
できる。
According to the above structure, the absorption of the lubricating oil into the bearing 5 is suppressed in the area AR1 of the bearing surface 50 which is in contact with the rotating shaft 6, and the bearing 5 is in the area AR2 which is not in contact with the rotating shaft 6.
The discharge of the lubricating oil from the inside to the gap between the bearing surface 50 and the rotating shaft 6 is promoted. Therefore, the performance of the bearing 5 can be maintained high by always interposing an appropriate oil film between the bearing surface 50 and the rotary shaft 6.

【0013】ここで、上述した油吸収率を変化させる構
造としては、例えば図4に示す構造を採用するとよい。
図4(a)は軸受面50の回転軸6と接する範囲AR1
を構成する半円筒状の第1部材51と、軸受面50の回
転軸6と接しない範囲AR2を構成する半円筒状の第2
部材52とをそれぞれ別工程で製造し、その後、両部材
51,52を突き合せて軸受5を構成した例である。一
方、図4(b)は気孔率を全周に渡って範囲AR2に適
合させた単一の焼結部材53を製造し、その部材53の
内周面の範囲AR1に相当する部分X(図の斜線領域)
にサイジング加工を施して範囲AR1の気孔の油吸収率
を低下させた例である。
Here, as a structure for changing the oil absorption rate described above, for example, the structure shown in FIG. 4 may be adopted.
FIG. 4A shows a range AR1 of the bearing surface 50 in contact with the rotating shaft 6.
And a semi-cylindrical second member 51 that constitutes a range AR2 that does not contact the rotation axis 6 of the bearing surface 50.
This is an example in which the member 52 is manufactured in separate steps, and then the two members 51 and 52 are abutted against each other to form the bearing 5. On the other hand, in FIG. 4B, a single sintered member 53 whose porosity is adapted to the range AR2 over the entire circumference is manufactured, and a portion X (FIG. 4) corresponding to the range AR1 on the inner peripheral surface of the member 53 is manufactured. Hatched area)
This is an example in which the oil absorption rate of the pores in the range AR1 is reduced by performing sizing processing on the.

【0014】図4(b)の例ではサイジング加工部分X
が組み付け時に確認できないと、軸受5を周方向に誤っ
た向きで組み付け、サイジング加工部分Xが回転軸6と
接しない範囲AR2にずれるおそれがある。そこで、図
4(b)の場合は、軸受5を周方向に位置決めする手段
を設けるとよい。その一例を図5に示す。図5(a)は
図2の軸受カバー12の平面図、図5(b)は軸受面5
0の近傍の拡大図である。この例は、軸受カバー12お
よび軸受5の対向面の一箇所に凸部13aおよび凹部1
3bをそれぞれ設け、これら凸部13aと凹部13bと
が嵌合した位置で軸受カバー12とモータケーシング4
が密着し、かつ軸受5が周方向に正しい向きで取り付け
られるようにしたものである。なお、軸受5の周方向の
取り付け向きを示すマークや位置合わせ指標を軸受5に
設けるだけでもよい。図5に示すように軸受カバー12
をビス12aでケーシング4に固定する場合、軸受カバ
ー12も周方向に一定の向きで取り付けないと、凸部1
3aと凹部13bを合わせても軸受5が正しい向きで装
着されない。このような場合には、例えばケーシング4
の凸部14aと軸受カバー12の凹部14bとで軸受カ
バー12の誤装着も阻止する。ケーシング4とファンス
クロール1との取り付け部分についても同様である。
In the example shown in FIG. 4B, the sizing portion X
If it cannot be confirmed at the time of assembly, the bearing 5 may be assembled in the circumferential direction in the wrong direction, and the sizing portion X may shift to the range AR2 where it does not contact the rotating shaft 6. Therefore, in the case of FIG. 4B, it is preferable to provide a means for positioning the bearing 5 in the circumferential direction. An example thereof is shown in FIG. FIG. 5A is a plan view of the bearing cover 12 of FIG. 2, and FIG. 5B is a bearing surface 5.
It is an enlarged view of the vicinity of 0. In this example, the convex portion 13a and the concave portion 1 are provided at one place of the facing surfaces of the bearing cover 12 and the bearing 5.
3b are respectively provided, and the bearing cover 12 and the motor casing 4 are provided at the positions where the convex portions 13a and the concave portions 13b are fitted to each other.
Are in close contact with each other, and the bearing 5 can be mounted in the correct direction in the circumferential direction. Note that the bearing 5 may be provided with only a mark indicating the mounting direction of the bearing 5 in the circumferential direction or an alignment index. As shown in FIG. 5, the bearing cover 12
When fixing the bearing cover 12 to the casing 4 with the screw 12a, the bearing cover 12 must be mounted in a constant circumferential direction.
The bearing 5 is not mounted in the correct orientation even if the concave portion 13b and the concave portion 3b are aligned. In such a case, for example, the casing 4
The protrusion 14a and the recess 14b of the bearing cover 12 prevent the bearing cover 12 from being erroneously mounted. The same applies to the mounting portion of the casing 4 and the fan scroll 1.

【0015】なお、本発明はブロアモータの軸受に限ら
ず、各種のファンの回転軸の支持に適用可能である。
The present invention is not limited to bearings for blower motors, but can be applied to support the rotating shafts of various fans.

【0016】[0016]

【発明の効果】以上説明したように、本発明では、軸受
面の回転軸と接する範囲よりも接しない範囲の油吸収率
を大きくしたので、軸受面と回転軸との間に常に適切な
油膜を形成して軸受の性能を高く維持できる。特に請求
項2の発明では、回転軸と接しない範囲の油吸収率を、
回転軸と接する範囲よりも20%以上大きくしたので、
油吸収率を変化させたことによる効果を確実に発揮させ
ることができる。また、請求項3の発明では、軸受を油
吸収率の異なる第1部材と第2部材とに分けて製造でき
るので、本発明を容易に実施できる。請求項4の発明で
は軸受の部品数を増加させることなく、焼結材料の製造
で常用されるサイジング加工により油吸収率を簡単に変
化させることができる。請求項5の発明では、単一部材
のサイジング加工領域を回転軸と接する範囲に正しく位
置決めして、軸受の所期の性能を確実に発揮させること
ができる。
As described above, in the present invention, the oil absorption rate in the range where the bearing surface is not in contact with the rotary shaft is made larger than that in the range where it is in contact with the rotary shaft, so that an appropriate oil film is always provided between the bearing surface and the rotary shaft. Can be formed to maintain high bearing performance. Particularly, in the invention of claim 2, the oil absorption rate in a range not in contact with the rotation axis is
Since it is larger than the range in contact with the rotating shaft by 20% or more,
The effect of changing the oil absorption rate can be surely exhibited. Further, in the invention of claim 3, the bearing can be manufactured by being divided into the first member and the second member having different oil absorption rates, so that the present invention can be easily implemented. According to the invention of claim 4, the oil absorption rate can be easily changed by the sizing process which is commonly used in the production of sintered materials, without increasing the number of bearing parts. According to the fifth aspect of the present invention, the sizing region of the single member can be properly positioned within the range in contact with the rotary shaft, and the desired performance of the bearing can be reliably exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る軸受の軸直角方向の断面
図。
FIG. 1 is a sectional view of a bearing according to an embodiment of the present invention in a direction perpendicular to an axis.

【図2】本発明の実施例の軸受が使用された車両用空調
装置のインテークユニットの断面図。
FIG. 2 is a cross-sectional view of an intake unit of a vehicle air conditioner in which a bearing according to an embodiment of the present invention is used.

【図3】図2に示すインテークユニットの矢印III方向
からの平面図。
FIG. 3 is a plan view of the intake unit shown in FIG. 2 taken in the direction of arrow III.

【図4】軸受の油吸収率を変化させるための構造を例示
する図。
FIG. 4 is a diagram illustrating a structure for changing an oil absorption rate of a bearing.

【図5】軸受を周方向に位置決めする手段を設けた例を
示す図。
FIG. 5 is a view showing an example in which means for positioning the bearing in the circumferential direction is provided.

【符号の説明】[Explanation of symbols]

2 ブロアファン 3 ブロアモータ 5 軸受 6 回転軸 11 フエルト 12 軸受カバー 13a 位置決め用の凸部 13b 位置決め用の凹部 50 軸受面 51 第1部材 52 第2部材 AR1 回転軸と接する範囲 AR2 回転軸と接しない範囲 Cm 軸受の軸心 Cs 回転軸の軸心 CP 回転軸と軸受面の接触点 2 blower fan 3 blower motor 5 bearing 6 rotating shaft 11 felt 12 bearing cover 13a positioning protrusion 13b positioning recess 50 bearing surface 51 first member 52 second member AR1 range in contact with rotating shaft AR2 range not in contact with rotating shaft Cm Bearing shaft center Cs Rotating shaft shaft center CP Rotating shaft and bearing surface contact point

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ファンの回転軸と対向する軸受面上に、
潤滑油の保持が可能な気孔が生成された焼結材料製のフ
ァン用軸受において、 前記軸受面のうち、前記回転軸と接しない範囲の前記気
孔の油吸収率が、前記回転軸と接する範囲の前記気孔の
油吸収率よりも大きく設定されていることを特徴とする
ファン用軸受。
1. A bearing surface facing a rotation axis of a fan,
In a fan bearing made of a sintered material, in which pores capable of holding lubricating oil are generated, in the bearing surface, the oil absorption rate of the pores in a range not in contact with the rotary shaft is in a range in contact with the rotary shaft. The fan bearing is set to be larger than the oil absorption rate of the pores.
【請求項2】 前記回転軸と接しない範囲の前記気孔の
油吸収率が、前記回転軸と接する範囲の油吸収率に対し
て20%以上大きく設定されていることを特徴とする請
求項1記載のファン用軸受。
2. The oil absorption rate of the pores in the range not in contact with the rotation axis is set to be 20% or more higher than the oil absorption rate in the range in contact with the rotation axis. Bearing for fan described.
【請求項3】 前記軸受面の前記回転軸と接する範囲を
構成する第1部材と、前記軸受面の前記回転軸と接しな
い範囲を構成する第2部材との結合構造であることを特
徴とする請求項1記載のファン用軸受。
3. A combined structure of a first member forming a range of the bearing surface in contact with the rotation axis and a second member forming a range of the bearing surface not in contact with the rotation axis. The bearing for a fan according to claim 1.
【請求項4】 前記軸受面がその全周に渡って単一部材
上に設けられ、前記軸受面の前記回転軸と接する範囲
が、前記回転軸の接しない範囲よりも油吸収率が小さく
なるようにサイジング加工されていることを特徴とする
請求項1記載のファン用軸受。
4. The bearing surface is provided on a single member over the entire circumference thereof, and the range of contact of the bearing surface with the rotary shaft has a smaller oil absorption rate than the range of non-contact of the rotary shaft. The fan bearing according to claim 1, wherein the bearing is sized as described above.
【請求項5】 組み付け時に前記軸受面を周方向に位置
決めする位置決め手段を備えることを特徴とする請求項
4記載のファン用軸受。
5. The fan bearing according to claim 4, further comprising positioning means for positioning the bearing surface in the circumferential direction during assembly.
JP6329073A 1994-12-28 1994-12-28 Bearing for fan Pending JPH08177859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6329073A JPH08177859A (en) 1994-12-28 1994-12-28 Bearing for fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6329073A JPH08177859A (en) 1994-12-28 1994-12-28 Bearing for fan

Publications (1)

Publication Number Publication Date
JPH08177859A true JPH08177859A (en) 1996-07-12

Family

ID=18217323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6329073A Pending JPH08177859A (en) 1994-12-28 1994-12-28 Bearing for fan

Country Status (1)

Country Link
JP (1) JPH08177859A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122142A (en) * 2000-08-09 2002-04-26 Mitsubishi Materials Corp Oil-impregnated sintered bearing, manufacturing method thereof, and motor
WO2002040880A1 (en) * 2000-11-14 2002-05-23 Mitsubishi Materials Corporation Sintered oil-retaining bearing and production method therefor
WO2003071145A1 (en) * 2002-02-20 2003-08-28 Nsk Ltd. Rolling bearing for fan motor
JP2018141558A (en) * 2018-03-29 2018-09-13 Ntn株式会社 Sintered bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122142A (en) * 2000-08-09 2002-04-26 Mitsubishi Materials Corp Oil-impregnated sintered bearing, manufacturing method thereof, and motor
JP4522619B2 (en) * 2000-08-09 2010-08-11 株式会社ダイヤメット Sintered oil-impregnated bearing, manufacturing method thereof and motor
WO2002040880A1 (en) * 2000-11-14 2002-05-23 Mitsubishi Materials Corporation Sintered oil-retaining bearing and production method therefor
WO2003071145A1 (en) * 2002-02-20 2003-08-28 Nsk Ltd. Rolling bearing for fan motor
JP2018141558A (en) * 2018-03-29 2018-09-13 Ntn株式会社 Sintered bearing

Similar Documents

Publication Publication Date Title
EP2172655B1 (en) Dual reversal-rotating type axial blower
US8297921B2 (en) Blower system
KR20180018178A (en) Air foil bearing
CN102025212B (en) Direct current brushless motor for heating ventilating and air conditioning system
JPH08177859A (en) Bearing for fan
US6012849A (en) Bearing structure of rotating machine
US6710493B2 (en) Dynamo-electric machine having tapered magnets secured to yoke
US7977836B2 (en) Single bearing motor with magnetic element
JP2005160196A (en) Brushless motor
JPH04231699A (en) High speed rotary type vacuum pump
JP2000060063A (en) Fan motor
JP2000081028A (en) Dynamic pressure bearing device for fan motor
KR100368842B1 (en) Oilless bearing ass'y
JP4362164B2 (en) Axial fan
JPH08177860A (en) Bearing device
JP2917414B2 (en) Axial fan motor
JP2006238554A (en) New structure of motor
JPS60252198A (en) Fan motor
JP2000046057A (en) Dynamic pressure bearing device for fan motor
JP2002112494A (en) Motor
JP3346874B2 (en) Electric blower and method of manufacturing the same
JP2000308299A (en) Motor
US5848844A (en) Fluid bearing
JP2000232753A (en) Motor
JPH0759958B2 (en) Axial blower blades