JPH08176791A - Method for carburizing steel - Google Patents

Method for carburizing steel

Info

Publication number
JPH08176791A
JPH08176791A JP33912094A JP33912094A JPH08176791A JP H08176791 A JPH08176791 A JP H08176791A JP 33912094 A JP33912094 A JP 33912094A JP 33912094 A JP33912094 A JP 33912094A JP H08176791 A JPH08176791 A JP H08176791A
Authority
JP
Japan
Prior art keywords
carburizing
steel
treatment
ferrite
carburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33912094A
Other languages
Japanese (ja)
Inventor
Kenji Aihara
賢治 相原
Yasutaka Okada
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP33912094A priority Critical patent/JPH08176791A/en
Publication of JPH08176791A publication Critical patent/JPH08176791A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE: To establish a method for carburizing steel capable of obtaining a high-quality carburized material free from the occurrence of abnormally carburized layers, abnormally grown and coarsened austenite grains, treatment strains, etc., by a short-time treatment on an industrial scale with a good workability. CONSTITUTION: The steel to be treated is tempered prior to the carburization treatment to form the structure mainly composed of one or >=2 kinds of 'martensite structure', 'bainite structure', 'spheroidal carbide structure' or 'ferrite structure finely dispersed with carbonitride'. The steel is thereafter carburized at a temp. below the Ae3 point (more preferably right under the Ae1 point) by a plasma carburization method. The simultaneous execution of nitriding and carburizing is possible as well by simultaneously penetrating and diffusion nitrogen at this plasma carburization period. The steel may be subjected to a nitriding treatment, reheating hardening and tempering treatment, high-frequency hardening, etc., after the plasma carburization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、品質の良好な浸炭材
を短時間処理にて作業性良く得ることができる鋼の高濃
度浸炭方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-concentration carburizing method for steel, which allows a carburizing material of good quality to be obtained in a short time with good workability.

【0002】[0002]

【従来技術とその課題】現在、浸炭による表面硬化法は
機械構造用鋼の性能(各種の疲労強度や耐摩耗性等)と
信頼性を向上させる手段として広く用いられている技術
であるが、一般的に実施されている浸炭手段は殆どが
“ガス浸炭”であり、特殊な場合にはまゝ塩浴が用いら
れることもある。
2. Description of the Related Art At present, the surface hardening method by carburization is widely used as a means for improving the performance (various fatigue strength, wear resistance, etc.) and reliability of machine structural steel. Most of the commonly used carburizing means are “gas carburizing”, and in special cases, a salt bath may be used.

【0003】何れにしても、浸炭はCO又はCNの鋼表
面における還元反応で発生する炭素原子が鋼中へ浸透し
て行くメカニズムによるものであるため、浸炭反応には
必然的に還元反応が伴う。つまり、鋼によるCO又はC
Nの還元、言い換えれば鋼が酸化されることによって浸
炭が進行するわけである。従って、鋼の浸炭処理では不
可避的に鋼の酸化が起こり、この酸化が鋼表面の粒界酸
化とそれに伴う粒界近傍の不完全焼入組織、即ち“浸炭
異常層”をもたらす。そして、これらの浸炭異常層は浸
炭層の特性劣化を招くため、これを防止する手法が鋼種
成分と浸炭プロセスの両面から開発されてきた。なお、
浸炭プロセスに係わる新しい手法の代表的なものに、還
元反応を伴わないで直接的に炭素原子を浸透させること
のできる“真空浸炭法”や“プラズマ浸炭法(例えば特
開平2-145759号公報参照)”があるが、これらの方法は
浸炭異常層を全く発生させないことから俄然注目を浴び
つつある。
In any case, since carburization is based on a mechanism in which carbon atoms generated by the reduction reaction of CO or CN on the steel surface permeate into the steel, the carburization reaction is necessarily accompanied by the reduction reaction. . That is, CO or C by steel
Carburization proceeds by the reduction of N, in other words, the oxidation of steel. Therefore, the carburizing treatment of steel inevitably causes oxidation of the steel, and this oxidation causes the grain boundary oxidation on the steel surface and the accompanying incomplete quenching structure near the grain boundaries, that is, an "abnormal carburizing layer". Since these abnormal carburizing layers cause deterioration of the characteristics of the carburizing layer, methods for preventing this have been developed from both aspects of steel type components and carburizing process. In addition,
Typical of new methods related to carburizing process are "vacuum carburizing method" and "plasma carburizing method" (see Japanese Patent Laid-Open No. 2-145759, which can directly infiltrate carbon atoms without reduction reaction). ) ”, But these methods are suddenly attracting attention because they do not generate an abnormal carburizing layer.

【0004】一方、現用の浸炭処理(ガス浸炭等)では
「920〜930℃で3〜5時間」という条件が一般的
に採用されているが、近年の厳しい合理化要請から、こ
の処理時間の短縮が切実な問題として検討されている。
もっとも、従来の浸炭プロセスは、前述したように“還
元反応により炭素原子を発生させてそれを熱拡散にて鋼
材表面から内部へと拡散浸透させる機構”によるため、
浸炭処理温度を上げることで処理時間の大幅な短縮が可
能である。しかしながら、浸炭処理温度の上昇は“オ−
ステナイト粒の異常成長粗大化",“浸炭炉の寿命低下”
あるいは“浸炭処理時の歪”といった新たな問題を呼び
込むことからその実施は難しく、高々950℃程度にま
で20〜30℃程の温度上昇を達成するのに躍起となっ
ているのが現状である。
On the other hand, in the current carburizing process (gas carburizing, etc.), the condition of "3 to 5 hours at 920 to 930 ° C" is generally adopted. Is being considered as a serious problem.
However, since the conventional carburizing process is based on "a mechanism for generating carbon atoms by a reduction reaction and diffusing and permeating the carbon atoms from the surface of the steel material to the inside by thermal diffusion" as described above,
By increasing the carburizing temperature, the processing time can be greatly shortened. However, the increase in carburizing temperature is
Abnormal growth and coarsening of Stenite grains "," Reducing the life of carburizing furnace "
Or, it is difficult to carry out because it introduces a new problem such as “distortion during carburization”, and it is the current situation that it is eager to achieve a temperature rise of 20 to 30 ° C. up to about 950 ° C. at most. .

【0005】つまり、処理温度が920〜930℃とい
う現状の浸炭処理であっても、鋼材の材質や処理対象部
品の前履歴によっては、浸炭処理中にオ−ステナイト結
晶粒が異常に成長して粗大化し部品の特性を著しく劣化
させるとの問題が完全に克服されていないのが実情であ
る。従って、上述した「浸炭時間の短縮のために浸炭温
度上げること」はこの異常粒成長を著しく促進させ、そ
のため特に950℃以上の温度域での正常な浸炭は絶望
的とさえ言われている。また、950℃程度にまで浸炭
温度を上げた場合には炉の寿命低下が著しくなり、設備
費の過大負担を招くことは如何ともしがたい。
That is, even in the present carburizing treatment at a treating temperature of 920 to 930 ° C., austenite crystal grains grow abnormally during the carburizing treatment depending on the material of the steel material and the previous history of the parts to be treated. The fact is that the problem of coarsening and significantly deteriorating the characteristics of parts has not been completely overcome. Therefore, the above-mentioned "increasing the carburizing temperature for shortening the carburizing time" remarkably promotes this abnormal grain growth, so that normal carburizing, particularly in a temperature range of 950 ° C or higher, is even desperate. Moreover, when the carburizing temperature is raised to about 950 ° C., the life of the furnace is remarkably shortened, and it is difficult to cause an excessive burden of equipment costs.

【0006】更に、浸炭処理を終えた鋼材はそのまま焼
入れ処理されるのが普通であるが、浸炭処理温度を93
0℃を超える程に高くするとその後の焼入れ時の熱歪,
変形歪が大きく、部品の寸法精度に致命的悪影響を生じ
る。勿論、この熱処理歪による寸法の狂いを最小にする
ため熱処理技術面から多大の労苦が払われてきている
が、熱処理温度が下がるとこの歪の問題は難なく大幅に
改善されるため、最近ではむしろ熱処理温度を下げて品
質向上を目指す方向に変わってきている。
Further, it is usual that the steel material after the carburizing treatment is quenched as it is, but the carburizing temperature is 93
If the temperature is raised to over 0 ° C, the thermal strain during quenching after that,
Deformation distortion is large, which has a fatal adverse effect on the dimensional accuracy of parts. Of course, much effort has been paid in terms of heat treatment technology in order to minimize the dimensional deviation due to this heat treatment strain, but since the problem of this strain can be greatly improved without difficulty when the heat treatment temperature decreases, recently The trend is toward lowering the heat treatment temperature and improving quality.

【0007】しかるに、ガス浸炭法では、処理温度を7
50℃近くにまで低下させると鋼表面でのガスの分解に
よるCの発生とそのCの浸透拡散のバランスが崩れ、炭
素原子の鋼中への浸透拡散が遅延することとなり、Cが
すすとして炉内に残るようになる。このすすは、炉中へ
空気が混入した時に爆発的な燃焼を起こすため、炉の浸
炭部で爆発を生じる危険性につながる。その上、このよ
うな低温では、ガスの分解やCの浸透拡散が著しく遅延
するため、浸炭処理時間が著しく増大するという問題も
あり、低温ガス浸炭には未だ光明を見出せないでいるの
が現状である。
However, in the gas carburizing method, the treatment temperature is 7
If the temperature is lowered to around 50 ° C, the balance between the generation of C due to the decomposition of gas on the steel surface and the permeation and diffusion of C will be disrupted, and the permeation and diffusion of carbon atoms into the steel will be delayed. It will remain inside. This soot causes an explosive combustion when air is mixed into the furnace, leading to a risk of causing an explosion in the carburized portion of the furnace. Moreover, at such a low temperature, the decomposition of gas and the permeation and diffusion of C are significantly delayed, which causes a problem that the time for carburizing treatment is significantly increased. Is.

【0008】真空浸炭法の場合も同様で、浸炭異常層を
発生しない点では極めて優れた技術であると言えるもの
の、鋼材表面で原料ガスを熱分解させ炭素原子(発生機
の炭素原子)を発生させるためには高温が必要であっ
て、900℃以下ではガス分解反応が追いつかないので
浸炭処理は不可能である。また、プラズマ浸炭法にして
も、これまで知られている技術では、前記特開平2−1
45759号公報の実施例の欄に記載されているように
実際には900℃程度以上の高温で処理を行わないと所
望の効果を得ることは困難であった。
The same applies to the case of the vacuum carburizing method, and although it can be said that this is an extremely excellent technique in that an abnormal carburizing layer is not generated, the raw material gas is thermally decomposed on the surface of the steel material to generate carbon atoms (carbon atoms of the generator). A high temperature is required for this purpose, and at 900 ° C. or lower, the gas decomposition reaction cannot catch up, so carburizing is impossible. Further, even in the case of the plasma carburizing method, in the technology known so far, the above-mentioned Japanese Patent Laid-Open No. 2-1
As described in the Example column of 45759, it was difficult to obtain a desired effect unless the treatment was actually performed at a high temperature of about 900 ° C. or higher.

【0009】以上のように、従来の浸炭法では、品質面
からすればできるだけ処理温度を下げるべきであるが、
処理時間の面からは温度を上げるのが望ましく、更に設
備面からも処理温度の制約があって、技術的な限界を打
破するのが困難であると考えられた。
As described above, in the conventional carburizing method, the treatment temperature should be lowered as much as possible in terms of quality.
It was desirable to raise the temperature from the viewpoint of processing time, and it was considered difficult to break the technical limit due to restrictions on the processing temperature from the viewpoint of equipment.

【0010】このような技術的閉塞状態の中にあって、
最近、低温浸炭法として鋼のフェライト域で浸炭する技
術が提案された(特開昭3−188256号)。この方
法は、従来は不可能と認識されていた鋼のフェライト域
において浸炭を行おうというもので、「温度の低いフェ
ライト域でも浸炭が進行する」という新規究明事項を基
にした手段である。即ち、「Cの拡散は高温のオ−ステ
ナイト相中よりも低温のフェライト相中の方が格段に速
く、 しかも浸炭深さはCの拡散に大きく依存する」との
究明事項が上記提案技術の骨子となっている。
In such a technically closed state,
Recently, a technique for carburizing in the ferrite region of steel has been proposed as a low temperature carburizing method (Japanese Patent Laid-Open No. 3-188256). This method intends to perform carburization in the ferrite region of steel, which has been recognized as impossible in the past, and is a means based on the new investigation that "carburization proceeds even in the ferrite region where the temperature is low". That is, "the diffusion of C is remarkably faster in the low temperature ferrite phase than in the high temperature austenite phase, and the carburizing depth greatly depends on the diffusion of C". It is the essence.

【0011】しかし、ガス浸炭法を基本とした上記提案
になる低温浸炭法は、実験室的設備での処理においては
良好な結果が得られるものの、工業規模で実施しようと
した場合には、鋼中へ浸透させる炭素原子の十分かつ大
規模な供給手段が未確立であることや、A1 点未満のフ
ェライト域温度で処理できる大規模な設備技術が未確立
である等のため、十分に満足できる成果を安定して得る
ことが難しいとの問題を有していた。
However, although the above-mentioned low temperature carburizing method based on the gas carburizing method gives good results in the treatment in the laboratory equipment, when it is carried out on an industrial scale, Sufficiently satisfied because there is no sufficient and large-scale supply means of carbon atoms to penetrate into the interior, and large-scale equipment technology capable of processing at ferrite region temperature below A 1 point. There was a problem that it was difficult to stably obtain the results that could be achieved.

【0012】このようなことから、本発明が目的とした
のは、浸炭異常層,オ−ステナイト粒の異常成長粗大
化,処理歪等の発生がない高品質の浸炭材を工業規模で
かつ短時間処理にて作業性良く得ることができる鋼の浸
炭方法を確立することである。
In view of the above, the object of the present invention is to provide a high-quality carburized material on an industrial scale that does not cause abnormal carburization layer, abnormal growth coarsening of austenite grains, processing strain, etc. It is to establish a steel carburizing method that can be obtained with good workability by time treatment.

【0013】[0013]

【課題を解決するための手段】そこで、本発明者等は上
記目的を達成すべく鋭意研究を重ねた結果、以下に示す
ような知見を得ることができた。即ち、Cの拡散係数を
同一温度でのフェライト相中とオ−ステナイト相中とで
比較するとフェライト相中の方が1桁も大きく、そのた
め同一温度では炭素原子の拡散速度はフェライト組織の
方がオ−ステナイト組織より1桁のオ−ダ−で速くな
り、拡散速度の観点からはフェライト域であっても十分
に実用性ある浸炭速度を得ることができると考えられ
る。しかし、フェライト中へのCの固溶限界量は極めて
小さいため、鋼の表面からフェライト地に浸炭を行う手
段によってそのC濃度を高めることは工業的には不可能
とも言える事柄である。
The inventors of the present invention have made extensive studies to achieve the above object, and as a result, have been able to obtain the following findings. That is, comparing the diffusion coefficient of C between the ferrite phase at the same temperature and that in the austenite phase, the diffusion rate in the ferrite phase is an order of magnitude larger. Therefore, at the same temperature, the diffusion rate of carbon atoms in the ferrite structure is larger. It is considered to be faster than the austenite structure by one order, and from the viewpoint of the diffusion rate, it is considered that a sufficiently practical carburizing rate can be obtained even in the ferrite region. However, since the solid solution limit amount of C in ferrite is extremely small, it can be said that it is industrially impossible to increase the C concentration by means of carburizing the ferrite surface from the steel surface.

【0014】ところが、フェライトの中にセメンタイト
相等の炭化物相が存在していると、フェライトの中を迅
速に拡散してきたCがこの炭化物相の回りで炭化物とし
て析出する現象が見られる。そして、この時、「相平
衡」は“フェライト単相中のCの固溶・析出平衡”とな
るのではなくて、局所的に“〔フェライト+炭化物〕の
複合組織と炭化物との相平衡”となり、炭化物周辺では
論理的には炭化物中のC濃度まで浸炭が可能になる。従
って、フェライト基地内に微細な炭化物が均一に析出・
分散されておれば、上述の相平衡が広範にフェライト基
地内で均一に惹起され、フェライト中へのC固溶量の増
大と、それを炭化物として析出させることによる全C濃
度の増大とが迅速に図れるものと考えられた。
However, when a carbide phase such as a cementite phase is present in the ferrite, there is a phenomenon in which C that has rapidly diffused in the ferrite precipitates as a carbide around this carbide phase. At this time, the "phase equilibrium" does not mean "solid solution / precipitation equilibrium of C in the ferrite single phase", but locally "phase equilibrium between the [microstructure of ferrite + carbide] and the carbide". Therefore, it is theoretically possible to carburize up to the C concentration in the carbide around the carbide. Therefore, fine carbide is uniformly deposited in the ferrite matrix.
If it is dispersed, the above-mentioned phase equilibrium is uniformly and extensively induced in the ferrite matrix, and the increase in the amount of C solid solution in ferrite and the increase in the total C concentration by precipitating it as carbides are rapid. It was thought to be possible.

【0015】ただ、フェライト基地内に微細炭化物を析
出・分散させ、そこからのCの拡散を図るだけでは鋼に
浸炭の効果を確保することはできず、十分な浸炭効果を
得るためには、前記“フェライト基地内への微細炭化物
の析出・分散”に加えて、フェライトの存在する温度領
域で鋼の表面から炭素原子を供給・浸透させる(浸炭さ
せる)ことが不可欠である。しかしながら、通常のガス
浸炭法では既述のとおりフェライトの存在するような低
温度領域での浸炭は極めて困難である。
However, the effect of carburizing on the steel cannot be ensured only by precipitating and dispersing fine carbides in the ferrite matrix and diffusing C from there, and in order to obtain a sufficient carburizing effect, In addition to the "precipitation / dispersion of fine carbide in the ferrite matrix", it is indispensable to supply / infiltrate (carburize) carbon atoms from the surface of the steel in the temperature range where ferrite exists. However, as described above, it is extremely difficult to carburize in a low temperature region where ferrite is present by an ordinary gas carburizing method.

【0016】本発明者等は、種々検討の末、この課題を
解決するのが「プラズマ浸炭法」であることを見出し
た。つまり、プラズマ浸炭法は固溶限の低いフェライト
相内に炭素原子を送り込む(浸炭させる)方法として極
めて有効であり、この方法によると低温の“フェライト
基地に微細炭化物が分散している鋼”への炭素原子の浸
入が非常に円滑に行われるようになる。そして、鋼中へ
浸入した炭素原子は前述した機構により速やかに拡散し
てC濃度の増大に資する。
After various studies, the present inventors have found that the "plasma carburizing method" solves this problem. In other words, the plasma carburizing method is extremely effective as a method of sending (carburizing) carbon atoms into the ferrite phase with a low solid solubility limit. According to this method, low temperature "steel in which fine carbides are dispersed in the ferrite matrix" is obtained. The infiltration of carbon atoms will be carried out very smoothly. Then, the carbon atoms that have penetrated into the steel rapidly diffuse by the mechanism described above and contribute to the increase of the C concentration.

【0017】本発明は、上記知見事項等に基づいてなさ
れたものであり、「浸炭処理に先立って被処理鋼を焼戻
し“マルテンサイト組織",“ベイナイト組織",“球状炭
化物組織”あるいは“炭窒化物が微細分散したフェライ
ト組織”の1種もしくは2種以上を主体とした組織とな
し、 その後でプラズマ浸炭法により被処理鋼のAe3点未
満の温度で浸炭することにより、 高品質の浸炭鋼材を短
時間処理にて安定製造できるようにした点」に大きな特
徴を有している。
The present invention has been made on the basis of the above-mentioned findings and the like. "The steel to be treated is tempered prior to the carburizing" martensite structure "," bainite structure "," spherical carbide structure "or" charcoal structure ". A high-quality carburizing is achieved by forming a structure mainly composed of one or more of "ferrite structure in which nitrides are finely dispersed", and then carburizing at a temperature of less than Ae 3 point of the steel to be treated by plasma carburizing method. It has a major feature in that it enables stable manufacturing of steel materials in a short time. "

【0018】ここで、本発明法の適用対象鋼はフェライ
ト相を呈するものであれば特に制限はなく、通常炭素
鋼,低合金鋼,肌焼鋼,バネ鋼,軸受鋼,工具鋼,耐摩
耗鋼,耐熱鋼等、フェライト系の全ての機械構造用鋼を
適用対象とすることができる。
The steel to which the method of the present invention is applied is not particularly limited as long as it exhibits a ferrite phase, and is usually carbon steel, low alloy steel, case hardening steel, spring steel, bearing steel, tool steel, wear resistance. Applicable to all ferritic steels for mechanical structures such as steel and heat resistant steel.

【0019】上述のように、本発明は、被処理鋼に“フ
ェライト中に炭化物含有物質が微細分散した組織”を準
備し、これに対し特にプラズマ浸炭法を適用して鋼のA
e3点以下で浸炭することを骨子としたものであって、フ
ェライトが存在する低温度領域でフェライト組織内に炭
化物を析出・成長させつつ浸炭処理を進行させることに
より、フェライト組織中に多量の炭化物を均一微細分散
させた炭化物過剰浸炭組織を持つ鋼を製造する処理法に
係るものであるが、以下、本発明において処理条件を前
記の如くに限定した理由をその作用と共に説明する。
As described above, the present invention prepares a "structure in which a carbide-containing substance is finely dispersed in ferrite" in the steel to be treated, to which the plasma carburizing method is applied particularly to the A of the steel.
e Carburizing at 3 points or less is the essence, and by advancing the carburizing process while precipitating and growing carbide in the ferrite structure in the low temperature region where ferrite exists, a large amount of The present invention relates to a treatment method for producing a steel having a carbide excess carburized structure in which carbides are uniformly and finely dispersed. The reason why the treatment conditions are limited as described above in the present invention will be explained below together with its action.

【0020】[0020]

【作用】本発明者等は、プラズマ浸炭法を適用すればフ
ェライト系の鋼に対しAe1点直下という低い温度域でも
浸炭を行えることを見出したが、このプラズマ浸炭に際
して、被処理鋼の組織を“フェライト中に炭化物含有物
質が微細分散したもの”としておくことで浸炭部のC濃
度を十分に高くすることができる。つまり、この前組織
はフェライト粒内に微細な炭化物含有物質が均一に析出
した「フェライト+炭化物粒子又は炭窒化物粒子」から
なるもので、具体的には a) 焼戻しマルテンサイト組織, b) ベイナイト組織, c) 球状化焼鈍組織(球状炭化物組織), d) フェライト粒内に微細析出物を含んだフェライト・
パ−ライト組織(例えばV含有非調質鋼等のような炭窒
化物が微細分散したフェライト組織), 等の1種もしくは2種以上を主体とした組織である。な
お、周知の通り、これらの組織は連続冷却,等温変態,
繰り返し処理等によって再現性良く実現されるので、鋼
の前歴は特に問われるものではない。
The present inventors have found that when the plasma carburizing method is applied, carburizing can be performed on a ferritic steel even in a low temperature range of just below Ae 1 point. Is set to "finely dispersed carbide-containing substance in ferrite", the C concentration in the carburized portion can be sufficiently increased. In other words, this pre-structure consists of "ferrite + carbide particles or carbonitride particles" in which fine carbide-containing substances are uniformly precipitated in ferrite grains. Specifically, a) tempered martensite structure, b) bainite Structure, c) spheroidized annealing structure (spheroidal carbide structure), d) ferrite containing fine precipitates in ferrite grains.
A pearlite structure (for example, a ferrite structure in which carbonitrides such as V-containing non-heat treated steel are finely dispersed), and the like are mainly composed of one or more kinds. As is well known, these structures are characterized by continuous cooling, isothermal transformation,
Since it is realized with good reproducibility by repeated treatments, the history of steel is not particularly limited.

【0021】浸炭処理に処する鋼をかかる前組織として
おく理由は、先にも述べたが、Cを高濃度で浸炭させる
ことにある。即ち、炭素原子の拡散速度はフェライト中
の方がオ−ステナイト中よりも格段に速いものの、フェ
ライト中へのCの固溶限界量が極めて小さいためにその
ままでは鋼の表面からCを供給してもC濃度を十分に高
めることはできない。しかしながら、鋼の組織をフェラ
イトの中にセメンタイト相等の炭化物相が存在する上記
前組織としておくと、その「相平衡」は“〔フェライト
+炭化物〕の複合組織と炭化物との相平衡”となって炭
化物中のC濃度にまで浸炭が可能となり、所望するC濃
度への浸炭を迅速に行うことができるようになる。
The reason why the steel to be carburized is made to have such a pre-structure is to carburize C at a high concentration, as described above. That is, although the diffusion rate of carbon atoms is significantly faster in ferrite than in austenite, the solid solution limit amount of C in ferrite is extremely small, and therefore C is supplied from the surface of the steel as it is. However, the C concentration cannot be sufficiently increased. However, if the structure of steel is the above-mentioned microstructure in which a carbide phase such as cementite phase is present in ferrite, the "phase equilibrium" becomes "phase equilibrium between [composite microstructure of [ferrite + carbide] and carbide]". Carburization can be performed up to the C concentration in the carbide, and carburization to the desired C concentration can be performed quickly.

【0022】ただ、注意すべきはパ−ライト組織で、パ
−ライト組織中へは本発明に係る手段で浸炭しようとし
て十分な効果を挙げることは難しい。従って、パ−ライ
トを含有する前組織においては、好ましくはパ−ライト
率を50%以下にしておくべきである。
It should be noted, however, that the pearlite structure should be noted, and it is difficult to obtain a sufficient effect in carburizing the pearlite structure by the means according to the present invention. Therefore, in the pre-structure containing pearlite, the pearlite ratio should preferably be 50% or less.

【0023】また、本発明においては、浸炭処理は被処
理鋼のAe3点未満の温度域で実施される。これは、Ae3
点以上の高温域で浸炭を行った際に懸念される“オ−ス
テナイト粒の異常成長粗大化",“浸炭炉の寿命低下”あ
るいは“浸炭処理時の歪”といった問題を防止するため
と、前述したような低温のフェライト中への迅速で安定
した浸炭手段が見出されたためである。ここで、フェラ
イト相への浸炭はAe1点以上Ae3点未満のα/γ二相域
で行うことができるものの、浸炭後の組織の均一性とい
う観点からはAe1点直下での処理が好ましく、従ってよ
り高品質の製品を得るためには浸炭処理をAe1点直下の
温度域で実施すべきである。
Further, in the present invention, the carburizing treatment is carried out in a temperature range below the Ae 3 point of the steel to be treated. This is Ae 3
In order to prevent problems such as "abnormal growth and coarsening of austenite grains", "life shortening of carburizing furnace" or "distortion during carburizing treatment", which may occur when carburizing in a high temperature range above the point, This is because a rapid and stable carburizing means for the low temperature ferrite as described above was found. Here, the carburization of the ferrite phase can be performed in the α / γ two-phase region where Ae is 1 point or more and less than Ae 3 points, but from the viewpoint of the uniformity of the structure after carburization, the treatment just below Ae 1 point Preferably, therefore, in order to obtain a higher quality product, the carburizing treatment should be carried out in the temperature range just below Ae 1 .

【0024】ところで、本発明に係る上記浸炭処理は、
特にプラズマ浸炭法によって行う必要がある。これは、
既に述べたように、プラズマ浸炭法以外の既知の浸炭法
ではフェライトの存在するような低温度領域での十分な
浸炭は不可能であるか極めて困難だからである。しかる
に、プラズマ浸炭法によると固溶限の低いフェライト相
にも円滑に炭素原子を浸入させることが可能で、所定の
前組織の準備と相まってC濃度の高い浸炭層を迅速かつ
安定に形成させることができる。
By the way, the carburizing treatment according to the present invention is
In particular, the plasma carburizing method must be used. this is,
This is because, as already described, it is impossible or extremely difficult to perform sufficient carburization in a low temperature region where ferrite exists by known carburizing methods other than the plasma carburizing method. However, according to the plasma carburizing method, carbon atoms can be smoothly infiltrated into the ferrite phase having a low solid solubility limit, and the carburized layer having a high C concentration can be quickly and stably formed in combination with the preparation of the predetermined pre-structure. You can

【0025】なお、本発明法においては、プラズマ浸炭
時に同時に窒素を浸透拡散させることで窒化と浸炭を同
時に行うこともできる。この場合、従来の軟窒化処理と
は違って、鋼材の内部深くまでのフェライト中に炭化物
が分散析出した“高炭素濃度フェライト組織”の上に窒
化層から成る表面層が形成された従来に無い表面硬化処
理鋼材が得られる。
In the method of the present invention, nitriding and carburizing can be simultaneously performed by simultaneously permeating and diffusing nitrogen during plasma carburizing. In this case, unlike the conventional soft nitriding treatment, a surface layer consisting of a nitride layer was formed on the "high carbon concentration ferrite structure" in which carbides were dispersed and precipitated in ferrite deep inside the steel material. A surface-hardened steel material is obtained.

【0026】また、本発明法に従ってプラズマ浸炭法で
フェライト域炭化物分散析出浸炭を行った後、更に窒化
処理,再加熱焼入焼戻処理,高周波焼入れ等といった既
存の表面硬化処理を組み合わせて実施することもでき
る。
Further, according to the method of the present invention, after carrying out the carburization dispersion precipitation carburizing in the ferrite region by the plasma carburizing method, the existing surface hardening treatment such as nitriding treatment, reheating quenching and tempering treatment, induction hardening, etc. is further combined. You can also

【0027】続いて、本発明を実施例によって説明す
る。
Next, the present invention will be described with reference to examples.

【実施例】表1に示す化学組成を有するA〜Eの5種類
の鋼材を用意し、これらに浸炭の前組織として a) 焼入れ焼戻しによる焼戻しマルテンサイト組織, b) 強制風冷によるベイナイト組織, c) 球状化焼鈍による球状炭化物組織, d) 焼準によるフェライト・パ−ライト組織 を準備した。なお、鋼材Aの焼準組織(フェライト・パ
−ライト組織)は、フェライト粒内に微細なV化合物が
多数均一分散析出したものとなっていた。
[Examples] Five kinds of steel materials A to E having the chemical compositions shown in Table 1 were prepared, and these were used as a structure before carburizing a) a tempered martensite structure by quenching and tempering, b) a bainite structure by forced air cooling, c) Spheroidal carbide structure by spheroidizing annealing and d) Ferrite-pearlite structure by normalization were prepared. The normalization structure (ferrite-pearlite structure) of the steel material A was such that many fine V compounds were uniformly dispersed and precipitated in the ferrite grains.

【0028】[0028]

【表1】 [Table 1]

【0029】次に、これらの鋼材に対し、本発明法とし
て低温でのプラズマ浸炭を、また比較法及び従来法とし
てガス浸炭をそれぞれ施した。ここで、プラズマ浸炭
は、浸炭炉内を1Torrの真空にしてから所定温度に加熱
し、浸炭ガスとしてAr,H2 ガスに数%のCH4 ,C3
8 のような炭化水素ガスを混合したガスを導入して炉
内圧力を1〜10Torrに保ち、所定時間の浸炭を行う条
件で実施した。また、比較法及び従来法でのガス浸炭
は、浸炭ガスとしてCO2 とCOの混合ガスを用い、小
型実験炉により実験的に実施されたものである。
Next, these steel materials were subjected to low temperature plasma carburization as the method of the present invention, and gas carburization as the comparative method and the conventional method. Here, in plasma carburizing, the inside of the carburizing furnace is evacuated to 1 Torr and then heated to a predetermined temperature, and Ar, H 2 gas containing several% of CH 4 , C 3 is used as carburizing gas.
A gas in which a hydrocarbon gas such as H 8 was mixed was introduced to maintain the furnace pressure at 1 to 10 Torr, and the carburization was performed for a predetermined time. Further, the gas carburizing in the comparative method and the conventional method was carried out experimentally in a small experimental furnace using a mixed gas of CO 2 and CO as carburizing gas.

【0030】このようにして得られた各浸炭材について
“浸炭深さ”及び“浸炭濃度”を調査したが、その結果
を浸炭条件と共に表2に示す。なお、「浸炭深さ」は、
浸炭焼入後の“浸炭層の最高硬度と芯部の平均硬度との
平均値となる硬度を示す位置”の“表面からの深さ”を
断面硬度分布プロフィ−ルから求めた値とした。そし
て、「浸炭濃度」は、精密旋盤にて浸炭後の試料の表面
層を 0.1mm厚さで削り取って採取し、これを化学分析し
て求めた値であり、浸炭後の最表層部(深さ 0.1mmまで
の部分)の平均炭素濃度に相当する値である。また、表
2中の試験番号21と22は、ガス浸炭炉での浸炭ガスのカ
−ボンポテンシャルを可能な限り上昇させ、約 1.5のカ
−ボンポテンシャル雰囲気で浸炭を行ったものである。
The "carburizing depth" and the "carburizing concentration" of each of the carburized materials thus obtained were investigated, and the results are shown in Table 2 together with the carburizing conditions. In addition, "Carburizing depth" is
After the carburizing and quenching, the "depth from the surface" of "the position indicating the hardness which is the average value of the maximum hardness of the carburized layer and the average hardness of the core portion" was defined as the value obtained from the cross-sectional hardness distribution profile. The "carburizing concentration" is a value obtained by shaving the surface layer of the sample after carburizing with a precision lathe at a thickness of 0.1 mm, collecting it, and performing a chemical analysis on it. This is a value corresponding to the average carbon concentration in the area up to 0.1 mm). Further, test Nos. 21 and 22 in Table 2 are those in which the carburizing potential of carburizing gas in the gas carburizing furnace was increased as much as possible, and carburizing was performed in a carbon potential atmosphere of about 1.5.

【0031】[0031]

【表2】 [Table 2]

【0032】表2に示される結果からは、次のことを確
認できる。即ち、試験番号19〜22の従来例に比べ、本発
明例に係る試験番号1〜14は何れも720℃以下の低温
浸炭でありながら従来法よりも短い浸炭時間でより深い
浸炭深さと浸炭濃度が得られている。
From the results shown in Table 2, the following can be confirmed. That is, in comparison with the conventional examples of test numbers 19 to 22, all of the test numbers 1 to 14 according to the present invention are low-temperature carburizing at 720 ° C. or less, but have a deeper carburizing depth and carburizing concentration in a shorter carburizing time than the conventional method. Has been obtained.

【0033】また、試験番号15〜18の比較法では、本発
明法と同じ前組織でガス浸炭によるフェライト域での炭
化物析出浸炭を試みたものであるが、浸炭は極めて僅か
なため実用性に乏しい。なお、鋼材B及び鋼材Cで前組
織をフェライト・パ−ライトにしたものは、表2中の本
発明例と同じ条件でプラズマ浸炭したが殆ど浸炭が行わ
れず、やはり実用性のないことが確認されている。
Further, in the comparative method of test Nos. 15 to 18, an attempt was made for carburizing and precipitating carburizing in the ferrite region by gas carburizing with the same front structure as in the method of the present invention. poor. It should be noted that the steel materials B and C having the prior structure of ferrite pearlite were subjected to plasma carburization under the same conditions as those of the examples of the present invention in Table 2, but almost no carburization was performed, and it was confirmed that they were not practical. Has been done.

【0034】[0034]

【効果の総括】以上に説明した如く、この発明によれ
ば、浸炭異常層,オ−ステナイト粒の異常成長粗大化,
処理歪等を生じるおそれがない低温でかつ短時間の処理
にて高品質の浸炭鋼材を作業性良く得ることができるな
ど、産業上有用な効果がもたらされる。
[Summary of Effects] As described above, according to the present invention, the abnormal carburizing layer, the abnormal growth of austenite grains and the coarsening of
Industrially useful effects such as high-quality carburized steel material can be obtained with good workability by a low-temperature and short-time treatment that does not cause treatment distortion and the like.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 浸炭処理に先立って被処理鋼を焼戻しマ
ルテンサイト組織,ベイナイト組織,球状炭化物組織あ
るいは炭窒化物が微細分散したフェライト組織の1種も
しくは2種以上を主体とした組織となし、その後でプラ
ズマ浸炭法により被処理鋼のAe3点未満の温度で浸炭す
ることを特徴とする、鋼の浸炭方法。
1. Prior to the carburizing treatment, the steel to be treated has a tempered martensite structure, bainite structure, spherical carbide structure, or a structure mainly composed of one or more kinds of ferrite structures in which carbonitride is finely dispersed, After that, the carburizing method of steel is characterized by performing carburizing at a temperature lower than Ae 3 point of the steel to be treated by plasma carburizing method.
JP33912094A 1994-12-28 1994-12-28 Method for carburizing steel Pending JPH08176791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33912094A JPH08176791A (en) 1994-12-28 1994-12-28 Method for carburizing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33912094A JPH08176791A (en) 1994-12-28 1994-12-28 Method for carburizing steel

Publications (1)

Publication Number Publication Date
JPH08176791A true JPH08176791A (en) 1996-07-09

Family

ID=18324443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33912094A Pending JPH08176791A (en) 1994-12-28 1994-12-28 Method for carburizing steel

Country Status (1)

Country Link
JP (1) JPH08176791A (en)

Similar Documents

Publication Publication Date Title
JP3894635B2 (en) Carburized member, manufacturing method thereof, and carburizing system
JP4390576B2 (en) Rolling member
US8696830B2 (en) Stainless steel carburization process
RU2518840C2 (en) Case-hardened steel element and method of its production
JP3387427B2 (en) Heat treatment method for steel
EP2514847A1 (en) Steel for case-hardening treatment, case-hardened steel component, and method for producing same
JP4627776B2 (en) High concentration carburizing / low strain quenching member and method of manufacturing the same
US20100126632A1 (en) Manufacturing method for high-concentration carburized steel
US20120160832A1 (en) Gear part and method of producing thereof
EP1413631A2 (en) Improved spall propagation properties of case-hardened M50 and M50NIL bearings
JP2005090680A (en) Rolling bearing part and method of manufacturing the same
WO2012081229A1 (en) High-carbon chromium bearing steel, and process for production thereof
US20100116377A1 (en) Hybrid carburization with intermediate rapid quench
US20120018052A1 (en) Novel Stainless Steel Carburization Process
WO2011115255A1 (en) Spring steel and surface treatment method for steel material
JP7364895B2 (en) Steel parts and their manufacturing method
JPH08176791A (en) Method for carburizing steel
JPH0559527A (en) Production of steel excellent in wear resistance and rolling fatigue characteristic
JPS6224499B2 (en)
JP2005036279A (en) Surface hardening method for steel, and metallic product obtained thereby
JPS62994B2 (en)
EP3158104B1 (en) Ferrous alloy and its method of manufacture
JPH01212748A (en) Rapid carburizing treatment for steel
JPH0559526A (en) Production of steel excellent in wear resistance and rolling fatigue characteristic
JP3053605B2 (en) Metal members with excellent toughness and wear resistance