JPH08176643A - Deoxidation and refining of molten steel - Google Patents

Deoxidation and refining of molten steel

Info

Publication number
JPH08176643A
JPH08176643A JP32504094A JP32504094A JPH08176643A JP H08176643 A JPH08176643 A JP H08176643A JP 32504094 A JP32504094 A JP 32504094A JP 32504094 A JP32504094 A JP 32504094A JP H08176643 A JPH08176643 A JP H08176643A
Authority
JP
Japan
Prior art keywords
molten steel
deoxidizing
refining
gas
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32504094A
Other languages
Japanese (ja)
Inventor
Tetsuo Toyoda
哲夫 豊田
Tadashi Kanamori
正 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEISEI KAKO KK
Riken Corp
Original Assignee
MEISEI KAKO KK
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEISEI KAKO KK, Riken Corp filed Critical MEISEI KAKO KK
Priority to JP32504094A priority Critical patent/JPH08176643A/en
Publication of JPH08176643A publication Critical patent/JPH08176643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE: To provide an oxidation and refining method capable of effectively removing a deoxidation product, and easily manufacturing a clean steel in a large amount. CONSTITUTION: In the reaction when CaCO3 and Al are simultaneously added to a non-oxidated molten steel to generate the deoxidation product, the molten steel is preliminarily fluidized to the local part to be reacted. When simultaneously adding, CaCO3 powder may be coated on the surface of the core of the Al grain, or CaCO3 powder may be mixed with Al powder. CaCO3 added in the molten steel is dissociated into CaO and CO2 by the heat of the molten steel, and CO2 generates a small and rapid stirring flow in the molten steel to promote the enlargement of the sizes of the impurities, and efficiently adsorb Al2 O3 in which CaO becomes inclusions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶鋼の脱酸・精錬方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for deoxidizing and refining molten steel.

【0002】[0002]

【従来の技術】従来、溶鋼の脱酸・精錬方法として、未
脱酸溶鋼の中にAl等の脱酸剤を添加する方法が周知の
技術となっているが、この脱酸方法では、脱酸生成物と
してアルミナクラスター等の介在物が大量に発生し、こ
れらが鋼中に残存して内部欠陥となって、鋼材の品質を
悪化させることが知られている。
2. Description of the Related Art Conventionally, as a method of deoxidizing and refining molten steel, a method of adding a deoxidizing agent such as Al to undeoxidized molten steel has been a well-known technique. It is known that a large amount of inclusions such as alumina clusters are generated as acid products, which remain in the steel and become internal defects, thereby deteriorating the quality of the steel material.

【0003】そこで、脱酸剤を添加する際に、不活性ガ
ス吹き込み攪拌装置、電磁誘導攪拌装置等を使って溶鋼
を強制的に攪拌し、溶鋼中に懸濁しているアルミナ等を
凝集、融合させる処理や、更に、CaO,CaO−Al
2 3 等の還元性スラグを溶鋼中にインジェクション
し、溶鋼中に懸濁しているアルミナ等を吸着、除去する
処理等を実施して、介在物を浮上させることにより清浄
鋼を製造している。
Therefore, when adding a deoxidizing agent, the molten steel is forcibly stirred by using an inert gas blowing stirrer, an electromagnetic induction stirrer, or the like, to coagulate and fuse alumina and the like suspended in the molten steel. Treatment, and further, CaO, CaO-Al
Clean steel is manufactured by injecting reducing slag such as 2 O 3 into molten steel, adsorbing and removing alumina and the like suspended in the molten steel, and floating inclusions. .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来技
術によれば、不活性ガス吹き込みや電磁誘導による攪拌
を実施する場合、特に、比較的反応が緩慢な還元性スラ
グを用いた脱酸を実施する場合には、例えばLF法やA
SEA−SKF法において用いられている様な、専用の
精錬容器を必要としていた。そのため、設備投資に巨額
の費用を必要とするほか、通常の製鋼設備のライン中に
専用の炉外精錬設備を追加せねばならず、設置スペース
不足、あるいはレイアウト上の無理が生ずるといった場
所的な制約から、必ずしも容易に導入することはできな
かった。
However, according to the prior art, when performing stirring by injecting an inert gas or electromagnetic induction, deoxidation using a reducing slag which reacts relatively slowly is performed. In such a case, for example, LF method or A
A dedicated smelting vessel as used in the SEA-SKF method was required. For this reason, a huge amount of capital investment is required, and a special out-of-pile smelting facility must be added to the normal steelmaking equipment line. Due to restrictions, it could not always be easily introduced.

【0005】更に、不活性ガス吹き込みや電磁誘導によ
る攪拌を実施した場合であっても、溶鋼中に懸濁してい
るアルミナ等を十分に除去することは容易ではないた
め、十分に時間をかけて攪拌しなければ鋼材の欠陥を招
く一方、時間をかけて攪拌していたのでは製鋼プロセス
を順次進行させて行く上での障害となる場合があった。
Further, even when the inert gas is blown or the stirring is performed by electromagnetic induction, it is not easy to sufficiently remove the alumina and the like suspended in the molten steel. Unless agitated, the steel material may be defective. On the other hand, if the agitation is performed over a long period of time, the steelmaking process may be prevented from proceeding sequentially.

【0006】そこで本発明は、従来よりも脱酸生成物を
効果的に除去することができ、清浄鋼を容易にかつ大量
に製造可能とし得る脱酸・精錬方法を提供することを目
的とする。
Accordingly, an object of the present invention is to provide a deoxidizing and refining method capable of removing deoxidized products more effectively than in the past and enabling easy and large-scale production of clean steel. .

【0007】[0007]

【課題を解決するための手段、および作用】上述の目的
を達成するため、本発明の溶鋼の脱酸・精錬方法は、請
求項1記載の通り、溶鋼中でガスを放出するガス放出物
質と、溶鋼中の酸素と結合する脱酸物質とを、未脱酸の
溶鋼中へ同時に添加し、脱酸生成物を生ずる反応の際、
反応に預かる局部局部に対して、予め溶鋼の流動を与え
ることを特徴とする。
In order to achieve the above-mentioned object, a method for deoxidizing and refining molten steel according to the present invention is characterized in that a gas-releasing substance for releasing gas in molten steel is provided. , A deoxidizing substance that binds to oxygen in the molten steel, and simultaneously added to the undeoxidized molten steel, and during the reaction to produce a deoxidized product,
It is characterized in that a flow of molten steel is given in advance to a local part to be subjected to the reaction.

【0008】本発明の溶鋼の脱酸・精錬方法によれば、
ガス放出物質と脱酸物質とが同時に溶鋼中に添加される
ことにより、ガス放出物質からはガスが放出され、この
ガスの急激な膨張により、脱酸物質のきわめて近傍にお
いて、溶鋼に微小かつ急激で不規則な攪拌流が発生し、
脱酸物質と酸素との衝突や、脱酸生成物同士の衝突、そ
の他介在物となる物質の衝突の機会が著しく増大する。
即ち、従来の攪拌装置では、溶鋼に比較的大きな循環流
しか発生せず、脱酸剤が偏在した状態を保ったまま、溶
鋼の流れに乗って移動する状態にあったため、脱酸生成
物同士が衝突せずに微小な状態で鋼中に残存してしまう
場合が多々あったのに対し、本発明においては、ガスの
発生に伴う微小かつ急激で不規則な攪拌流によって、反
応に預かる局部局部に対して、予め溶鋼の流動が与えら
れ、脱酸生成物同士がよく衝突し、脱酸生成物が大型化
しやすい。この結果、脱酸生成物がきわめて浮上しやす
く、溶鋼の清浄化が促され、浮上した脱酸生成物につい
ては容易に溶鋼の系外へ除去することができる。
According to the method for deoxidizing and refining molten steel of the present invention,
When the gas releasing substance and the deoxidizing substance are simultaneously added to the molten steel, the gas is released from the gas releasing substance. Due to the rapid expansion of the gas, a minute and sharp Generates an irregular stirring flow,
The chances of collision between the deoxidized substance and oxygen, between deoxidized products, and between other substances as inclusions greatly increase.
That is, in the conventional stirring device, only a relatively large circulating flow is generated in the molten steel, and the deoxidizing agent is moved along with the flow of the molten steel while maintaining a state of being unevenly distributed. In many cases, the gas is left in the steel in a minute state without collision, whereas in the present invention, a small, abrupt and irregular stirring flow accompanying the generation of gas causes a local participant in the reaction. The flow of the molten steel is given to the local part in advance, and the deoxidized products often collide with each other, and the deoxidized products are likely to become large. As a result, the deoxidized product is very easy to float, the cleaning of the molten steel is promoted, and the floating deoxidized product can be easily removed from the system of the molten steel.

【0009】また、従来のような攪拌装置を用いること
なく攪拌流を発生させることができるので、必ずしも大
がかりな専用の設備を必要とせず、通常の製鋼設備があ
れば容易に実施できる。もちろん、攪拌装置を備えてい
る場合にも、本発明の脱酸・精錬方法を併用すること
で、より効率よく脱酸処理を施すことができる。
In addition, since the agitated flow can be generated without using a conventional agitating device, large-scale dedicated equipment is not necessarily required, and it can be easily implemented with ordinary steel making equipment. Of course, even when a stirring device is provided, the deoxidizing treatment can be performed more efficiently by using the deoxidizing and refining method of the present invention in combination.

【0010】ここで、本発明において、ガス放出物質
は、溶鋼の熱で分解されてガスを放出する物質でも、内
部に含有する成分が気化してガスを放出する物質でもよ
い。より具体的には、前者の例としては、CaCO3
MgCO3 、Na2 CO3 等といった炭酸塩を挙げるこ
とができ、後者の例としては、SiO2 系の含水鉱物を
挙げることができる。但し、添加量当りのガス発生量が
多い点、不活性なCO2が発生する点、スラグの塩基度
が高いほど良清浄効果が高い点等をも考慮すれば炭酸塩
がより望ましく、炭酸塩の中でもCaCO3 が特に望ま
しい。即ち、CaCO3 の場合、CO2 の発生と同時に
CaOが生成するため、CaOが脱酸生成物と融合して
大型のスラグとなり、脱酸生成物が浮上しやすくなる。
MgCO3の場合でも、同様の反応は起こるが、CO2
の発生と同時に生成するMgOが凝集しやすく、溶鋼中
への分散性がCaOほど良好ではないので、全量をMg
CO 3 とせず、CaCO3 に混合して用いる方がよい。
Here, in the present invention, the gas releasing substance
Is a substance that is decomposed by the heat of molten steel and releases gas.
The substance contained in the part may be a substance that evaporates and releases gas.
No. More specifically, as an example of the former, CaCOThree,
MgCOThree, NaTwoCOThreeSuch as carbonates
As an example of the latter, SiO 2TwoSystem of hydrated minerals
Can be mentioned. However, the amount of gas generated per addition amount is
Many points, inert COTwoWhere slag occurs
Considering that the higher the value, the better the cleaning effect
Is more desirable, and among carbonates, CaCO 2ThreeIs particularly desirable
New That is, CaCOThreeIn the case ofTwoAt the same time
Because CaO is produced, it fuses with the deoxidized product
It becomes a large slag, and the deoxidized product easily floats.
MgCOThreeA similar reaction occurs in the case ofTwo
MgO generated at the same time as the generation of
Dispersibility in CaO is not as good as CaO,
CO ThreeWithout using CaCOThreeIt is better to mix them.

【0011】また、脱酸物質としては、Al、Si、M
n、Mg等を挙げることができ、これらは単独であって
も、2種以上の複合組成物であっても、あるいはFe等
をも含む合金であってもよいが、最も効果的な脱酸作用
があるのはAlである。Alとしては、新塊Alを溶
解、アトマイズ法で得られる粒子状の金属Al、金属ア
ルミニウム又はアルミニウム合金の溶解の際、溶湯表面
に発生したアルミドロスを粉砕加工したAl純分20%
以上を含有する粒形物、機械加工で発生したAl切粉等
を使うことができる。つまり、純粋なAlに限らず、A
l純分20%以上の組成物であればよい。形状として
は、粒子状あるいは粉末状といった溶鋼に容易に溶解さ
せることができる形状がよい。
The deoxidizing substances include Al, Si, M
n, Mg, etc., which may be used alone, in the form of a composite composition of two or more kinds, or in an alloy containing Fe or the like. It is Al that has an effect. As the Al, a new lump Al is melted, and in the case of dissolving particulate metal Al, metal aluminum or an aluminum alloy obtained by an atomizing method, aluminum dross generated on the surface of the molten metal is pulverized and processed to have an aluminum pure content of 20%.
Granules containing the above, Al chips generated by machining, and the like can be used. That is, not only pure Al, but A
The composition may be any composition having a pure content of 20% or more. As the shape, a shape that can be easily dissolved in molten steel, such as a particle or a powder, is preferable.

【0012】更に、本発明において、同時に添加すると
は、ガス放出物質と脱酸物質とが接触する状態で溶鋼中
に投入されることを意味し、具体的には、ガス放出物質
と脱酸物質との混合物を添加する方法、その混合物に更
に適当な結合剤を加えて一体化したものを添加する方
法、ガス放出物質又は脱酸物質のいずれか一方の物質を
核とし、その表面を他方の物質でコーティングしたもの
を添加する方法等、いずれでもよい。特に、ガス放出物
質と脱酸物質とを単に混合するだけではなく、一体に加
工した物は、ガス放出物質から急激に発生するガスの力
で、脱酸物質が溶鋼中へ能動的に分散するため、酸素や
脱酸生成物との衝突の機会が増大する点でより望まし
い。
Further, in the present invention, simultaneous addition means that the gas-releasing substance and the deoxidizing substance are charged into molten steel in a state of contact with the gas-releasing substance. A method of adding a suitable binder to the mixture and adding a mixture thereof, and using one of a gas releasing substance and a deoxidizing substance as a nucleus, and using the surface of the other as a core. Any method such as adding a substance coated with a substance may be used. In particular, not only the gas-releasing substance and the deoxidizing substance are simply mixed, but also the one that is integrally processed, the deoxidizing substance is actively dispersed in the molten steel by the force of the gas rapidly generated from the gas-releasing substance. Therefore, it is more desirable in that the chance of collision with oxygen and deoxidation products increases.

【0013】加えて、本発明の脱酸・精錬方法は、全く
脱酸処理の行われていない溶鋼に対してのみならず、事
前に脱酸処理が行われ、微小な脱酸生成物が懸濁した状
態にある溶鋼に対しても、脱酸生成物を除去する効果が
あり、本発明でいう未脱酸の溶鋼には、微小な脱酸生成
物が懸濁した状態にある溶鋼も含まれる。
[0013] In addition, the deoxidizing and refining method of the present invention is not only applied to molten steel that has not been subjected to any deoxidizing treatment, but is also subjected to a deoxidizing treatment in advance, and fine deoxidized products are suspended. It also has the effect of removing deoxidized products from molten steel in a turbid state.Undeoxidized molten steel in the present invention includes molten steel in which minute deoxidized products are suspended. It is.

【0014】以上の説明からも明らかなように、本発明
においては、特に請求項2記載の通り、前記ガス放出物
質としての炭酸カルシウムと、前記脱酸物質としてのア
ルミニウムとを、未脱酸の溶鋼中へ同時に添加すると望
ましく、更に、請求項3記載の通り、前記炭酸カルシウ
ムと前記アルミニウムとを主成分として粒子状に成形さ
れた複合脱酸精錬剤を、未脱酸の溶鋼中へ添加するとよ
り望ましい。
As is clear from the above description, in the present invention, as described in claim 2, calcium carbonate as the gas releasing substance and aluminum as the deoxidizing substance are replaced by undeoxidized aluminum. It is desirable to simultaneously add the molten steel to the molten steel, and further, as described in claim 3, the composite deoxidizing and refining agent formed into a particulate form with the calcium carbonate and the aluminum as main components is added to the undeoxidized molten steel. More desirable.

【0015】即ち、炭酸カルシウムとアルミニウムとを
同時に添加する場合、第1に、CO 2 の発生により、溶
鋼が急激に攪拌されてAlと酸素、Al2 3 同士、あ
るいはAl2 3 とCaOの衝突が促されること、第2
に、生成したCaO−Al23 系の低融点還元性スラ
グが、単体で存在するAl2 3 等を吸着して大型化し
浮上しやすくなること、第3に、脱酸によってAl2
3 が生じる反応とCaOを生成する反応とが、きわめて
近傍において同時に起きるため、Al2 3 を逃すこと
なく効果的にCaO−Al2 3 系の低融点還元性スラ
グにできること、第4に、CaCO3 の解離によって生
じたCaOは、別途用意したCaOを添加する場合とは
異なり、水分等といった余分なものを全く吸着しておら
ず、活性な状態にあること等が、複合的に作用して、効
果的に脱酸が進行すると共に、鋼中に残存する介在物が
格段に低減される。特に、炭酸カルシウムとアルミニウ
ムとを主成分として粒子状に成形して添加すると、急激
に発生するCO2 の力でAlが能動的に分散するので、
Alの偏在が防止され、より一層の清浄化効果があると
考えられる。
That is, calcium carbonate and aluminum
When added simultaneously, first, CO 2 TwoOccurs,
The steel is rapidly stirred and Al and oxygen, AlTwoOThreeEach other
Or AlTwoOThreeAnd collision of CaO are promoted.
The generated CaO-AlTwoOThreeSystem low melting point reducing slur
Is present as a single substanceTwoOThreeEtc. are adsorbed and become larger
Third, it is easy to float, and thirdly, Al is removed by deoxidation.TwoO
ThreeThe reaction that produces CaO and the reaction that produces CaO are extremely
Since they occur simultaneously in the vicinity, AlTwoOThreeMiss
Effectively without CaO-AlTwoOThreeSystem low melting point reducing slur
Fourth, CaCOThreeRaw by dissociation of
What is the case where the separately prepared CaO is added
No, it absorbs extra things like moisture
Is active, etc.
As deoxidation progresses as a result, inclusions remaining in the steel
It is significantly reduced. In particular, calcium carbonate and aluminum
And adding it as a main component into particles,
Generated in COTwoAl is actively dispersed by the force of
If the uneven distribution of Al is prevented and there is a further cleaning effect
Conceivable.

【0016】[0016]

【実施例】次に、本発明の実施例を説明する。 (1)複合脱酸精錬剤の調製 金属Al99.7%含有Al粒(粒径0.5〜1.0m
m)700gに、バインダとして5%けい酸ソーダ水溶
液を50g添加し、回転式ミキサーにて全体が濡れる程
度まで混合した。次に、平均粒径5〜6μm、CaO含
有率53%以上、SiO2 含有率2.0%未満、強熱減
量41〜44%の炭酸カルシウム微粉末300gを添加
・混合し、ミキサーから取り出して乾燥させた。その結
果、Al粒の表面が炭酸カルシウム微粉末でコーティン
グされた目的物を得た。 (2)清浄鋼の製造[その1] 高周波誘導炉にセットされた内径145mmの黒鉛るつ
ぼ内において、市販のS25C棒鋼10kgを溶解し
た。そして、溶落5分後に溶融シリカチューブ(内径8
mm×外径12mm)で、上記複合脱酸精錬剤20gを
2 ガスと共にインジェクションした。これを1570
℃で10分間保持した後、鋳鋼製の鋳型(内径50mm
×高さ100mm)に鋳込んだ(サンプル1)。
Next, embodiments of the present invention will be described. (1) Preparation of composite deoxidizing refining agent Al particles containing 99.7% of metal Al (particle size: 0.5 to 1.0 m)
m) To 700 g, 50 g of a 5% aqueous sodium silicate solution as a binder was added, and mixed with a rotary mixer until the whole was wetted. Next, 300 g of calcium carbonate fine powder having an average particle size of 5 to 6 μm, a CaO content of 53% or more, a SiO 2 content of less than 2.0%, and a loss on ignition of 41 to 44% is added and mixed, and taken out of the mixer. Let dry. As a result, a target product in which the surface of the Al particles was coated with the fine calcium carbonate powder was obtained. (2) Production of Clean Steel [Part 1] In a graphite crucible having an inner diameter of 145 mm set in a high-frequency induction furnace, 10 kg of a commercially available S25C steel bar was melted. After 5 minutes from the meltdown, the fused silica tube (inner diameter 8
mm × 12 mm in outer diameter), and 20 g of the above-mentioned composite deoxidizing and refining agent was injected together with N 2 gas. This is 1570
After holding at 10 ° C. for 10 minutes, a cast steel mold (inner diameter 50 mm
× height 100 mm) (sample 1).

【0017】また、同様にして、黒鉛るつぼ内において
S25C棒鋼10kgを溶解し、溶落後3分後、及び5
分後に、上記複合脱酸精錬剤20gを上置き法で添加
し、シリカチューブでかき混ぜた。これを1570℃で
10分間保持した後、上記と同じ鋳鋼製の鋳型に鋳込ん
だ(サンプル2)。
Similarly, 10 kg of S25C steel bar was melted in a graphite crucible, 3 minutes after melting, and 5 minutes after melting.
After one minute, 20 g of the above-mentioned complex deoxidizing and refining agent was added by an overhead method, and the mixture was stirred with a silica tube. This was kept at 1570 ° C. for 10 minutes, and then cast into the same cast steel mold as above (Sample 2).

【0018】更に、比較のため、黒鉛るつぼ内において
S25C棒鋼10kgを溶解し、上記複合脱酸精錬剤を
添加せずに、1570℃で10分間保持した後、上記と
同じ鋳鋼製のに鋳込んだ(サンプル3)。 (3)介在物の測定・比較試験[その1] 上記の方法で得られた3種類のサンプルについて、それ
ぞれ縦断して軸心上の上中下3ヶ所を、ASTM−E4
5法で介在物を測定・比較した。試験結果を表1に示
す。なお、試験結果は、各サンプルを2つずつ作成する
と共に、それらを測定した結果の平均である。
Further, for comparison, 10 kg of S25C steel bar was melted in a graphite crucible, kept at 1570 ° C. for 10 minutes without adding the composite deoxidizing refining agent, and then cast into the same cast steel as above. (Sample 3). (3) Measurement / comparison test of inclusions [Part 1] For each of the three types of samples obtained by the above-described method, three vertical and vertical positions on the axis were measured using ASTM-E4.
Inclusions were measured and compared by five methods. Table 1 shows the test results. Note that the test results are the average of the results of preparing two samples and measuring them.

【0019】[0019]

【表1】 [Table 1]

【0020】以上の結果から明らかなように、上記複合
脱酸精錬剤を添加することにより、アルミナに代表され
る酸化物系の介在物であるB系介在物を減少させること
ができる。特に、上記複合脱酸精錬剤をインジェクショ
ン法によって溶鋼中に吹き込むと、優れた清浄効果を発
揮する。 (4)清浄鋼の製造[その2] 次に、特に優れた清浄効果が認められたインジェクショ
ン法により、上記複合脱酸精錬剤を吹き込んだ場合と、
通常の金属Alからなる脱酸剤を吹き込んだ場合とを比
較するため、以下の2つの方法で清浄鋼を製造した。
As is clear from the above results, by adding the above-mentioned complex deoxidizing refining agent, it is possible to reduce B-based inclusions, which are oxide-based inclusions represented by alumina. In particular, when the composite deoxidizing refining agent is blown into molten steel by an injection method, an excellent cleaning effect is exhibited. (4) Production of Clean Steel [Part 2] Next, the case where the above-mentioned composite deoxidizing refining agent is blown by the injection method in which a particularly excellent cleaning effect is recognized,
For comparison with the case where a deoxidizer made of ordinary metal Al was blown, clean steel was manufactured by the following two methods.

【0021】まず、高周波溶解炉で溶解したS45C相
当の溶鋼10kgを、ジルコンレンガを内張りした取鍋
へ排出し、直ちに上記複合脱酸精錬剤20gをN2 ガス
と共にインジェクションした。これを1650℃で10
分間保持した後、溶鋼を汲み出して鋳鋼製の鋳型(内径
35mm×高さ100mm)に鋳込んだ(サンプル
4)。
First, 10 kg of molten steel equivalent to S45C melted in a high-frequency melting furnace was discharged into a ladle lined with zircon brick, and immediately, 20 g of the above composite deoxidizing and refining agent was injected together with N 2 gas. This at 1650 ° C for 10
After holding for 1 minute, molten steel was drawn out and cast into a cast steel mold (inner diameter 35 mm × height 100 mm) (sample 4).

【0022】また、比較のため、同様にして高周波溶解
炉で溶解した溶鋼10kgを取鍋へ排出し、直ちに金属
Al粒子からなる脱酸剤20gをN2 ガスと共にインジ
ェクションした。これを1650℃で10分間保持した
後、溶鋼を汲み出して上記と同じ鋳型に鋳込んだ(サン
プル5)。 (5)介在物の測定・比較試験[その2] 上記の方法で得られた2種類のサンプルについて、それ
ぞれ縦断して軸心上の上中下3ヶ所を、ASTM−E4
5法で介在物を測定・比較した。試験結果を表2に示
す。なお、試験結果は、各サンプルを5つずつ作成する
と共に、それらを測定した結果の平均である。
For comparison, 10 kg of molten steel similarly melted in a high-frequency melting furnace was discharged into a ladle, and immediately 20 g of a deoxidizing agent composed of metal Al particles was injected together with N 2 gas. After holding this at 1650 ° C. for 10 minutes, molten steel was drawn out and cast into the same mold as above (Sample 5). (5) Inclusion measurement / comparison test [Part 2] For each of the two types of samples obtained by the above-described method, three vertical and axial lower and upper positions were determined by ASTM-E4.
Inclusions were measured and compared by five methods. Table 2 shows the test results. The test result is an average of the results of preparing five samples and measuring them.

【0023】[0023]

【表2】 [Table 2]

【0024】以上の結果から明らかなように、上記複合
脱酸精錬剤をインジェクションすることにより、金属A
lをインジェクションした場合よりも、介在物を減少さ
せることができる。特に、Al添加によって生じるB系
介在物を減少させることができることはもちろんである
が、A系、C系、D系の介在物までもが減少することが
判明した。これは、炭酸カルシウムからCO2 が放出さ
れ、急激に膨張して発泡状態となり、介在物となる物質
のきわめて近傍において、溶鋼に微小かつ急激で不規則
な攪拌流が発生し、介在物同士の衝突の機会が著しく増
大し、大型化した介在物が浮上して、溶鋼から分離され
ていると考えられる。
As is apparent from the above results, the injection of the above-mentioned complex deoxidizing refining agent gives the metal A
Inclusions can be reduced as compared with the case where 1 is injected. In particular, it has been found that, of course, B-based inclusions caused by the addition of Al can be reduced, but also A-, C-, and D-based inclusions can be reduced. This is because CO 2 is released from calcium carbonate, expands rapidly and becomes a foamed state, and in the very vicinity of the substance serving as inclusions, a small, rapid and irregular stirring flow is generated in the molten steel, and It is considered that the chance of collision significantly increased, and the large inclusions floated up and were separated from the molten steel.

【0025】以上本発明の実施例を説明したが、本発明
はこれに限定されず、本発明の要旨を逸脱しない範囲内
の種々なる態様を採用することができる。例えば、実施
例では、ガス放出物質としてCaCO3 を用いたが、M
gCO3、Na2 CO3 等といった炭酸塩や、SiO2
系の含水鉱物等でもガスを発生させることができ、溶鋼
を攪拌する作用が期待できる。但し、添加量当りのガス
発生量が多い点、不活性なCO2 が発生する点、スラグ
の塩基度が高いほど清浄効果が高い点等をも考慮すれば
炭酸塩がより望ましい。また、CaCO3 の場合、CO
2 の発生と同時にCaOが生成するため、CaOが脱酸
生成物と融合して大型のスラグとなり、脱酸生成物が浮
上しやすくなるので特に望ましい。
Although the embodiment of the present invention has been described above, the present invention is not limited to this, and various modes can be adopted without departing from the gist of the present invention. For example, in the embodiment, CaCO 3 was used as a gas releasing substance,
carbonates such as gCO 3 and Na 2 CO 3 , SiO 2
Gases can be generated even from hydrated minerals of the system, and the effect of stirring molten steel can be expected. However, carbonate is more preferable in consideration of the fact that a large amount of gas is generated per added amount, that inert CO 2 is generated, and that the higher the basicity of slag, the higher the cleaning effect, and the like. In the case of CaCO 3 , CO
Since CaO is generated at the same time as the generation of 2 , CaO is particularly desirable because it fuses with the deoxidized product to form a large slag, and the deoxidized product easily floats.

【0026】また、実施例では、脱酸物質としてAlを
用いたが、Si、Mn、Mg等を脱酸剤として用いても
よい。これらは単独であっても、2種以上の複合組成物
であっても、あるいはFe等をも含む合金であってもよ
い。更に、Alとしては、新塊Alを溶解、アトマイズ
法で得られる粒子状の金属Al、金属アルミニウム又は
アルミニウム合金の溶解の際、溶湯表面に発生したアル
ミドロスを粉砕加工したAl純分20%以上を含有する
粒形物、機械加工で発生したAl切粉等を使うことがで
きる。
In the embodiment, Al is used as the deoxidizing substance. However, Si, Mn, Mg or the like may be used as the deoxidizing agent. These may be used alone, in combination of two or more, or in an alloy containing Fe or the like. Further, as for Al, a new lump Al is melted, and in the case of dissolving particulate metal Al, metal aluminum or an aluminum alloy obtained by the atomizing method, aluminum dross generated on the surface of the molten metal is pulverized and processed to have an Al pure content of 20% or more And Al chips generated by machining can be used.

【0027】加えて、実施例では、Al粒の表面をCa
CO3 でコーティングした複合脱酸精錬剤を用いたが、
Al粉末とCaCO3 粉末との混合物を添加する方法、
その混合物にバインダを加えて成形したものを添加する
方法等でもよい。また、バインダについても、実施例で
は、けい酸ソーダ水溶液を用いたが、単に水で湿らせて
固めるだけでもよい。特にバインダを用いる場合には、
けい酸ソーダ、ポリエチレンオキサイド等のように燃焼
時に発煙の少ない物質ほど好ましい。
In addition, in the embodiment, the surface of the Al particles
Although a composite deoxidizing refining agent coated with CO 3 was used,
A method of adding a mixture of Al powder and CaCO 3 powder,
For example, a method of adding a binder to the mixture and adding a molded product may be used. In the embodiment, the aqueous solution of sodium silicate is used as the binder. However, the binder may be simply wetted with water and hardened. Especially when using a binder,
Substances that emit less smoke during combustion, such as sodium silicate and polyethylene oxide, are more preferable.

【0028】[0028]

【発明の効果】以上の如く本発明の溶鋼の脱酸・精錬方
法によれば、特別な炉外精錬設備を使用しなくても清浄
度のきわめて高い清浄鋼を製造できるので、清浄鋼を安
価に提供することができ、清浄鋼を大量に製造すること
も容易である。
As described above, according to the method for deoxidizing and refining molten steel of the present invention, it is possible to produce clean steel having extremely high cleanliness without using special out-of-pile refining equipment. And it is easy to produce clean steel in large quantities.

【0029】特に、請求項2又は請求項3記載の脱酸・
精錬方法によれば、CO2 による攪拌とCaOによるA
2 3 吸着が同時に進行するので、清浄効果がきわめ
て高い。更に、請求項3記載の脱酸・精錬方法によれ
ば、Alの分散効果がきわめて高いのでより一層の清浄
効果がある。
[0029] In particular, the deoxidizing method according to claim 2 or 3
According to the refining method, stirring by CO 2 and A by CaO
Since l 2 O 3 adsorption proceeds simultaneously, the cleaning effect is extremely high. Further, according to the deoxidizing and refining method of the third aspect, the dispersing effect of Al is extremely high, so that there is a further cleaning effect.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶鋼中でガスを放出するガス放出物質
と、溶鋼中の酸素と結合する脱酸物質とを、未脱酸の溶
鋼中へ同時に添加し、脱酸生成物を生ずる反応の際、反
応に預かる局部局部に対して、予め溶鋼の流動を与える
ことを特徴とする溶鋼の脱酸・精錬方法。
1. A reaction for producing a deoxidized product by simultaneously adding a gas releasing substance releasing gas in molten steel and a deoxidizing substance combined with oxygen in the molten steel into undeoxidized molten steel. A method for deoxidizing and refining molten steel, wherein a flow of molten steel is given in advance to a local part subjected to a reaction.
【請求項2】 請求項1記載の溶鋼の脱酸・精錬方法に
おいて、前記ガス放出物質としての炭酸カルシウムと、
前記脱酸物質としてのアルミニウムとを、未脱酸の溶鋼
中へ同時に添加することを特徴とする溶鋼の脱酸・精錬
方法。
2. The method for deoxidizing and refining molten steel according to claim 1, wherein calcium gas is used as the gas releasing substance.
A method for deoxidizing and refining molten steel, comprising simultaneously adding aluminum as the deoxidizing substance to undeoxidized molten steel.
【請求項3】 請求項2記載の溶鋼の脱酸・精錬方法に
おいて、前記炭酸カルシウムと前記アルミニウムとを主
成分として粒子状に成形された複合脱酸精錬剤を、未脱
酸の溶鋼中へ添加することを特徴とする溶鋼の脱酸・精
錬方法。
3. The method for deoxidizing and refining molten steel according to claim 2, wherein the composite deoxidizing and refining agent formed into a particulate form mainly comprising the calcium carbonate and the aluminum is introduced into the undeoxidized molten steel. A method for deoxidizing and refining molten steel, characterized by being added.
JP32504094A 1994-12-27 1994-12-27 Deoxidation and refining of molten steel Pending JPH08176643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32504094A JPH08176643A (en) 1994-12-27 1994-12-27 Deoxidation and refining of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32504094A JPH08176643A (en) 1994-12-27 1994-12-27 Deoxidation and refining of molten steel

Publications (1)

Publication Number Publication Date
JPH08176643A true JPH08176643A (en) 1996-07-09

Family

ID=18172484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32504094A Pending JPH08176643A (en) 1994-12-27 1994-12-27 Deoxidation and refining of molten steel

Country Status (1)

Country Link
JP (1) JPH08176643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741491B1 (en) * 2005-12-30 2007-07-20 주식회사 인텍 Deoxidizing refractory composition for preparing steel with high purity and preparing method thereof
CN103074468A (en) * 2011-10-25 2013-05-01 宝山钢铁股份有限公司 Flux for removal of impurities in steel during vacuum refining and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741491B1 (en) * 2005-12-30 2007-07-20 주식회사 인텍 Deoxidizing refractory composition for preparing steel with high purity and preparing method thereof
CN103074468A (en) * 2011-10-25 2013-05-01 宝山钢铁股份有限公司 Flux for removal of impurities in steel during vacuum refining and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100695650B1 (en) Refining agent and refining method
CZ94091A3 (en) Process of refining steel in a ladle by making use of synthetic slag and a slag-forming mixture for making the same
JP5876168B2 (en) Low cost clean steel manufacturing method
JP3503176B2 (en) Hot metal dephosphorizer for injection
WO2009152643A1 (en) An additive used in secondary refining process, the producing method and the application thereof
EP0109153B1 (en) Calcium oxide based flux compositions
CN103233098A (en) Novel direct slag-feeding washing mixed material application method in converter tapping process
CN114686644A (en) Method for quickly producing white slag in LF (ladle furnace)
KR100741491B1 (en) Deoxidizing refractory composition for preparing steel with high purity and preparing method thereof
US3567432A (en) Metal casting
JPH08176643A (en) Deoxidation and refining of molten steel
CA1121602A (en) Lime bearing agent for use in refining of ferrous melt
JPH08260024A (en) Production of deoxidation refining agent for iron and steel
JPS587691B2 (en) Steel manufacturing method
CN107236844B (en) Smelting method and production process of clean steel
CN113388716B (en) Fluorine-free composite molten iron desulfurizing agent and preparation method thereof
CN115927796A (en) Fluoride-free premelted refining slag for refining high aluminum alloy steel
KR100336855B1 (en) Flux wire for use in the manufacture of high purity aluminum deoxidized steel
CN117604193A (en) Slag conglomeration agent containing rare earth oxide, preparation process and application thereof
JPS5943529B2 (en) Steel manufacturing method
KR100189297B1 (en) Method of making melting composite slag
JP3646633B2 (en) High cleanability ultra-low sulfur steel and its manufacturing method
JP3746903B2 (en) Desulfurization agent and desulfurization method with excellent hot metal desulfurization ability
CN111996335A (en) Core-spun yarn core powder composition for high-aluminum steel production and processing method
SU1271658A1 (en) Method of producing granules