JPH08176059A - Production of quinones - Google Patents

Production of quinones

Info

Publication number
JPH08176059A
JPH08176059A JP31814994A JP31814994A JPH08176059A JP H08176059 A JPH08176059 A JP H08176059A JP 31814994 A JP31814994 A JP 31814994A JP 31814994 A JP31814994 A JP 31814994A JP H08176059 A JPH08176059 A JP H08176059A
Authority
JP
Japan
Prior art keywords
copper
copper salt
carrier
sulfate
hydroquinone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31814994A
Other languages
Japanese (ja)
Inventor
Takaaki Sakamoto
高章 坂本
Yoshitomo Yonehara
祥友 米原
Shiyoushin Boku
鐘震 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP31814994A priority Critical patent/JPH08176059A/en
Publication of JPH08176059A publication Critical patent/JPH08176059A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • C07C46/02Preparation of quinones by oxidation giving rise to quinoid structures
    • C07C46/06Preparation of quinones by oxidation giving rise to quinoid structures of at least one hydroxy group on a six-membered aromatic ring
    • C07C46/08Preparation of quinones by oxidation giving rise to quinoid structures of at least one hydroxy group on a six-membered aromatic ring with molecular oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE: To produce a quinone compound useful as a polymerization inhibitor, an unsaturated polyester stabilizer, intermediate for pharmaceuticals and agrochemicals, etc., in an easily separable state without causing a side reaction by oxidizing a hydroquinone compound in the presence of a small amount of a supported copper salt while repeatedly using the supported copper salt. CONSTITUTION: This quinone compound is produced by oxidizing (A) a hydroquinone compound with an oxygen-containing gas e.g. in an organic solvent in the presence of (B) a supported copper salt obtained e.g. by adding a bivalent copper salt (e.g. cupric sulfate, cupric halide or cupric acetate) and a carrier such as an inorganic carrier (e.g. alumina, silica gel or florisil) to a polar solvent capable of dissolving the copper salt (e.g. water or alcohol) and removing the solvent from the solution e.g. by evaporation. The amount of the component B is preferably 0.005-1.0 equivalent in terms of the copper salt based on 1 equivalent of the component A and the oxidation reaction is carried out preferably at 40-300 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、キノン類の製造法に関
し、更に詳しくは、ハイドロキノン類を副反応なく、容
易に酸化して対応するキノン類を製造することができ、
生成物の単離操作が簡単で経済的に有利なキノン類の製
造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing quinones, and more specifically, it can easily oxidize hydroquinones without side reaction to produce corresponding quinones.
The present invention relates to a method for producing quinones, which has a simple product isolation operation and is economically advantageous.

【0002】[0002]

【従来の技術】キノン類は、重合禁止剤、不飽和ポリエ
ステル安定剤、芳香族ポリエステルモノマー原料、医
薬、農薬および染料等の中間体として極めて有用な化合
物である。
BACKGROUND OF THE INVENTION Quinones are extremely useful compounds as intermediates for polymerization inhibitors, unsaturated polyester stabilizers, raw materials for aromatic polyester monomers, pharmaceuticals, agricultural chemicals, dyes and the like.

【0003】ハイドロキノン類を酸化して対応するキノ
ン類を得る方法は、出発原料の入手の容易さと反応収率
の高さから広く用いられている。従来、ハイドロキノン
を酸化してキノンを得る方法としては、例えば(1)ハ
イドロキノンを2重量%硫酸水を媒体とし、触媒として
五酸化バナジウムを用い、塩素酸ナトリウムで酸化する
方法(Organic Syntheses、Col.
Vol.II、P553(1943));(2)ハイドロ
キノンを硫酸を媒体とし、重クロム酸ナトリウムで酸化
する方法(Organic Syntheses、Co
l.Vol.I、P482(1941));(3)ハイ
ドロキノンをイソプロピルアルコールを媒体とし、過酸
化水素水で酸化する方法(特開平5−79054号公
報)等が挙げられ、一般には上記(2)の方法が採用さ
れている。
The method of oxidizing hydroquinones to obtain corresponding quinones is widely used because of easy availability of starting materials and high reaction yield. Conventionally, as a method of oxidizing hydroquinone to obtain quinone, for example, (1) a method of oxidizing hydroquinone with sodium chlorate using vanadium pentoxide as a catalyst with 2 wt% sulfuric acid as a medium (Organic Syntheses, Col.
Vol. II, P553 (1943)); (2) A method of oxidizing hydroquinone with sodium dichromate using sodium dichromate (Organic Syntheses, Co.
l. Vol. I, P482 (1941)); (3) A method of oxidizing hydroquinone with hydrogen peroxide solution using isopropyl alcohol as a medium (JP-A-5-79054), and the like. Generally, the method of (2) above is used. Has been adopted.

【0004】しかしながら、これらの方法では、酸化剤
を原料のハイドロキノンに対して1当量以上用いなけれ
ばならず、しかも重金属の処理や酸性廃液の処理などの
排水処理を行なわなければならないなどの問題があるこ
とから工業的製造方法として好ましいものではない。
However, these methods have a problem that the oxidizing agent must be used in an amount of 1 equivalent or more with respect to the raw material hydroquinone, and that wastewater treatment such as heavy metal treatment and acidic waste liquid treatment must be performed. Therefore, it is not preferable as an industrial manufacturing method.

【0005】このような観点から、反応の触媒化が検討
されており、これまでに、(a)硫酸銅(II)5水和物
を29重量%アンモニア水に溶解させて触媒として用い
る方法(特開昭62−81347号公報);(b)鉄
(III )−エチレンジアミンテトラカルボン酸錯体を8
0重量%メタノール水に溶解させて触媒として用いる方
法(Joshiら、Tetrahedron Lett
ers、Vol.35、P5083(1994)などが
知られている。
From this point of view, catalysis of the reaction has been studied, and a method of dissolving (a) copper (II) sulfate pentahydrate in 29% by weight of ammonia water and using it as a catalyst has been proposed so far. JP-A-62-81347); (b) Iron (III) -ethylenediaminetetracarboxylic acid complex 8
Method of dissolving in 0 wt% methanol water and using as a catalyst (Joshi et al., Tetrahedron Lett
ers, Vol. 35, P5083 (1994) and the like.

【0006】しかし、上記(a)および(b)の方法で
は、反応混合物の分離や抽出という煩雑な精製工程を必
要とすため工業的合成法としては、反応操作上好ましい
ものではない。また(a)の方法では、2−メチル−3
−フイチル−1,4−ナフトハイドロキノンの酸化は可
能であるが、p−ヒドロキノンのような工業的に重要な
ハイドロキノン類の酸化はほとんどできず、適用範囲が
狭く、一般性に欠ける。更に、いずれの方法も収率の低
さや反応操作上の問題から、いまだ実用化には至ってい
ない。
However, the above methods (a) and (b) require a complicated purification step such as separation and extraction of the reaction mixture, and are not preferable in terms of reaction operation as an industrial synthesis method. Further, in the method (a), 2-methyl-3
-While phytyl-1,4-naphthohydroquinone can be oxidized, industrially important hydroquinones such as p-hydroquinone can hardly be oxidized, its application range is narrow, and its generality is lacking. Furthermore, none of these methods has been put to practical use because of low yield and problems in the reaction operation.

【0007】[0007]

【発明が解決しようとする課題】以上、詳述した如く、
従来既知のキノン類の製造方法には、1)酸化剤を等モ
ル以上必要とする、2)重金属の処理あるいは廃液処理
などを必要とする、3)分離、抽出という精製工程が必
要である、4)適用範囲が狭く、一般性に欠ける等、工
業的見地から好ましいものではなかった。従って、工業
的見地から、生成物の単離操作が簡単で、更に経済的に
有利なキノン類の製造方法を開発することが重要な課題
となっている。
As described above in detail,
Conventionally known methods for producing quinones require 1) an oxidizing agent in an equimolar amount or more, 2) treatment of heavy metals or waste liquid treatment, and 3) purification steps of separation and extraction. 4) It is not preferable from an industrial point of view, such as a narrow application range and lack of generality. Therefore, from an industrial point of view, it is an important subject to develop a method for producing a quinone which is easy to isolate a product and is economically advantageous.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討を行った結果、担体に銅塩を担持
させた銅塩担持体の存在下でハイドロキノン類を酸化さ
せるという簡単な方法で、対応するキノン類を製造する
ことができ、反応終了後は銅塩担持体をろ過のような非
常に簡単な操作のみで生成物と分離することが可能で、
更に必要により通常既知の精製法、例えば再結晶法、カ
ラムクロマトグラフィー、活性炭による吸着法等を用い
て容易に精製できること、しかもここで用いる銅塩担持
体はハイドロキノン類に対し当量以下でも反応が進行
し、必要により繰り返し使用することもできることを見
い出し、本発明に到達した。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that hydroquinones are oxidized in the presence of a copper salt carrier in which a copper salt is supported on a carrier. The corresponding quinones can be produced by a simple method, and after the reaction is completed, the copper salt carrier can be separated from the product by a very simple operation such as filtration.
Further, if necessary, it can be easily purified by a known purification method such as a recrystallization method, a column chromatography, an adsorption method using activated carbon, and the copper salt-supported material used in this step proceeds even if the amount thereof is equal to or less than that of the hydroquinone. However, they have found that they can be used repeatedly if necessary, and have reached the present invention.

【0009】即ち、本発明は、銅塩担持体の存在下でハ
イドロキノン類を酸化させることを特徴とするキノン類
の製造方法を提供するものである。本発明で用いるハイ
ドロキノン類とは、p−ハイドロキノンおよびこれらの
誘導体の総称であり、例示すると、メチル−p−ハイド
ロキノン、クロロ−p−ハイドロキノン、フェニル−p
−ハイドロキノン、トリメチル−p−ハイドロキノン、
テトラメチル−p−ハイドロキノン、2,6−tert
− ブチルハイドロキノン、1,4−ジヒドロキシナフ
タレン等が挙げられる。但し、ハイドロキノン類は、こ
こに例示の化合物に限定されるものではない。
That is, the present invention provides a process for producing quinones, which is characterized in that hydroquinones are oxidized in the presence of a copper salt carrier. The hydroquinone used in the present invention is a general term for p-hydroquinone and derivatives thereof, and examples thereof include methyl-p-hydroquinone, chloro-p-hydroquinone and phenyl-p.
-Hydroquinone, trimethyl-p-hydroquinone,
Tetramethyl-p-hydroquinone, 2,6-tert
-Butyl hydroquinone, 1,4-dihydroxynaphthalene and the like can be mentioned. However, the hydroquinones are not limited to the compounds exemplified here.

【0010】本発明で用いる銅塩担持体は、担体に銅塩
を担持させたものであり、銅塩としては、2価銅塩が好
ましく用いられ、例えば硫酸銅(II)、ハロゲン化銅
(II)、 酢酸銅(II)、 硝酸銅(II)などが挙げられ
る。例示すると、CuSO4 、CuSO45H2O、Cu
2 、CuCl2 、CuBr2 、Cu(OCOC
32、Cu(NO32等であるが、ここに例示の化合
物に限定されるものではない。また、これらは併用する
こともできる。好ましくは硫酸銅(II)、ハロゲン化銅
(II)および酢酸銅(II)であり、工業的観点から特に
硫酸銅(II)が推奨される。
The copper salt carrier used in the present invention is a carrier in which a copper salt is supported. As the copper salt, a divalent copper salt is preferably used. For example, copper (II) sulfate and copper halide ( II), copper acetate (II), copper nitrate (II) and the like. For example, CuSO 4 , CuSO 4 5H 2 O, Cu
F 2 , CuCl 2 , CuBr 2 , Cu (OCOC
H 3 ) 2 , Cu (NO 3 ) 2 and the like, but are not limited to the compounds exemplified here. Moreover, these can also be used together. Copper (II) sulfate, copper (II) halide and copper (II) acetate are preferable, and copper (II) sulfate is particularly recommended from an industrial viewpoint.

【0011】担体としては、特に制限はなく銅塩を担持
できるものなら良い。例示すると、アルミナ、シリカゲ
ル、モレキュラ−シ−ブ、フロリジル、セライト、モン
モリロナイト、活性白土、酸化マグネシウム、酸化バリ
ウム等の無機担体、ポリスチレン、ポリエチレン、イオ
ン交換樹脂等の有機担体、活性炭などが挙げられるが、
これらの化合物に限定されるものではない。また、これ
らは併用してもよい。これらのなかでも、無機担体、特
にアルミナ、シリカゲルおよびフロリジルが好適であ
り、アルミナが最も推奨できる。
The carrier is not particularly limited as long as it can support a copper salt. Examples include alumina, silica gel, molecular sieve, florisil, celite, montmorillonite, activated clay, magnesium oxide, inorganic carriers such as barium oxide, polystyrene, polyethylene, organic carriers such as ion exchange resins, activated carbon and the like. ,
It is not limited to these compounds. Also, these may be used in combination. Of these, inorganic carriers are preferred, especially alumina, silica gel and florisil, with alumina being most recommended.

【0012】好ましい担体と銅塩の組み合わせは、アル
ミナに硫酸銅(II)を担持させたもの、アルミナに酢酸
銅(II)を担持させたものおよびアルミナにフッ化銅
(II)を担持させたものであり、特にアルミナに硫酸銅
(II)を担持させたものが推奨される。
The preferred combination of the carrier and the copper salt is such that alumina supports copper (II) sulfate, alumina supports copper (II) acetate, and alumina supports copper (II) fluoride. In particular, it is recommended that alumina support copper (II) sulfate.

【0013】銅塩担持体の調製法は、特に限定されるも
のではないが、一般的には銅塩をあらかじめ適当な溶媒
に溶解しておき、その中に担体を加え、溶媒の沸点以下
の温度で攪拌した後、溶媒を留去し、乾燥させることで
調製できる。溶媒としては、銅塩を溶解するものであれ
ば特に制限はないが、水、アルコ−ル類、ニトリル類な
どの極性溶媒が推奨され、なかでも水および/又はアル
コ−ル類が特に好ましい。攪拌温度は室温に限定される
ものではなく、使用する溶媒の沸点以下であれば特に問
題はない。また、攪拌時間についても同様、特に制限は
ないが、通常10分〜1時間の範囲で十分である。乾燥
温度については、使用した溶媒を除去できる温度であれ
ば特に問題はないが、温度が高すぎると担持体の活性が
低下、もしくは失活する可能性があるので、通常、使用
溶媒の沸点よりやや高めに設定するのが好ましい。ま
た、乾燥は常圧下、空気中又は窒素、アルゴンの如き不
活性ガス雰囲気下で行ってもよく、減圧下で行うことも
できる。
The method for preparing the copper salt carrier is not particularly limited, but in general, the copper salt is previously dissolved in a suitable solvent, the carrier is added thereto, and the amount of the solvent is not higher than the boiling point of the solvent. It can be prepared by stirring at temperature, distilling off the solvent and drying. The solvent is not particularly limited as long as it dissolves the copper salt, but polar solvents such as water, alcohols and nitriles are recommended, and water and / or alcohols are particularly preferable. The stirring temperature is not limited to room temperature, and there is no particular problem as long as it is not higher than the boiling point of the solvent used. Similarly, the stirring time is not particularly limited, but a range of 10 minutes to 1 hour is usually sufficient. Regarding the drying temperature, there is no particular problem as long as it is a temperature at which the solvent used can be removed, but if the temperature is too high, the activity of the carrier may be decreased or deactivated. It is preferable to set it slightly higher. Further, the drying may be carried out under atmospheric pressure, in air or in an atmosphere of an inert gas such as nitrogen or argon, or under reduced pressure.

【0014】銅塩担持体の銅塩担持率は、特に制限はな
く、担体100重量部に対して、100重量部以上の銅
塩を担持させることもできるが、反応速度および工業的
見地からは担体100重量部に対して、0.1〜50重
量部、なかでも1〜20重量部の銅塩を担持させたもの
が推奨される。
The copper salt supporting rate of the copper salt carrier is not particularly limited, and 100 parts by weight or more of the copper salt can be supported with respect to 100 parts by weight of the carrier, but from the reaction rate and industrial viewpoint. It is recommended to support 0.1 to 50 parts by weight, especially 1 to 20 parts by weight, of copper salt with respect to 100 parts by weight of the carrier.

【0015】本発明におけるハイドロキノン類の酸化反
応は、有機溶媒の不存在下あるいは存在下に行うことが
できるが、反応終了後の銅塩担持体の分離が容易な点で
有機溶媒の存在下に行うことが好ましい。有機溶媒を用
いる場合、銅塩と錯体を形成せず、ハイドロキノン類と
反応しないものならば、いずれも使用可能であり、例え
ば脂肪族炭化水素類、芳香族炭化水素類、エステル類、
ケトン類等から任意に選択できる。なかでも反応時間の
点から沸点が高い有機溶媒の方が反応を高温で行うこと
ができ、短時間で反応が終了するので好ましく、通常沸
点40℃以上の有機溶媒を用いるが、低沸点溶媒も利用
可能であり、この場合、加圧下で反応を行うことが有利
である。尚、上記脂肪族炭化水素類および芳香族炭化水
素類はハロゲン化された炭化水素も包含する。
The oxidation reaction of the hydroquinone in the present invention can be carried out in the absence or presence of an organic solvent, but in the presence of an organic solvent, it is easy to separate the copper salt carrier after completion of the reaction. It is preferable to carry out. When an organic solvent is used, any of those that do not form a complex with a copper salt and do not react with hydroquinones can be used, for example, aliphatic hydrocarbons, aromatic hydrocarbons, esters,
It can be arbitrarily selected from ketones and the like. Among them, an organic solvent having a high boiling point is preferable in terms of reaction time because the reaction can be carried out at a high temperature and the reaction is completed in a short time. Usually, an organic solvent having a boiling point of 40 ° C or higher is used, but a low boiling point solvent is also used. Available, in which case it is advantageous to carry out the reaction under pressure. The aliphatic hydrocarbons and aromatic hydrocarbons include halogenated hydrocarbons.

【0016】上記有機溶媒のなかでも、脂肪族炭化水素
類としては炭素原子数6〜16で、枝分かれしていても
よい脂肪族炭化水素類が、芳香族炭化水素類としては炭
素原子数6〜11で、ハロゲン原子が置換されていても
よい芳香族炭化水素類が、エステル類としては炭素原子
数1〜6のカルボン酸と炭素原子数1〜13の枝分かれ
していてもよいアルキル基とのエステル類が、ケトン類
としては炭素原子数3〜13の枝分かれしていてもよい
ケトン類が、それぞれ好ましい。
Among the above-mentioned organic solvents, aliphatic hydrocarbons having 6 to 16 carbon atoms and optionally branched aliphatic hydrocarbons, and aromatic hydrocarbons having 6 to 16 carbon atoms. In 11, the aromatic hydrocarbons in which the halogen atom may be substituted are, as the esters, a carboxylic acid having 1 to 6 carbon atoms and an optionally branched alkyl group having 1 to 13 carbon atoms. The esters are preferably ketones having 3 to 13 carbon atoms and optionally branched.

【0017】これら有機溶媒を具体的に示すと、脂肪族
炭化水素類ではヘキサン、ヘプタン、オクタン、ノナ
ン、デカン、ウンデカン、ドデカン、トリデカン、テト
ラデカン、ペンタデカン、ヘキサデカン、デカリン等
が、芳香族炭化水素類ではクロロベンゼン、m−ジクロ
ロベンゼン、o−ジクロロベンゼン、ブロモベンゼン、
m−ジブロモベンゼン、o−ジブロモベンゼン、p−ジ
ブロモベンゼン、ベンゾニトリル、ニトロベンゼン等
が、エステル類では酢酸プロピル、酢酸ペンチル、酢酸
ヘキシル、酢酸オクチル、酢酸ドデシル、プロピオン酸
メチル、酪酸メチル、ヘプタン酸メチル、酪酸ブチル、
酢酸2−エチルヘキシル等が、ケトン類では2−ブタノ
ン、2−ヘキサン、3−ヘキサノン、2−デカノン、3
−デカノン、4−デカノン、5−ノナノン、メチルイソ
ブチルケトン、メチルペンチルケトン等が挙げられ、な
かでもハイドロキノン類の溶解性に優れ、短時間で反応
が終了する点でエステル類とケトン類が好ましく、エス
テル類が最も好ましい。尚、本発明で用いることのでき
る有機溶媒は、ここに例示の有機溶媒に限定されるもの
ではなく、また併用することもできる。
Specific examples of these organic solvents include aliphatic hydrocarbons such as hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane and decalin, and aromatic hydrocarbons. Then chlorobenzene, m-dichlorobenzene, o-dichlorobenzene, bromobenzene,
Examples of esters include m-dibromobenzene, o-dibromobenzene, p-dibromobenzene, benzonitrile, nitrobenzene, etc., and among the esters, propyl acetate, pentyl acetate, hexyl acetate, octyl acetate, dodecyl acetate, methyl propionate, methyl butyrate, methyl heptanoate. Butyl butyrate,
2-Ethylhexyl acetate and the like are 2-butanone, 2-hexane, 3-hexanone, 2-decanone, and 3 for ketones.
-Decanone, 4-decanone, 5-nonanone, methyl isobutyl ketone, methyl pentyl ketone, and the like, among them, the solubility of hydroquinones is excellent, and esters and ketones are preferable in that the reaction is completed in a short time, Esters are most preferred. The organic solvent that can be used in the present invention is not limited to the organic solvents exemplified here, and may be used in combination.

【0018】本発明の酸化反応を行うにあたり、反応温
度は任意の範囲で選択できるが、工業的見地から40℃
〜300℃の範囲が短時間で反応が終了するために好ま
しく、特に40〜200℃の範囲が推奨される。また、
反応時間は、反応温度に依存し、一概には言えないが、
1〜24時間の範囲で終了する。
In carrying out the oxidation reaction of the present invention, the reaction temperature can be selected within an arbitrary range, but from an industrial viewpoint, it is 40 ° C.
The range of to 300 ° C. is preferable because the reaction is completed in a short time, and the range of 40 to 200 ° C. is particularly recommended. Also,
The reaction time depends on the reaction temperature and cannot be generally stated,
It ends in the range of 1 to 24 hours.

【0019】更に、本発明の製造方法において、各原料
の仕込み順序に制限はなく、始めに一括して、ハイドロ
キノン類、銅塩担持体、更に必要により有機溶媒を仕込
んでもよく、あるいは順次仕込んでもよい。ここで用い
る銅塩担持体の仕込み割合は、酸化反応時の条件により
大きく異なり、特に制限はないが、工業的見地からハイ
ドロキノン類1モルに対し、通常銅塩担持体中の銅塩が
0.005〜10.0当量となる範囲が推奨される。ま
た、有機溶媒を使用する場合、同様に特にその量に制限
はないが、ハイドロキノン類1モルに対して、100〜
5000mlの範囲が推奨される。
Further, in the production method of the present invention, the order of charging the respective raw materials is not limited, and the hydroquinones, the copper salt carrier and, if necessary, the organic solvent may be charged all at once in the beginning, or sequentially. Good. The charging ratio of the copper salt carrier used here varies greatly depending on the conditions at the time of the oxidation reaction and is not particularly limited, but from an industrial point of view, usually 1 mol of hydroquinone is 0.1% of copper salt in the copper salt carrier. A range of 005 to 10.0 equivalents is recommended. When an organic solvent is used, the amount thereof is not particularly limited, but it is 100 to 100 mol per 1 mol of hydroquinone.
A range of 5000 ml is recommended.

【0020】本発明の製造方法において、ハイドロキノ
ン類の酸化反応は、不活性ガス雰囲気下又は酸素含有気
体雰囲気下で行うことができる。また、酸化反応中に酸
素含有気体を系中に導入してもよい。なかでも、酸素含
有気体雰囲気下あるいは酸素含有気体を導入しつつ酸化
反応を行うと、銅塩担持体は酸化触媒として作用し、比
較的少ない使用量、例えばハイドロキノン類1モルに対
して銅塩担持体中の銅塩が0.005〜1.0当量とな
る使用量で酸化反応を行うことができるので特に好まし
い。また、不活性ガス雰囲気下で反応を行った場合、銅
塩担持体は、比較的多い使用量、例えばハイドロキノン
類1モルに対して銅塩担持体中の銅塩が1〜10.0当
量となる使用量が推奨されるが、反応終了後、ろ別した
銅塩担持体を有機溶媒中に分散させ、酸素含有気体を導
入することで、酸化活性を再生することができるという
利点がある。この時、室温で行っても良いが、酸化活性
の再生に時間を要する為、50℃以上の温度で行うこと
が好ましい。ここで用いる酸素含有気体としては、酸素
と不活性ガスとの混合気体や空気が挙げられる。
In the production method of the present invention, the oxidation reaction of hydroquinones can be carried out in an inert gas atmosphere or an oxygen-containing gas atmosphere. Also, an oxygen-containing gas may be introduced into the system during the oxidation reaction. In particular, when the oxidation reaction is carried out in an oxygen-containing gas atmosphere or while introducing an oxygen-containing gas, the copper salt carrier acts as an oxidation catalyst, and a relatively small amount used, for example, 1 mol of hydroquinone supports copper salt. It is particularly preferable because the oxidation reaction can be carried out in a used amount such that the copper salt in the body is 0.005 to 1.0 equivalent. When the reaction is carried out in an inert gas atmosphere, the copper salt carrier is used in a relatively large amount, for example, 1 to 10.0 equivalents of the copper salt in the copper salt carrier with respect to 1 mol of the hydroquinone. It is recommended to use the following amount, but after the reaction is completed, the filtered copper salt carrier is dispersed in an organic solvent and an oxygen-containing gas is introduced, which has the advantage that the oxidation activity can be regenerated. At this time, it may be carried out at room temperature, but it is preferable to carry out at a temperature of 50 ° C. or higher because it takes time to regenerate the oxidative activity. Examples of the oxygen-containing gas used here include a mixed gas of oxygen and an inert gas and air.

【0021】[0021]

【実施例】以下に、実施例および比較例を示して本発明
を更に具体的に説明するが、本発明はこれらに限定され
るものではない。尚、例中の部は特に断りのない限り重
量部であり、また%は特に断りのない限り原料ハイドロ
キノン類基準のmol%である。
EXAMPLES The present invention will be described in more detail below by showing Examples and Comparative Examples, but the present invention is not limited to these. The parts in the examples are parts by weight unless otherwise specified, and% is mol% based on the starting hydroquinone unless otherwise specified.

【0022】実施例1 銅塩担持体の調製:100mlの丸底フラスコに、硫酸
銅(II)5水和物1.68gおよび水50mlを加えて
硫酸銅(II)5水和物を溶解させた後、アルミナ10g
を加え、室温で30分間激しく攪拌した。次いで、ロ−
タリ−エバポレ−タ−で水を留去した後、150℃で7
時間減圧乾燥し、アルミナ100部に対して10部の硫
酸銅(II)を担持した硫酸銅(II)担持アルミナを調製
し、デシケ−タ−中に保存した。
Example 1 Preparation of Copper Salt Carrier: In a 100 ml round bottom flask, 1.68 g of copper (II) sulfate pentahydrate and 50 ml of water were added to dissolve copper (II) sulfate pentahydrate. And then 10g of alumina
Was added, and the mixture was vigorously stirred at room temperature for 30 minutes. Then,
After distilling off the water with a tally evaporator, the mixture was kept at 150 ° C. for 7 hours.
After drying under reduced pressure for an hour, copper (II) sulfate-supported alumina carrying 10 parts of copper (II) sulfate per 100 parts of alumina was prepared and stored in a desiccator.

【0023】攪拌子および還流冷却器を付した30ml
の丸底フラスコに、p−ハイドロキノン0.110g
(1mmol)、上記硫酸銅(II)担持アルミナ0.3
51g〔硫酸銅(II):0.2mmol〕および酢酸ヘ
キシル10mlを加え、フラスコを140℃の湯浴に浸
し、反応系に空気を吹き込みながら8時間反応させた。
反応終了後、反応液を室温に冷却し、ろ過した。ろ過残
渣をジクロロメタン30mlで2回、アセトン30ml
で2回洗浄した後、ろ液と洗浄液を合わせ濃縮した。シ
リカゲルカラムクロマトグラフィ−(展開溶媒、ジクロ
ロメタン)により、p−ベンゾキノン0.11g(収
率:98%)を得た。
30 ml with stirrer and reflux condenser
In a round bottom flask of 0.110 g of p-hydroquinone
(1 mmol), the above copper (II) sulfate-supported alumina 0.3
51 g [copper (II) sulfate: 0.2 mmol] and 10 ml of hexyl acetate were added, the flask was immersed in a water bath at 140 ° C., and the reaction was carried out for 8 hours while blowing air into the reaction system.
After completion of the reaction, the reaction solution was cooled to room temperature and filtered. The filtration residue is washed twice with 30 ml of dichloromethane and 30 ml of acetone.
After washing twice with, the filtrate and the washing solution were combined and concentrated. By silica gel column chromatography (developing solvent, dichloromethane), 0.11 g (yield: 98%) of p-benzoquinone was obtained.

【0024】実施例2 アルミナの代わりにシリカゲルを用いた以外は実施例1
と同様にして、シリカゲル100部に対して10部の硫
酸銅(II)を担持した硫酸銅(II)担持シリカゲルを調
製した。
Example 2 Example 1 except that silica gel was used instead of alumina.
In the same manner as above, copper (II) sulfate-supported silica gel supporting 10 parts of copper (II) sulfate per 100 parts of silica gel was prepared.

【0025】更に、この硫酸銅(II)担持シリカゲル
0.351g〔硫酸銅(II):0.2mmol〕を、硫
酸銅(II)担持アルミナ0.351g〔硫酸銅(II):
0.2mmol〕の代わりに用いた以外は実施例1と同
様にして、p−ベンゾキノン0.062g(収率:57
%)を得た。
Further, 0.351 g of this copper (II) sulfate-supported silica gel [copper (II) sulfate: 0.2 mmol] was added to 0.351 g of copper (II) sulfate-supported alumina [copper (II) sulfate:
0.2 mmol] in the same manner as in Example 1 except that p-benzoquinone (0.062 g, yield: 57) was used.
%) Was obtained.

【0026】実施例3 アルミナの代わりにフロリジルを用いた以外は実施例1
と同様にして、フロリジル100部に対して10部の硫
酸銅(II)を担持した硫酸銅(II)坦持フロリジルを調
製した。
Example 3 Example 1 except that Florisil was used instead of alumina.
In the same manner as above, copper (II) sulfate-supporting florisil supporting 10 parts of copper (II) sulfate with respect to 100 parts of florisil was prepared.

【0027】更に、この硫酸銅(II)坦持フロリジル
0.351g〔硫酸銅(II):0.2mmol〕を、硫
酸銅(II)担持アルミナ0.351g〔硫酸銅(II):
0.2mmol〕の代わりに用いた以外は実施例1と同
様にして、p−ベンゾキノン0.11g(収率:98
%)を得た。
Further, 0.351 g of copper (II) sulfate-supporting Florisil [copper (II) sulfate: 0.2 mmol] was added to copper (II) sulfate-supporting alumina 0.351 g [copper (II) sulfate:
0.2 mmol] in the same manner as in Example 1 except that 0.11 g (yield: 98) of p-benzoquinone was used.
%) Was obtained.

【0028】実施例4 硫酸銅(II)5水和物1.68gの代わりにフッ化銅
(II)1gを用いた以外は同様にして、アルミナ100
部に対して10部のフッ化銅(II)を担持したフッ化銅
(II)担持アルミナを調製した。
Example 4 Alumina 100 was similarly prepared except that 1 g of copper (II) fluoride was used instead of 1.68 g of copper (II) sulfate pentahydrate.
Copper (II) fluoride-supported alumina supporting 10 parts of copper (II) fluoride was prepared.

【0029】更に、このフッ化銅(II)担持アルミナ
0.223g〔フッ化銅(II):0.2mmol〕を、
硫酸銅(II)担持アルミナ0.351g〔硫酸銅(I
I):0.2mmol〕の代わりに用いた以外は実施例
1と同様にして、p−ベンゾキノン0.11g(収率:
98%)を得た。
Further, 0.223 g of this copper (II) fluoride-supported alumina [copper (II) fluoride: 0.2 mmol] was added to
0.351 g of copper (II) sulfate-supported alumina [copper sulfate (I
I): 0.2 mmol] in the same manner as in Example 1 except that 0.11 g of p-benzoquinone (yield:
98%).

【0030】実施例5 硫酸銅(II)5水和物1.68gの代わりに酢酸銅(I
I)1gを用いた以外は同様にして、アルミナ100部
に対して10部の酢酸銅(II)を担持した酢酸銅(II)
担持アルミナを調製した。
Example 5 Instead of 1.68 g of copper (II) sulfate pentahydrate, copper acetate (I
I) Copper acetate (II) carrying 10 parts of copper acetate (II) per 100 parts of alumina in the same manner except that 1 g was used.
A supported alumina was prepared.

【0031】更に、この酢酸銅(II)担持アルミナ0.
4g〔酢酸銅(II):0.2mmol〕を、硫酸銅(I
I)担持アルミナ0.351g〔硫酸銅(II):0.2
mmol〕の代わりに用いた以外は実施例1と同様にし
て、p−ベンゾキノン0.105g(収率:97%)を
得た。
Further, this copper (II) acetate-supported alumina 0.
4 g [copper acetate (II): 0.2 mmol] was added to copper sulfate (I
I) Supported alumina 0.351 g [copper sulfate (II): 0.2
was used instead of [mmol] to obtain 0.105 g (yield: 97%) of p-benzoquinone in the same manner as in Example 1.

【0032】実施例6 銅塩担持体の調製:100mlの丸底フラスコに、酢酸
銅1gおよびエタノ−ル100mlを加えて酢酸銅を溶
解させた後、アルミナ10gを加え、室温で30分間攪
拌した。次いで、エタノールを留去した後、100℃で
7時間減圧乾燥し、アルミナ100部に対して10部の
酢酸銅(II)を坦持した酢酸銅(II)坦持アルミナを調
製し、デシケ−タ−中に保存した。
Example 6 Preparation of Copper Salt Carrier: In a 100 ml round bottom flask, 1 g of copper acetate and 100 ml of ethanol were added to dissolve copper acetate, 10 g of alumina was added, and the mixture was stirred at room temperature for 30 minutes. . Then, after distilling off ethanol, it was dried under reduced pressure at 100 ° C. for 7 hours to prepare copper acetate (II) -supported alumina carrying 10 parts of copper (II) acetate per 100 parts of alumina, and desiccation. It was stored in a table.

【0033】更に、この酢酸銅(II)担持アルミナ0.
4g〔酢酸銅(II):0.2mmol〕を、硫酸銅(I
I)担持アルミナ0.351g〔硫酸銅(II):0.2
mmol〕の代わりに用いた以外は実施例1と同様にし
て、p−ベンゾキノン0.092g(収率:85%)を
得た。
Further, this copper (II) acetate-supported alumina 0.
4 g [copper acetate (II): 0.2 mmol] was added to copper sulfate (I
I) Supported alumina 0.351 g [copper sulfate (II): 0.2
was used in the same manner as in Example 1 except that p-benzoquinone (0.092 g, yield: 85%) was obtained.

【0034】実施例7 酢酸ヘキシル10mlの代わりに酢酸プロピル10ml
中で反応させた以外は実施例1と同様にして、p−ベン
ゾキノン0.098g(収率:96%)を得た。
Example 7 10 ml of propyl acetate instead of 10 ml of hexyl acetate
In the same manner as in Example 1 except that the reaction was carried out in the same manner, 0.098 g (yield: 96%) of p-benzoquinone was obtained.

【0035】実施例8 酢酸ヘキシル10mlの代わりにメチルペンチルケトン
10ml中で反応させた以外は実施例1と同様にして、
p−ベンゾキノン0.78g(収率:76%)を得た。
Example 8 Example 8 was repeated except that the reaction was carried out in 10 ml of methyl pentyl ketone instead of 10 ml of hexyl acetate.
0.78 g (yield: 76%) of p-benzoquinone was obtained.

【0036】実施例9 酢酸ヘキシル10mlの代わりにデカリン10ml中で
反応させた以外は実施例1と同様にして、p−ベンゾキ
ノン0.047g(収率:46%)を得た。
Example 9 In the same manner as in Example 1 except that 10 ml of decalin was used instead of 10 ml of hexyl acetate, 0.047 g (yield: 46%) of p-benzoquinone was obtained.

【0037】実施例10 銅塩担持体の調製:100mlの丸底フラスコに、硫酸
銅(II)5水和物1.68gおよび水50mlを加えて
硫酸銅(II)5水和物を溶解させた後、アルミナ20g
を加え、室温で30分間攪拌した。次いで、ロータリー
エバポレーターで水を留去した後、150℃で7時間減
圧乾燥し、アルミナ100部に対して5部の硫酸銅(I
I)を坦持した硫酸銅(II)坦持アルミナを調製し、デ
シケ−タ−中に保存した。
Example 10 Preparation of copper salt carrier: In a 100 ml round bottom flask, 1.68 g of copper (II) sulfate pentahydrate and 50 ml of water were added to dissolve copper (II) sulfate pentahydrate. After that, 20g of alumina
Was added and stirred at room temperature for 30 minutes. Then, after distilling off the water with a rotary evaporator, it was dried under reduced pressure at 150 ° C. for 7 hours, and 5 parts of copper sulfate (I
Copper (II) sulfate-supported alumina supporting I) was prepared and stored in a desiccator.

【0038】攪拌子および還流冷却器を付した30ml
の丸底フラスコに、p−ハイドロキノン0.110g
(1mmol)、上記硫酸銅(II)坦持アルミナ0.6
7g〔硫酸銅(II):0.2mmol〕および酢酸ヘキ
シル10mlを加え、フラスコを140℃の湯浴に浸
し、反応系に空気を吹き込みながら8時間反応させた。
反応終了後、反応液を室温に冷却し、ろ過した。ろ過残
渣をジクロロメタン30mlで2回、ついでアセトン3
0mlで2回で洗浄した後、ろ液と洗浄液を合わせ濃縮
した。シリカゲルカラムクロマトグラフィー(展開溶
媒、ジクロロメタン)により、p−ベンゾキノン0.1
03g(収率:95%)を得た。
30 ml with stirrer and reflux condenser
In a round bottom flask of 0.110 g of p-hydroquinone
(1 mmol), the above-mentioned copper (II) sulfate-supported alumina 0.6
7 g [copper (II) sulfate: 0.2 mmol] and 10 ml hexyl acetate were added, the flask was immersed in a water bath at 140 ° C., and the reaction was carried out for 8 hours while blowing air into the reaction system.
After completion of the reaction, the reaction solution was cooled to room temperature and filtered. The filter residue is washed twice with 30 ml of dichloromethane and then with acetone 3
After washing twice with 0 ml, the filtrate and the washing liquid were combined and concentrated. By silica gel column chromatography (developing solvent, dichloromethane), p-benzoquinone 0.1
03 g (yield: 95%) was obtained.

【0039】実施例11 銅塩担持体の調製:100mlの丸底フラスコに、硫酸
銅(II)5水和物1.68gおよび水50mlを加えて
硫酸銅(II)5水和物を溶解させた後、アルミナ10g
を加え、室温で30分間激しく攪拌した。次いで、ロ−
タリ−エバポレ−タ−で水を留去した後、150℃で7
時間減圧乾燥し、アルミナ100部に対して10部の硫
酸銅(II)を坦持した硫酸銅(II)坦持アルミナを調製
し、デシケ−タ−中に保存した。
Example 11 Preparation of copper salt carrier: In a 100 ml round bottom flask, 1.68 g of copper (II) sulfate pentahydrate and 50 ml of water were added to dissolve copper (II) sulfate pentahydrate. And then 10g of alumina
Was added, and the mixture was vigorously stirred at room temperature for 30 minutes. Then,
After distilling off the water with a tally evaporator, the mixture was kept at 150 ° C. for 7 hours.
After drying under reduced pressure for an hour, copper (II) sulfate-supported alumina supporting 10 parts of copper (II) sulfate per 100 parts of alumina was prepared and stored in a desiccator.

【0040】攪拌子および還流冷却器を付した30ml
の丸底フラスコに、p−ハイドロキノン0.110g
(1mmol)、上記硫酸銅(II)坦持アルミナ0.3
51g〔硫酸銅(II):0.2mmol〕および酢酸プ
ロピル10mlを加え、フラスコを100℃の湯浴に浸
し、反応系に空気を吹き込みながら8時間反応させた。
反応終了後、反応液を室温に冷却し、ろ過した。ろ過残
渣をジクロロメタン30mlで2回、アセトン30ml
で2回洗浄した後、ろ液と洗浄液を合わせ濃縮した。シ
リカゲルカラムクロマトグラフィ−(展開溶媒、ジクロ
ロメタン)により、p−ベンゾキノン0.095g(収
率:95%)を得た。
30 ml with stirrer and reflux condenser
In a round bottom flask of 0.110 g of p-hydroquinone
(1 mmol), the above copper (II) sulfate-supported alumina 0.3
51 g [copper (II) sulfate: 0.2 mmol] and 10 ml of propyl acetate were added, the flask was immersed in a water bath at 100 ° C., and the reaction was carried out for 8 hours while blowing air into the reaction system.
After completion of the reaction, the reaction solution was cooled to room temperature and filtered. The filtration residue is washed twice with 30 ml of dichloromethane and 30 ml of acetone.
After washing twice with, the filtrate and the washing solution were combined and concentrated. Silica gel column chromatography (developing solvent, dichloromethane) gave 0.095 g (yield: 95%) of p-benzoquinone.

【0041】実施例12 反応時の湯浴温度を100℃から80℃に変更した以外
は実施例11と同様にして、p−ベンゾキノン0.09
5g(収率:93%)を得た。
Example 12 p-Benzoquinone 0.09 was prepared in the same manner as in Example 11 except that the temperature of the water bath during the reaction was changed from 100 ° C to 80 ° C.
5 g (yield: 93%) was obtained.

【0042】実施例13 攪拌子および還流冷却器を付した30mlの丸底フラス
コに、p−ハイドロキノン0.110g(1mmo
l)、実施例11と同様に調製した硫酸銅(II)坦持ア
ルミナ10.534g〔硫酸銅(II):6mmol〕お
よび酢酸プロピル20mlを加え、フラスコを100℃
の湯浴に浸し、窒素雰囲気下で8時間反応させた。反応
終了後、反応液を室温に冷却し、ろ過した。ろ過残渣を
ジクロロメタン30mlで2回、アセトン30mlで2
回洗浄した後、ろ液と洗浄液を合わせ濃縮した。シリカ
ゲルカラムクロマトグラフィ−(展開溶媒、ジクロロメ
タン)により、p−ベンゾキノン0.105g(収率:
97%)を得た。
Example 13 In a 30 ml round bottom flask equipped with a stirrer and a reflux condenser, 0.110 g (1 mmo of p-hydroquinone was added.
l), 10.534 g of copper (II) sulfate-supported alumina prepared in the same manner as in Example 11 [copper (II) sulfate: 6 mmol] and 20 ml of propyl acetate were added, and the flask was heated to 100 ° C.
It was immersed in a hot water bath and reacted for 8 hours under a nitrogen atmosphere. After completion of the reaction, the reaction solution was cooled to room temperature and filtered. The filtration residue is washed twice with 30 ml of dichloromethane and 2 times with 30 ml of acetone.
After washing twice, the filtrate and the washing solution were combined and concentrated. By silica gel column chromatography (developing solvent, dichloromethane), 0.105 g of p-benzoquinone (yield:
97%).

【0043】実施例14 硫酸銅(II)坦持アルミナの使用量を0.351g〔硫
酸銅(II):0.2mmol〕から0.176g〔硫酸
銅(II):0.1mmol〕に変更した以外は実施例1
1と同様にして、p−ベンゾキノン0.097g(収
率:95%)を得た。
Example 14 The amount of copper (II) sulfate-supported alumina used was changed from 0.351 g [copper (II) sulfate: 0.2 mmol] to 0.176 g [copper (II) sulfate: 0.1 mmol]. Example 1 except
In the same manner as in Example 1, 0.097 g (yield: 95%) of p-benzoquinone was obtained.

【0044】実施例15 硫酸銅(II)坦持アルミナの使用量を0.351g〔硫
酸銅(II):0.2mmol〕から0.088g〔硫酸
銅(II):0.05mmol〕に変更した以外は実施例
11と同様にして、p−ベンゾキノン0.096g(収
率:94%)を得た。
Example 15 The amount of copper (II) sulfate-supported alumina used was changed from 0.351 g [copper (II) sulfate: 0.2 mmol] to 0.088 g [copper (II) sulfate: 0.05 mmol]. Otherwise in the same manner as in Example 11, p-benzoquinone (0.096 g, yield: 94%) was obtained.

【0045】実施例16 硫酸銅(II)坦持アルミナの使用量を0.351g〔硫
酸銅(II):0.2mmol〕から0.053g〔硫酸
銅(II):0.03mmol〕に変更した以外は実施例
11と同様にして、p−ベンゾキノン0.066g(収
率:65%)を得た。
Example 16 The amount of copper (II) sulfate-supported alumina used was changed from 0.351 g [copper (II) sulfate: 0.2 mmol] to 0.053 g [copper (II) sulfate: 0.03 mmol]. Otherwise in the same manner as in Example 11, p-benzoquinone (0.066 g, yield: 65%) was obtained.

【0046】比較例1 Organic Syntheses、Col.Vo
l.I、P482(1941)に準じて反応を行った。
Comparative Example 1 Organic Syntheses, Col. Vo
l. The reaction was performed according to I, P482 (1941).

【0047】2.5lのフラスコに、2lの水と、p−
ハイドロキノン100g(0.91mmol)を加え、
約50℃にて溶解させた後、溶液を20℃に冷却し、濃
硫酸100g(54.4ml)をゆっくりと加えた。混
合物を再び20℃に冷却した後、水65mlに溶解した
二クロム酸ナトリウム140g(0.47 mmol)
をゆっくりと加え、メカニカルスターラーを用いて攪拌
した。さらに、同濃度の二クロム酸ナトリウム水溶液9
0mlを加え、反応を完結させた。反応混合物を約10
℃に冷却した後、吸引ろ過し、ろ液をベンゼン150m
lで2度抽出した後、ろ過により得たp−ベンゾキノン
を1lのビーカーにとり、ベンゼン500mlと抽出に
用いたベンゼン300mlを加えた。混合物を加熱し、
p−ベンゾキノンを完全に溶解させてから少量の塩化カ
ルシウムを加え、乾燥させた後、ろ過、濃縮によりp−
ベンゾキノン80g(収率:81%)を得たが、同時に
処理の必要なクロムを含む酸性廃液が発生した。
In a 2.5 liter flask, add 2 liters of water and p-
Add 100 g (0.91 mmol) of hydroquinone,
After dissolving at about 50 ° C., the solution was cooled to 20 ° C. and 100 g (54.4 ml) of concentrated sulfuric acid was slowly added. After cooling the mixture to 20 ° C. again, 140 g (0.47 mmol) of sodium dichromate dissolved in 65 ml of water
Was slowly added and stirred using a mechanical stirrer. Furthermore, an aqueous solution of sodium dichromate having the same concentration 9
0 ml was added to complete the reaction. About 10 reaction mixture
After cooling to ℃, suction filtration, the filtrate is benzene 150m
After extracting twice with l, p-benzoquinone obtained by filtration was placed in a 1 l beaker, and 500 ml of benzene and 300 ml of benzene used for extraction were added. Heat the mixture,
After completely dissolving p-benzoquinone, a small amount of calcium chloride was added, dried, and then filtered and concentrated to obtain p-
80 g (yield: 81%) of benzoquinone was obtained, but at the same time, an acidic waste liquid containing chromium that required treatment was generated.

【0048】比較例2 特開昭62−81347号公報に準じて反応を行った。
30℃の温度下で、p−ハイドロキノン5.0gをヘキ
サン100mlに溶解し、このヘキサン溶液に硫酸銅5
水塩50mgおよび29重量%のアンモニア水1.0m
lを加え、さらに希硫酸により水素イオン濃度を7.5
と調製させた水溶液25mlを加え、約1分間攪拌させ
た。次に30℃の温度にて、空気接触下で1時間攪拌混
合して反応させ、反応液を約3分間静置させ、ろ過した
ところ、反応はほとんど進行せず、ろ過残渣は未反応の
p−ハイドロキノンであった。そこで、ヘキサンの沸点
(68.7℃)で還流下に反応を試みたが、やはり反応
は進行しなかった。
Comparative Example 2 The reaction was carried out according to JP-A-62-81347.
At a temperature of 30 ° C., 5.0 g of p-hydroquinone was dissolved in 100 ml of hexane, and copper sulfate 5 was added to this hexane solution.
50 mg of water salt and 1.0 m of 29% by weight ammonia water
1 was added, and the hydrogen ion concentration was adjusted to 7.5 with diluted sulfuric acid.
25 ml of the prepared aqueous solution was added, and the mixture was stirred for about 1 minute. Then, at a temperature of 30 ° C., the mixture was stirred and mixed under air contact for 1 hour to react, and the reaction solution was allowed to stand for about 3 minutes and filtered. The reaction hardly proceeded and the filtration residue was unreacted p. -Was hydroquinone. Therefore, the reaction was tried under reflux with the boiling point of hexane (68.7 ° C.), but the reaction still did not proceed.

【0049】実施例17 銅塩担持体の調製:100mlの丸底フラスコに、硫酸
銅(II)5水和物1.68gおよび水50mlを加えて
硫酸銅(II)5水和物を溶解させた後、アルミナ10g
を加え、室温で30分間激しく攪拌した。次いで、ロ−
タリ−エバポレ−タ−で水を留去した後、150℃で7
時間減圧乾燥し、アルミナ100部に対して10部の硫
酸銅(II)を担持した硫酸銅(II)担持アルミナを調製
し、デシケ−タ−中に保存した。
Example 17 Preparation of copper salt carrier: In a 100 ml round bottom flask, 1.68 g of copper (II) sulfate pentahydrate and 50 ml of water were added to dissolve copper (II) sulfate pentahydrate. And then 10g of alumina
Was added, and the mixture was vigorously stirred at room temperature for 30 minutes. Then,
After distilling off the water with a tally evaporator, the mixture was kept at 150 ° C. for 7 hours.
After drying under reduced pressure for an hour, copper (II) sulfate-supported alumina carrying 10 parts of copper (II) sulfate per 100 parts of alumina was prepared and stored in a desiccator.

【0050】攪拌子および還流冷却器を付した30ml
の丸底フラスコに、メチル−p−ハイドロキノン0.1
24g(1mmol)、上記硫酸銅(II)坦持アルミナ
0.088g〔硫酸銅(II):0.05mmol〕およ
び酢酸プロピル10mlを加えた。フラスコを100℃
の湯浴に浸し、反応系に空気を吹き込みながら8時間反
応させた。反応終了後、反応液を室温に冷却しろ過し
た。ろ過残渣をジクロロメタン30mlで2回、アセト
ン30mlで2回洗浄した後、ろ液と洗浄液を合わせ濃
縮した。シリカゲルカラムクロマトグラフィ−(展開溶
媒、ジクロロメタン)により、メチル−p−ベンゾキノ
ン0.115g(収率:94%)を得た。
30 ml with stirrer and reflux condenser
In a round bottom flask, add methyl-p-hydroquinone 0.1
24 g (1 mmol), 0.088 g of the above copper (II) sulfate-supported alumina [copper (II) sulfate: 0.05 mmol] and 10 ml of propyl acetate were added. Flask at 100 ° C
Was soaked in a hot water bath and allowed to react for 8 hours while blowing air into the reaction system. After the reaction was completed, the reaction solution was cooled to room temperature and filtered. The filtration residue was washed twice with 30 ml of dichloromethane and twice with 30 ml of acetone, and then the filtrate and the washing liquid were combined and concentrated. By silica gel column chromatography (developing solvent, dichloromethane), 0.115 g (yield: 94%) of methyl-p-benzoquinone was obtained.

【0051】実施例18 メチル−p−ハイドロキノン0.124g(1mmo
l)の代わりにテトラメチル−p−ハイドロキノン0.
166g(1mmol)を用いた以外は実施例17と同
様にして、テトラメチル−p−ベンゾキノン0.161
g(収率:98%)を得た。
Example 18 Methyl-p-hydroquinone 0.124 g (1 mmo
1) instead of tetramethyl-p-hydroquinone 0.
Tetramethyl-p-benzoquinone 0.161 was prepared in the same manner as in Example 17 except that 166 g (1 mmol) was used.
g (yield: 98%) was obtained.

【0052】実施例19 メチル−p−ハイドロキノン0.124g(1mmo
l)の代わりに1,4−ジヒドロキシナフタレン0.1
60g(1mmol)を用いた以外は実施例17と同様
にして、1,4−ナフトキノン0.153g(収率:9
7%)を得た。
Example 19 Methyl-p-hydroquinone 0.124 g (1 mmo
1,4-dihydroxynaphthalene 0.1 instead of l)
In the same manner as in Example 17 except that 60 g (1 mmol) was used, 0.153 g of 1,4-naphthoquinone (yield: 9
7%).

【0053】実施例20 メチル−p−ハイドロキノン0.124g(1mmo
l)の代わりにフェニル−p−ハイドロキノン0.17
5g(1mmol)を用い、硫酸銅(II)坦持アルミナ
の使用量を0.088g(0.05mmol)から0.
176g(0.1mmol)に変更した以外は実施例1
7と同様にして、フェニル−p−ベンゾキノン0.17
5g(収率:95%)を得た。
Example 20 Methyl-p-hydroquinone 0.124 g (1 mmo
Phenyl-p-hydroquinone 0.17 instead of l)
5 g (1 mmol) was used, and the amount of the copper (II) sulfate-supported alumina used was 0.088 g (0.05 mmol) to 0.
Example 1 except that the amount was changed to 176 g (0.1 mmol).
Phenyl-p-benzoquinone 0.17 in the same manner as 7.
5 g (yield: 95%) was obtained.

【0054】実施例21 メチル−p−ハイドロキノン0.124g(1mmo
l)の代わりに2,6−ジ−tert−ブチル−p−ハ
イドロキノン0.222g(1mmol)を用い、硫酸
銅(II)坦持アルミナの使用量を0.088g(0.0
5mmol)から0.176g(0.1mmol)に変
更した以外は実施例17と同様にして、2,6−ジ−t
ert−ブチル−p−ベンゾキノン0.205g(収
率:93%)を得た。
Example 21 Methyl-p-hydroquinone 0.124 g (1 mmo
2,6-di-tert-butyl-p-hydroquinone (0.222 g, 1 mmol) was used instead of l), and the amount of copper (II) sulfate-supported alumina used was 0.088 g (0.0
2,6-di-t was prepared in the same manner as in Example 17, except that the amount was changed from 5 mmol) to 0.176 g (0.1 mmol).
0.205 g (yield: 93%) of ert-butyl-p-benzoquinone was obtained.

【0055】実施例22 メチル−p−ハイドロキノン0.124g(1mmo
l)の代わりにトリメチル−p−ハイドロキノン(0.
152g(1mmol)を用い、硫酸銅(II)坦持アル
ミナの使用量を0.088g(0.05mmol)から
0.176g(0.1mmol)に変更した以外は実施
例17と同様にして、トリメチル−p−ベンゾキノン
0.146g(収率:97%)を得た。
Example 22 Methyl-p-hydroquinone 0.124 g (1 mmo
Instead of trimethyl-p-hydroquinone (0.
In the same manner as in Example 17, except that 152 g (1 mmol) was used and the amount of the copper (II) sulfate-supported alumina used was changed from 0.088 g (0.05 mmol) to 0.176 g (0.1 mmol), trimethyl was obtained. 0.146 g (yield: 97%) of -p-benzoquinone was obtained.

【0056】実施例23 メチル−p−ハイドロキノン0.124g(1mmo
l)の代わりにクロロ−p−ハイドロキノン0.145
g(1mmol)を用い、硫酸銅(II)坦持アルミナの
使用量を0.088g(0.05mmol)から0.5
27g(0.3mmol)に変更した以外は実施例17
と同様にして、クロロ−p−ベンゾキノン0.131g
(収率:92%)を得た。
Example 23 Methyl-p-hydroquinone 0.124 g (1 mmo
Chloro-p-hydroquinone 0.145 instead of l)
g (1 mmol), and the amount of copper (II) sulfate-bearing alumina used is 0.088 g (0.05 mmol) to 0.5
Example 17 except that the amount was changed to 27 g (0.3 mmol).
Similarly to, 0.131 g of chloro-p-benzoquinone
(Yield: 92%) was obtained.

【0057】実施例24 銅塩担持体の調製:100mlの丸底フラスコに、硫酸
銅(II)5水和物1.68gおよび水50mlを加えて
硫酸銅(II)5水和物を溶解させた後、アルミナ10g
を加え、50℃で30分間激しく攪拌した。次いで、ロ
−タリ−エバポレ−タ−で水を留去した後、150℃で
7時間減圧乾燥し、アルミナ100部に対して10部の
硫酸銅(II)を担持した硫酸銅(II)担持アルミナを調
製し、デシケ−タ−中に保存した。
Example 24 Preparation of copper salt carrier: In a 100 ml round bottom flask, 1.68 g of copper (II) sulfate pentahydrate and 50 ml of water were added to dissolve copper (II) sulfate pentahydrate. And then 10g of alumina
Was added and the mixture was vigorously stirred at 50 ° C. for 30 minutes. Then, after water was distilled off with a rotary evaporator, it was dried under reduced pressure at 150 ° C. for 7 hours, and 10 parts of copper (II) sulfate was supported on 100 parts of alumina. Alumina was prepared and stored in a dessicator.

【0058】攪拌子および還流冷却器を付した2lの丸
底フラスコに、p−ハイドロキノン11.01g(10
0mmol)、上記硫酸銅(II)坦持アルミナ8.78
g(5mmol)および酢酸プロピル1lを加え、フラ
スコを100℃の湯浴に浸し、反応系に空気を吹き込み
ながら20時間反応させた。反応終了後、反応液を室温
に冷却しろ過した。ろ過残渣をジクロロメタン300m
lで2回、アセトン300mlで2回洗浄した後、ろ液
と洗浄液を合わせ濃縮した。シリカゲルカラムクロマト
グラフィ−(展開溶媒、ジクロロメタン)により、p−
ベンゾキノン8.97g(収率:83%)を得た。
In a 2 liter round bottom flask equipped with a stirrer and a reflux condenser, 11.01 g of p-hydroquinone (10
0 mmol), the above copper (II) sulfate-supported alumina 8.78
g (5 mmol) and 1 liter of propyl acetate were added, the flask was immersed in a water bath at 100 ° C., and the reaction was carried out for 20 hours while blowing air into the reaction system. After the reaction was completed, the reaction solution was cooled to room temperature and filtered. The filtration residue is 300 m in dichloromethane
After washing twice with 1 times and twice with 300 ml of acetone, the filtrate and the washing solution were combined and concentrated. Silica gel column chromatography- (developing solvent, dichloromethane) gave p-
8.97 g (yield: 83%) of benzoquinone was obtained.

【0059】実施例25 p−ハイドロキノンの使用量を11.01g(100m
mol)から2.75g(25mmol)に変更した以
外は実施例24と同様にして、まず8時間反応させ、反
応終了後、反応液を室温に冷却しろ過し、ろ過残渣をジ
クロロメタン300mlで2回、アセトン300mlで
2回洗浄した後、ろ液と洗浄液を合わせ濃縮して、p−
ベンゾキノンを得た。
Example 25 The amount of p-hydroquinone used was 11.01 g (100 m).
mol) to 2.75 g (25 mmol) except that the reaction was carried out for 8 hours in the same manner as in Example 24. After completion of the reaction, the reaction solution was cooled to room temperature and filtered, and the filtration residue was twice added with 300 ml of dichloromethane. After washing twice with 300 ml of acetone, the filtrate and the washing solution are combined and concentrated, and p-
Obtained benzoquinone.

【0060】次いで、ここでろ過残渣をジクロロメタン
300mlで2回、アセトン300mlで2回洗浄して
得た回収硫酸銅(II)坦持アルミナをそのまま用い、新
たにp−ハイドロキノン2.75g(25mmol)を
加えて反応させた以外は上記と同様にして、p−ベンゾ
キノンを得、更に同様の操作を2回繰り返して、合計で
4回p−ベンゾキノンを得た。得られたp−ベンゾキノ
ンの合計は9.83g(平均収率:91%)であった。
Then, the recovered copper (II) sulfate-supported alumina obtained by washing the filtration residue twice with 300 ml of dichloromethane and twice with 300 ml of acetone was used as it was, and 2.75 g (25 mmol) of p-hydroquinone was newly added. Was obtained in the same manner as above except that p-benzoquinone was obtained, and the same operation was repeated twice to obtain p-benzoquinone a total of 4 times. The total amount of p-benzoquinone obtained was 9.83 g (average yield: 91%).

【0061】[0061]

【発明の効果】本発明の方法によれば、担体に銅塩を担
持させた銅塩担持体の存在下でハイドロキノン類を酸化
させるという簡単な方法で、対応するキノン類を製造す
ることができ、反応終了後は銅塩担持体をろ過のような
非常に簡単な操作のみで生成物と分離することが可能
で、経済的にキノン類を製造することができる。しか
も、本発明で用いる銅塩担持体はハイドロキノン類に対
し当量以下でも反応が進行し、必要により繰り返し使用
するもでき、工業的見地から優れた製造方法である。
INDUSTRIAL APPLICABILITY According to the method of the present invention, the corresponding quinones can be produced by a simple method of oxidizing hydroquinones in the presence of a copper salt carrier in which a copper salt is supported on a carrier. After completion of the reaction, the copper salt carrier can be separated from the product by a very simple operation such as filtration, and the quinones can be produced economically. Moreover, the copper salt-supported material used in the present invention is an excellent production method from an industrial standpoint because the reaction proceeds even with an equivalent amount or less with respect to the hydroquinone and can be repeatedly used if necessary.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C07B 61/00 300 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // C07B 61/00 300

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 銅塩担持体の存在下でハイドロキノン類
を酸化させることを特徴とするキノン類の製造方法。
1. A method for producing quinones, which comprises oxidizing hydroquinones in the presence of a copper salt carrier.
【請求項2】 銅塩担持体が、無機担体に銅塩が担持さ
れた担持体である請求項1記載の製造方法。
2. The production method according to claim 1, wherein the copper salt carrier is a carrier in which a copper salt is supported on an inorganic carrier.
【請求項3】 銅塩が、2価の銅塩である請求項2記載
の製造方法。
3. The method according to claim 2, wherein the copper salt is a divalent copper salt.
【請求項4】 無機担体が、アルミナ、シリカゲルおよ
びフロリジルからなる群から選ばれる1種以上の担体で
あり、かつ2価の銅塩が硫酸銅(II)、ハロゲン化銅
(II)および酢酸銅(II)からなる群から選ばれる1種
以上の銅塩である請求項3記載の製造方法。
4. The inorganic carrier is one or more carriers selected from the group consisting of alumina, silica gel and florisil, and the divalent copper salt is copper (II) sulfate, copper (II) halide and copper acetate. The production method according to claim 3, which is one or more copper salts selected from the group consisting of (II).
【請求項5】 無機担体がアルミナであり、かつ2価の
銅塩が硫酸銅(II)である請求項3記載の製造方法。
5. The method according to claim 3, wherein the inorganic carrier is alumina, and the divalent copper salt is copper (II) sulfate.
【請求項6】 銅塩担持体が、無機担体と銅塩を、銅塩
を溶解する溶媒中にいれた後、該溶媒を蒸発除去するこ
とにより得た担持体である請求項1〜5のいずれか1つ
に記載の製造方法。
6. The copper salt carrier is a carrier obtained by placing an inorganic carrier and a copper salt in a solvent in which the copper salt is dissolved, and then removing the solvent by evaporation. The manufacturing method according to any one of claims.
【請求項7】 銅塩を溶解する溶媒が、極性溶媒である
請求項6記載の製造方法。
7. The production method according to claim 6, wherein the solvent that dissolves the copper salt is a polar solvent.
【請求項8】 極性溶媒が、水および/又はアルコ−ル
類である請求項7記載の製造方法。
8. The method according to claim 7, wherein the polar solvent is water and / or alcohols.
【請求項9】 銅塩担持体が、担体100重量部に対し
て、1〜20重量部の銅塩を担持した担持体である請求
項1〜8のいずれか1つに記載の製造方法。
9. The production method according to claim 1, wherein the copper salt carrier is a carrier supporting 1 to 20 parts by weight of the copper salt with respect to 100 parts by weight of the carrier.
【請求項10】 銅塩担持体を、ハイドロキノン類1当
量に対して銅塩担持体中の銅塩の量が0.005〜1
0.0当量となる範囲で存在させる請求項1〜9のいず
れか1つに記載の製造方法。
10. The amount of copper salt in the copper salt carrier is 0.005-1 with respect to 1 equivalent of hydroquinone.
The manufacturing method according to any one of claims 1 to 9, wherein the production is performed in a range of 0.0 equivalent.
【請求項11】 有機溶媒中でハイドロキノン類を酸化
させる請求項1〜10のいずれか1つに記載の製造方
法。
11. The production method according to claim 1, wherein the hydroquinone is oxidized in an organic solvent.
【請求項12】 有機溶媒が、沸点40℃以上の有機溶
媒である請求項11記載の製造方法。
12. The method according to claim 11, wherein the organic solvent is an organic solvent having a boiling point of 40 ° C. or higher.
【請求項13】 有機溶媒が、沸点40℃以上のケトン
類および/又はエステル類である請求項11記載の製造
方法。
13. The method according to claim 11, wherein the organic solvent is a ketone and / or an ester having a boiling point of 40 ° C. or higher.
【請求項14】 酸素含有気体雰囲気下でハイドロキノ
ン類を酸化させる請求項1〜13のいずれか1つに記載
の製造方法。
14. The production method according to claim 1, wherein the hydroquinones are oxidized in an oxygen-containing gas atmosphere.
【請求項15】 酸素含有気体を有機溶媒中の反応系内
に吹き込みながらハイドロキノン類を酸化させる請求項
14記載の製造方法。
15. The production method according to claim 14, wherein the hydroquinones are oxidized while blowing an oxygen-containing gas into a reaction system in an organic solvent.
【請求項16】 銅塩担持体を、ハイドロキノン類1当
量に対して銅塩担持体中の銅塩の量が0.005〜1.
0当量となる範囲で存在させる請求項14又は15記載
の製造方法。
16. A copper salt carrier having a copper salt carrier amount of 0.005-1.0 per 1 equivalent of hydroquinone.
16. The production method according to claim 14 or 15, wherein the production is performed in the range of 0 equivalent.
【請求項17】 ハイドロキノン類を40〜300℃の
温度で酸化させる請求項1〜16記載の製造方法。
17. The production method according to claim 1, wherein the hydroquinones are oxidized at a temperature of 40 to 300 ° C.
【請求項18】 ハイドロキノン類が、p−ハイドロキ
ノン類である請求項1〜17のいずれか1つに記載の製
造方法。
18. The production method according to claim 1, wherein the hydroquinones are p-hydroquinones.
【請求項19】 ハイドロキノン類の酸化反応後、反応
液のろ過又はろ液の濃縮を行うことを特徴とする請求項
1〜18のいずれか1つに記載の製造方法。
19. The method according to claim 1, wherein the reaction solution is filtered or the filtrate is concentrated after the oxidation reaction of the hydroquinones.
JP31814994A 1994-12-21 1994-12-21 Production of quinones Pending JPH08176059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31814994A JPH08176059A (en) 1994-12-21 1994-12-21 Production of quinones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31814994A JPH08176059A (en) 1994-12-21 1994-12-21 Production of quinones

Publications (1)

Publication Number Publication Date
JPH08176059A true JPH08176059A (en) 1996-07-09

Family

ID=18096042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31814994A Pending JPH08176059A (en) 1994-12-21 1994-12-21 Production of quinones

Country Status (1)

Country Link
JP (1) JPH08176059A (en)

Similar Documents

Publication Publication Date Title
US7153806B2 (en) Encapsulated oxo-bridged organometallic cluster catalyst and a process for the preparation thereof
JP3568858B2 (en) Production of cyclic alcohols and ketones
JPH0451536B2 (en)
JPH08176059A (en) Production of quinones
EA001630B1 (en) Method for producing n-substituted 3-hydroxypyrazoles
JPS595570B2 (en) Method for producing cinnamic acid esters
CA2063979C (en) Process for the preparation of alkanesulfonylbenzoic acids
JPH0610163B2 (en) Method for producing carbonyl compound
JPS6033370B2 (en) Method for producing 2-aryl ethanol
KR100689684B1 (en) Method for making carboxylic acids
JPH01125370A (en) Production of 7-chloro-quinoline-8-carboxylic acid
US5495034A (en) Method for preparing α-substituted ω-hydroperfluoroalkanes
CN103140463A (en) Method for the oxidation of unsaturated organic compounds
JPH01197455A (en) Production of chloranile
US20030050504A1 (en) Process for the preparation of an aromatic carboxylic acid
WO2006125801A1 (en) Process for the preparation of adipic acid from n-pentenoic acid
JPH04504855A (en) Process for producing alkanesulfonylbenzoic acid
SU515437A3 (en) Method for producing alkanedicarboxylic acids
US3946070A (en) Process for the preparation of saturated long-chain dicarboxylic acids
JP4143295B2 (en) Method for producing 9,9-disubstituted-2,3,6,7-xanthenetetracarboxylic dianhydride
US3067238A (en) Dimerization of active methylene compounds by oxidation
US5382700A (en) Oxidative coupling of alpha, beta unsaturated aldehydes
JP3008296B2 (en) Method for producing diaryl glycolic acid
JPH05140030A (en) Production of glyoxylic acids
JP3257371B2 (en) Method for producing 5-phthalimido-4-oxopentenoic acid or its pyridine salt