JPH0817477A - 二次電池の容量推定方法、劣化診断方法、及び充電装置 - Google Patents

二次電池の容量推定方法、劣化診断方法、及び充電装置

Info

Publication number
JPH0817477A
JPH0817477A JP6170266A JP17026694A JPH0817477A JP H0817477 A JPH0817477 A JP H0817477A JP 6170266 A JP6170266 A JP 6170266A JP 17026694 A JP17026694 A JP 17026694A JP H0817477 A JPH0817477 A JP H0817477A
Authority
JP
Japan
Prior art keywords
battery
charging
capacity
secondary battery
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6170266A
Other languages
English (en)
Inventor
Takashi Toyomura
隆 豊村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuoka Electric Manufacturing Co Ltd
Original Assignee
Mitsuoka Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuoka Electric Manufacturing Co Ltd filed Critical Mitsuoka Electric Manufacturing Co Ltd
Priority to JP6170266A priority Critical patent/JPH0817477A/ja
Publication of JPH0817477A publication Critical patent/JPH0817477A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

(57)【要約】 【目的】 二次電池の容量を推定し、推定結果に基づい
て当該二次電池にとって最も適切な充電を行うことによ
り、種々の二次電池に対応できる充電装置を提供するこ
とを目的とする。 【構成】 二次電池に充電または放電し、電池容量を推
定する。推定結果に基づいて、二次電池の劣化状況を診
断する。推定結果に基づいて、充電方法を可変する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、二次電池の容量推定方
法、劣化診断方法、及び、容量の異なる複数種類の二次
電池に充電可能な充電装置に関する。
【0002】
【従来の技術】従来の一般的な充電装置としては、電池
容量[mAh]の1/10程度の比較的小さな電力で、
8時間〜15時間程度かけて充電するものが知られてい
る。また、このような一般的な充電装置では充電時間が
長くかかり過ぎるという問題に鑑み、電池容量に比して
比較的大きな電力を供給し、−ΔV、ΔT/Δt等の満
充電検出方法を用いて短時間で充電を行うようにした、
急速充電型の充電装置も知られている。
【0003】また、このような急速充電型の充電装置で
は対象となる電池種類が限定されるという問題に鑑み、
電池パックに電池種類の識別情報を設けたり、充電に先
だって充電装置に電池種類をスイッチ等で指定するよう
にし、これらに基づいて充電方法を切り換えることによ
り複数種類の電池に対応することができるようにした充
電装置も提案されている。
【0004】また、従来の二次電池の劣化状況の診断方
法としては、放電時の電池電圧をもとにする方法、実際
に満充電から完全放電まで放電を行いその間の放電量か
ら劣化診断する方法等が知られている。後者にはさらに
疑似負荷による方法、現実の負荷を用いて負荷電力が概
略一定であることを利用して動作可能時間を計測する方
法、現実の負荷の消費電力量を積算計測する方法等が知
られている。
【0005】
【発明が解決しようとする課題】上記のような従来の一
般的な充電装置は、本来対象とされている電池とは多少
容量の異なる電池に充電したいような場合にもある程度
融通が効くが、充電時間が上記のように非常に長くかか
ってしまうという問題があった。
【0006】また、上記のような従来の急速充電型の充
電装置は、充電時間は短縮できるものの、制御方法の困
難さや安全性の問題等のため、特定の電池専用の充電装
置とならざるを得ず、従って汎用性がないという問題が
あった。
【0007】例えば、このような従来の急速充電型の充
電装置に、その本来対象とされている電池よりも容量の
小さな電池が接続された場合には、当該電池にとっては
過大な充電電力が印加されることになり、電池寿命を縮
め、場合によっては電池破裂の危険もあった。また、本
来対象とされている電池よりも容量の大きな電池が接続
された場合には、満充電検出失敗等の場合の安全確保を
目的として設けられているタイマの働き等によって満充
電に達する前に充電が終了してしまう場合があり、従っ
て満足な充電は行えなかった。また、満充電付近にみら
れる電圧上昇カーブや電圧降下の大きさ等は電池容量に
よって異なるため、従来の充電装置のように満充電検出
の検出感度を固定的に決めていたのでは誤検出や検出失
敗を起こすことがあり、従って不足充電や過充電を生ず
るという問題があった。
【0008】このような問題の解決策として、上記した
ような電池種類の識別情報等に基づいて充電方法を切り
換える方法が提案されているが、識別情報の持つ情報量
には限界があり、また識別情報を設けることによるコス
トアップ等の問題があった。また、識別情報の付与され
ていない電池、例えば他メーカーの同等品等に対しては
全く効果がないという問題があった。
【0009】また、上記したような充電に先だって電池
種類をスイッチ等で指定する方法では、指定忘れや指定
間違い等による電池破壊等の危険が避けられなかった。
また、予め想定されていた範囲を超えた新たな二次電池
が開発されたような場合にも適用し得なかった。
【0010】また、電池容量を、上記のような付帯事項
に依らず、二次電池自体の特性に基づいて掌握する方法
はこれまで存在していなかった。
【0011】また、従来の劣化状況診断方法は種々の面
で不適当であった。例えば、放電時の電池電圧に基づい
て劣化診断する方法では、電池電圧の低下には電池の劣
化以外にも電池の残存量の低下等の要因があり、単に電
池電圧を測定しただけでは電池の劣化によるものかそれ
以外の要因によるものかの区別がつかず、従って信用性
に乏しいという問題があった。
【0012】また、疑似負荷を用いて満充電から完全放
電まで放電を行いその間の放電量を計測して劣化診断す
る方法では、被検二次電池を一旦満充電にするのに多大
な時間を要し、また放電量の計測に多大な時間を要し、
さらには劣化診断が終わった後の電池は再充電しなけれ
ば用をなさないため再充電しなければならず、従って劣
化診断のために膨大な時間を要するという問題があっ
た。
【0013】また、現実の負荷を用いて負荷電力が概略
一定であることを利用して動作可能時間を計測すること
により劣化診断する方法では、前提条件として負荷電力
が概略一定とみなせるような負荷でなければならないこ
とから、適用できる範囲が限られ、また同様に診断に時
間がかかり過ぎるという問題があった。また、現実の負
荷の消費電力量を積算する方法では、電力を積算する手
段が必要であり、また同様に診断に時間がかかり過ぎる
という問題があった。
【0014】
【課題を解決するための手段】上記の問題を解決するた
め、第1の発明に係る容量推定方法は、二次電池を充電
または放電することにより電池容量を推定する。
【0015】また、第2の発明に係る容量推定方法は、
二次電池を充電または放電し、電池電圧に基づいて電池
容量を推定する。
【0016】また、第3の発明に係る容量推定方法は、
二次電池を所望の電池電圧まで充電または放電し、充電
電流または放電電流に基づいて電池容量を推定する。
【0017】また、第4の発明に係る容量推定方法は、
二次電池を充電または放電し、充電電流または放電電流
と、電池電圧とに基づいて電池容量を推定する。
【0018】また、第5の発明に係る容量推定方法は、
二次電池を所定量充電または放電し、電池電圧に基づい
て電池容量を推定する。
【0019】また、第6の発明に係る容量推定方法は、
二次電池を所望の電池電圧まで充電または放電し、充電
量または放電量に基づいて電池容量を推定する。
【0020】また、第7の発明に係る容量推定方法は、
二次電池を充電または放電し、充電量または放電量と、
電池電圧とに基づいて電池容量を推定する。
【0021】また、第8の発明に係る容量推定方法は、
二次電池を充電または放電して二次電池の電池容量を推
定し、推定結果に基づいて当該二次電池の劣化状況を診
断する。
【0022】また、第9の発明に係る充電装置は、二次
電池に充電する充電手段、二次電池の電圧情報を取得す
る取得手段、当該二次電池の電池容量を推定する推定手
段を具備し、推定手段の推定結果に基づいて充電手段の
充電方法を可変することを特徴とする。
【0023】また、第10の発明に係る充電装置は、上
記充電装置にさらに二次電池を放電する放電手段を具備
してなる。
【0024】
【作用】第1の発明に係る容量推定方法は、二次電池を
充電または放電すると、当該二次電池の電池電圧には当
該二次電池の電池容量に関連する特有の挙動が現れるこ
とを利用し、電池電圧から当該特有の挙動を捉え、また
は電池電圧に現れる当該特有の挙動が所望の状態となる
よう充放電電力、充放電量等を調整することにより、電
池容量を推定する。
【0025】また、第2の発明に係る容量推定方法は、
二次電池を充電または放電すると、当該二次電池の電池
電圧には当該二次電池の電池容量に関連する特有の挙動
が現れるので、電池電圧から当該特有の挙動を捉えるこ
とにより電池容量を推定する。
【0026】また、第3の発明に係る容量推定方法は、
二次電池を充電または放電すると、当該二次電池の電池
電圧には、充電電流または放電電流と、当該二次電池の
電池容量とに関連する特有の挙動が現れるので、電池電
圧が所望の電池電圧となるよう充電または放電し、その
ときの充電電流または放電電流に基づいて電池容量を推
定する。
【0027】また、第4の発明に係る容量推定方法は、
二次電池を充電または放電すると、当該二次電池の電池
電圧には、充電電流または放電電流と、当該二次電池の
電池容量とに関連する特有の挙動が現れるので、充電電
流または放電電流と、電池電圧とに基づいて電池容量を
推定する。
【0028】また、第5の発明に係る容量推定方法は、
二次電池を充電または放電すると、当該二次電池の電池
電圧には、充電量または放電量と、当該二次電池の電池
容量とに関連する特有の挙動が現れるので、所定量充電
または放電し、電池電圧に基づいて電池容量を推定す
る。
【0029】また、第6の発明に係る容量推定方法は、
二次電池を充電または放電すると、当該二次電池の電池
電圧には、充電量または放電量と、当該二次電池の電池
容量とに関連する特有の挙動が現れるので、所望の電池
電圧まで充電または放電し、充電量または放電量に基づ
いて電池容量を推定する。
【0030】また、第7の発明に係る容量推定方法は、
二次電池を充電または放電すると、当該二次電池の電池
電圧には、充電量または放電量と、当該二次電池の電池
容量とに関連する特有の挙動が現れるので、充電量また
は放電量と電池電圧とに基づいて電池容量を推定する。
【0031】また、第8の発明に係る劣化診断方法は、
二次電池の劣化は多くの場合電池容量の減少という形で
現れるので、二次電池を充電または放電して二次電池の
現実の電池容量を推定し、推定結果に基づいて当該二次
電池の劣化状況を診断する。
【0032】また、第9の発明に係る充電装置は、充電
手段により二次電池を充電し、取得手段により二次電池
の電圧情報を取得して推定手段により当該二次電池の電
池容量を推定し、推定手段の推定結果に基づいて充電手
段の充電方法を可変することにより、種々の容量の二次
電池に対応し、それぞれ最も適切な充電が行える。
【0033】また、第10の発明に係る充電装置は、放
電手段により二次電池を放電し、取得手段により二次電
池の電圧情報を取得して推定手段により当該二次電池の
電池容量を推定し、推定手段の推定結果に基づいて充電
手段の充電方法を可変することにより、種々の容量の二
次電池に対応し、それぞれ最も適切な充電が行える。
【0034】
【実施例】まず、本発明に係る容量推定方法について説
明する。二次電池に充電を行うと、当該二次電池の電池
電圧には、当該二次電池の電池容量に関連する特有の挙
動が現れる。その一例を図2に示す。
【0035】図2は、予め定格容量のわかっている種々
のNiCd電池に対し、同一の充電電流で充電した場合
の、各電池の電池電圧の経時的変化を表す図である。比
較を容易にするため、図上の横軸は充電量[%]を用い
て表している。図2からわかるように、充電電流が同一
であれば、定格容量の小さい電池ほど電池電圧はより上
昇する。従って、二次電池を所定の充電電流で充電し、
そのときの電池電圧を測定すれば、図2と比較等するこ
とにより当該二次電池の電池容量を推定することができ
る。
【0036】同様に、二次電池を放電すると、当該二次
電池の電池電圧には、当該二次電池の電池容量に関連す
る特有の挙動が現れる。図3は、予め定格容量のわかっ
ている種々のNiCd電池に対し、同一の放電電流で放
電した場合の、各電池の電池電圧の変化を表す図であ
る。横軸は、同様に放電量[%]を用いて表してある。
【0037】図3からわかるように、放電電流が同一で
あれば、定格容量の小さい電池ほど電池電圧はより下降
する。従って、二次電池を所定の放電電流で放電し、そ
のときの電池電圧を測定すれば、図3と比較等すること
により当該二次電池の電池容量を推定することができ
る。このような特性は、NiCd電池の他にも、NiM
H電池、鉛蓄電池等、多くの二次電池で同様に現れる。
【0038】なお、充電または放電の態様は、必ずしも
上記のように一定の充電電流または放電電流を継続的に
与え続けるものに限定される必要はない。例えば充電電
力または放電電力を断続的に加えるような場合にあって
も、電池電圧は電池容量に関連する特有のカーブを描く
ので、上記の場合と同様にして、電池容量を推定するこ
とができる。
【0039】また、このような電池容量に関連する特有
の挙動は、電池容量に対して比較的大きな充電電流(放
電電流)を与えた場合に、より大きく現れる。従って、
充電電流(放電電流)を種々変更し、このような挙動が
大きく現れる点を捉えるようにすれば、より精度よく電
池容量を推定することができ、また推定可能な容量の範
囲を著しく拡大することができる。
【0040】また、逆に、充電電流または放電電流の方
を可変して電池容量を推定するようにすることもでき
る。例えば、充電電流または放電電流を調整して、電池
電圧が所望の値になるようすれば、このときの充電電流
または放電電流から電池容量を推定することができる。
上記所望の値は、所定の値にするようにしてもよいし、
例えば充電または放電の開始前の電池電圧に対応して決
めるようにすれば、残存容量の多少に関わらず速やかに
精度よく容量推定することができる。
【0041】なお、充電電流または放電電流の可変は、
これらを直接可変する場合に限定されるものではなく、
結果としてこれらが可変されれば足り、従って例えば準
定電流充電の場合に入力端への印加電圧を可変すること
により充電電流を可変するような場合も本発明に該当す
る。
【0042】また、容量推定は必ずしも上記したような
所定の充電(放電)電流、または所望の電池電圧条件下
に限定される必要はなく、例えば図2、図3のような特
性を、種々の充電(放電)電流、種々の電圧値等毎に予
め調べて用意しておいたり、補間演算等するようにすれ
ば、任意の充電(放電)電流、任意の電圧値についても
適用が可能である。ただし、実施上は上記のように充電
(放電)電流か電池電圧かのいずれか一方を固定し、他
方のみを可変するようにするのが便宜である。
【0043】なお、図2、図3はそれぞれ充電量0
[%](完全放電状態)、放電量0[%](満充電状
態)の二次電池を充電または放電した場合の特性図であ
り、容量推定もこのような残存状態で行うのが便宜であ
るが、現実には容量推定を開始する時点における電池の
残存状態には種々のケースが考えられる。しかし、いず
れの残存状態にあっても、充電または放電を開始すれば
電池電圧は上昇または下降し、図2または図3のような
曲線上に収束する。従って、この収束を待てば、残存状
態に関わらず上記のようにして容量推定が可能である。
【0044】この収束の待ち方としては、例えば充放電
電力の可変、断続等から電池電圧が収束するに十分な所
定時間の経過を待つ方法、電池電圧の時間当り変化率が
所定値以下になるまで待つ方法、変化率が所定値以下と
なった時点からさらに所定時間経過後または所定時間遡
った時点を収束時点とみなす方法等のいずれをも採り得
る。
【0045】また、充電または放電を開始してから電池
電圧が収束に至るまでの過渡期の電池電圧の変化につい
ても、電池容量と相関関係があり、例えばこの変化率
は、電池容量の小さい電池ほど大きくなる傾向にある。
従って、このような電池容量に関連する特有の挙動を捉
えることにより、電池容量を推定することができる。こ
の方法は、電池電圧が収束するまで待つまでもなく容量
推定が行えるので、容量推定に要する時間が極めて短く
て済むという優れた利点を有する。
【0046】このような挙動の捉え方としては、例えば
変化カーブを予めメモリに記憶してある変化カーブと比
較する方法、充電または放電の開始から所定時間後の電
池電圧による方法、所定時間経過前後の電池電圧を測定
して時間当たり変化率を得る方法、所定電圧変化するの
に要する時間を測定する方法等、種々の方法をとり得
る。
【0047】また、一旦充電電力または放電電力を印加
した後に充電または放電を停止すると、電池電圧は下降
または上昇し、一定の電圧に収束する。この変化につい
ても電池容量と相関関係があり、例えばこの変化率は、
電池容量の小さい電池ほど大きくなる傾向にある。従っ
て、例えば上と同様の方法でこのような挙動を捉えるこ
とにより、電池容量を推定することができる。
【0048】なお、このような挙動が現れるのは、必ず
しも上記のような充電電力または放電電力を断続した場
合に限られず、例えば充電電流または放電電流を段階的
にまたは連続的に可変した場合にも現れ、また例えば充
電状態から放電状態へ直接に遷移した場合等にも現れ
る。従って、このような場合にも同様にして電池容量を
推定することができる。
【0049】次に、本発明に係る容量推定方法の別の例
について説明する。図7は、リチウムイオン二次電池に
定電流定電圧充電を行った場合の充電時間と電池電圧、
充電電流、充電量の関係を表したものである。図のよう
に、充電量(%)が増すにつれて電池電圧は上昇する。
また、図8は、リチウムイオン二次電池を放電した場合
の電池電圧と放電量との関係を表したものである。図の
ように、放電量(%)が増すにつれて電池電圧は低下す
る。
【0050】このような挙動は他の多くの種類の電池で
も同様に現れるが、特にリチウムイオン二次電池、鉛蓄
電池等ではこのような充電量(放電量)に対する電池電
圧の上昇(下降)の傾斜が比較的大きいため、電池電圧
を測定し図7、図8と比較等することにより、充電量
(%)または放電量(%)を比較的精度良く判定するこ
とができる。このことを利用することにより、二次電池
の容量を推定することができる。
【0051】例えば、種々の容量の電池に同一の充電量
(放電量)(絶対値)だけ充電(放電)した場合を考え
る。容量の小さな電池では、この充電量(放電量)(絶
対値)は電池容量に対して相対的に大きいため、充電
(放電)後の電池の充電量(放電量)(%)は大きく増
大し、従って電池電圧は大きく上昇(下降)する。一
方、容量の大きな電池では、上記充電量(放電量)(絶
対値)は電池容量に対して相対的に小さいため、充電
(放電)後の電池の充電量(放電量)(%)はあまり増
大せず、従って電池電圧はあまり上昇(下降)しない。
従って、二次電池に所定量充電(放電)し、電池電圧か
らこのような電池容量に特有の挙動を捉えることによ
り、二次電池の容量を推定することができる。
【0052】また、例えば電池電圧を測定し、所定充電
量(所定放電量)だけ充電(放電)した後、再度電池電
圧を測定すれば、初めの電圧と充電(放電)後の電圧と
から電池容量の変化分(電池容量に対する%)がわか
り、これと上記所定充電量(所定放電量)(絶対値)と
の関係から電池容量を推定することができる。例えば充
電の場合には、 推定容量[Ah]=充電量[Ah]*充電率*(100
/充電量の増加分[%]) により推定容量を求めることができる。
【0053】逆に、充電量(放電量)を測定しつつ電池
電圧が所望の関係になるまで充電(放電)を行えば、こ
れに要した充電量(放電量)から二次電池の電池容量を
推定することができる。例えば、充電(放電)の開始前
に電池電圧を測定し、充電量(放電量)を測定しつつ電
池電圧が所望の目標値に達するまで充電(放電)を行
う。最初の電池電圧と目標値とから充電(放電)量の増
加分(電池容量に対する%)がわかり、これと目標値に
達するまでに要した充電量(放電量)(絶対値)とによ
り電池容量を推定することができる。
【0054】なお、充電量または放電量の測定は、必ず
しもこれらを直接測定する場合に限定されるものではな
く、結果としてこれらを測定していることに相当すれば
足り、例えば充電を定電流充電とし、充電時間を測定す
ることにより充電量の測定に代えるような場合も本発明
に該当する。
【0055】上記電池電圧の目標値は、固定的に決める
ようにしてもよいし、例えば充電(放電)開始前の電圧
よりも所定電圧だけ高い(低い)電圧とする等の決め方
にしてもよいし、例えば充電(放電)開始前の電池電圧
から知られる充電(放電)前の充電量(放電量)(%)
に所定量プラスした充電量(放電量)に対応する電池電
圧を目標値とするといった方法にしてもよい。
【0056】また、このような挙動の捉え方は他にも種
々の方法をとり得る。例えば、上記充電量(放電量)、
所望の電池電圧は必ずしも上記のようなものに限定され
る必要はなく、例えば充電量(放電量)を測定しつつ適
当な期間だけ充電または放電し、その間の充電量(放電
量)と電池電圧とから推定することも可能である。
【0057】また、電池電圧は開路電圧を測定するよう
にすれば、内部抵抗等の影響が避けられるため、さらに
正確な推定が可能となる。この場合の充電電力(放電電
力)の遮断から電池電圧の収束までの待ち方は、前の例
で既に述べたような方法が適用できる。
【0058】以上説明したように、二次電池に充電また
は放電を行った場合に現れる当該二次電池の電池容量に
関連する特有の挙動は種々存在する。また、これらの挙
動を引き起こすための充電電力または放電電力の与え方
にも、上記したように種々の態様を採り得る。また、こ
れらの挙動を検出する方法にも上述したように種々の態
様が採り得、さらにこれらの可能な組み合わせは無数に
存在するが、本発明に係る容量推定方法の要点は、二次
電池に充電または放電を行うと、当該二次電池の電池電
圧には当該二次電池の電池容量に関連する特有の挙動が
現れるという現象を利用して、二次電池の容量を推定す
ることにある。
【0059】本発明に係る容量推定方法の最大の特徴
は、電池容量の推定という新規概念を導入し、外部から
の電池種類の指示や、電池パックの種別検出用端子等の
付帯物や、電池パックの形状等の付帯事項等によらず、
二次電池それ自体が有する電気的化学的特性に基づいて
電池容量を推定するようにしたことにある。従って、こ
れら付帯事項等の加えられていない二次電池、例えば他
のメーカーの同等品や、形状の異なる電池、新たに開発
された電池等であっても対応することができる。この点
で、従来技術とは全く一線を画す革新的なものである。
【0060】次に、本発明に係る二次電池の劣化診断方
法について説明する。上記したような二次電池の容量推
定方法は、二次電池の電池容量が明らかでない場合にそ
の電池容量を推定できるという点で格別の意義を有した
が、その一方、定格容量や健常時の電池容量が予めわか
っている場合には、上記のような容量推定方法をもって
電池の劣化診断を行うことが可能である。すなわち、二
次電池の劣化は多くの場合電池容量の減少という形で現
れることから、劣化状況はその二次電池の保有する現実
の電池容量を把握することにより直接的に明らかとな
る。従って、上記したような容量推定方法により現実の
電池容量を推定すれば、予めわかっている当該二次電池
の定格容量や健常時の電池容量等との関係等により、電
池の劣化の度合いが診断できる。なお、この場合の容量
推定は、例えばそれが容量推定であるとして認識されて
いると否とを問わず、結果として容量推定を行っている
ことに相当すれば本発明に該当する。
【0061】劣化診断は、例えば、 容量比率[%]=推定容量[Ah]/定格容量[Ah]
*100[%] を求め、容量比率が80[%]以下となれば電池寿命で
あると判断する等の方法で容易に達成できる。また、簡
単には推定容量が所定値以下となれば電池寿命であると
判断するようにしてもよい。また、例えば定期的に診断
を行うようにして前回の診断結果と比較等し、劣化の度
合いが急激に進行したことをもって警告等するようにし
てもよい。
【0062】以上説明したように、本発明に係る劣化診
断方法は、上記のような容量推定方法によって電池容量
を推定し、推定結果に基づいて劣化を診断するようにし
たものである。従って、診断結果は現実の使用可能容量
に基づいたものであり、従来の放電時の電圧に基づいて
診断する方法等に比べて直接的でかつ的確な診断が行え
る。また、上記のような容量推定方法によるため、従来
の満充電から完全放電までの放電量を測定する方法等に
比べ、診断のために要する時間を著しく短縮できる。
【0063】次に、本発明に係る充電装置について説明
する。図1は、本発明に係る充電装置の構成を示す図で
ある。電源手段1は、二次電池に供給する電力の基とな
る電力を供給する。電源手段としては、太陽電池、発電
機、車載バッテリー等の蓄電池、AC電源を整流し直流
としたもの、及びこれらにさらにシリーズレギュレー
タ、スイッチングレギュレータ、DC−DCコンバータ
等を加えたもの等が挙げられ、安定化されているものが
好ましい。なお、電源手段は充電装置の外部に設けるよ
うにしてもよい。
【0064】二次電池3としては、NiCd電池、Ni
MH電池、鉛蓄電池、リチウムイオン二次電池等、上記
のような挙動が現れる電池であれば種類を問わず、いず
れの種類の電池にとっても好ましい結果が得られる。二
次電池は、充電装置と一体となるよう構成しても良い
し、電池パック等の態様として充電装置から独立するよ
うにしてもよい。
【0065】充電手段2は、二次電池に充電電力を供給
し、電池容量の推定に供する。この場合の充電電力が一
定電流等に限定されるものではないことは既に述べた通
りである。充電電力の態様としては、定電流、定電圧、
準定電流、その他これらを組み合わせたもの(例えば定
電流定電圧)等、いずれの態様をもとり得る。また、経
時的な面からみた充電電力の供給態様としては、連続的
に供給するもの、パルス的に供給するもの、断続を繰り
返すもの、連続的または段階的に可変するもの、充電と
放電を交互に行うもの等のいずれをもとり得る。
【0066】また、充電手段2は、推定手段の推定結果
に基づいて充電方法を可変し、推定結果に対応した最も
適切な充電を行う。充電方法の可変の内容としては、例
えば充電制御方法の選択や組み合わせの変更、充電制御
パラメータの可変等が挙げられる。
【0067】充電制御方法としては、例えば−ΔV制
御、ΔV/Δt制御、ΔT/Δt制御、電圧制御、温度
制御、時間制御等の満充電検出方法に関するものや、定
電流充電、定電圧充電、準定電流(抵抗)充電、パルス
充電等の充電電力の供給態様に関するものや、テスト充
電、急速充電、補充電等の充電態様に関するもの、容量
回復のための回復充電等が挙げられる。充電制御パラメ
ータとしては、例えば充電タイマの設定値、時間当たり
増分値等の時間に関するパラメータ、−ΔV検出感度、
ΔV/Δt検出感度等の満充電検出に関するパラメー
タ、充電電流、充電電圧等充電電力に関するパラメー
タ、充電態様を切り替える設定電圧や時限等充電態様に
関するパラメータ、等が挙げられる。推定結果に応じて
これらを可変するようにすることにより、優れた効果が
得られる。
【0068】電池容量の推定を目的としてする充電と、
充電を目的としてする充電とは、別個独立の態様で行う
ようにしても良いし、単一の充電電力供給態様をもって
両目的を同時に達成するようにしてもよい。例えば、充
電を目的としてする充電電力の接続や、充電を目的とし
てするパルス充電の充電電力の断続を、電池容量の推定
に利用するようにしてもよい。また、電池容量の推定を
目的とする充電手段と、充電を目的とする充電手段と
を、別個独立に設けるようにしてもよい。
【0069】放電手段4は、二次電池に蓄積された電荷
を放電する。放電電流が一定電流に限定されるものでな
いことは、充電手段の場合と同様である。放電手段の放
電負荷の種類としては、抵抗負荷、定電流負荷等が挙げ
られる。放電の態様としては、連続的に放電するもの、
パルス的に放電するもの、放電の断続を繰り返すもの、
放電電力を連続的叉は段階的に可変するもの、充電と放
電を交互に行うもの等が挙げられる。
【0070】放電は、電池容量推定の目的のためだけに
行うようにしても良いし、他の目的のための放電を容量
推定に利用するようにしても良い。例えば、NiCd電
池等では充電前に一旦放電して完全放電状態にすること
があるが、このような放電を、電池容量推定用の放電に
利用するようにしても良い。また、充電装置が機器組み
込みの場合等、二次電池に実際の負荷が接続される場合
には、放電手段に代えてこのような負荷を用いるように
してもよい。また、電池容量推定のための放電手段と、
その他の目的のための放電手段とを、別個独立に設ける
ようにしてもよい。なお、放電手段は第9の発明に係る
充電装置には必須でない。
【0071】取得手段5は、二次電池の電圧情報を取得
する。電圧情報の態様は、アナログ電圧で表したもの、
デジタルデータで表したもの、光や熱の量で表したも
の、電気信号や光線の周波数やパルス幅、振幅、位相等
で表したもの等いかなる態様でもよい。また、伝送途中
でエンコード/デコード、多重化、変復調等の情報変換
を行うようにしても良い。
【0072】電圧情報は、二次電池の両端の端子電圧に
関するものであってもよいし、複数セル直列接続された
ものであれば、その中の1セルないし数セルの電圧に関
するものであっても良い。また、これらを直接上記のよ
うな態様で表したものであってもよいし、抵抗等による
分圧、ダイオードやトランジスタ等によるレベルシフ
ト、増幅器等による増幅等を施して間接的に上記のよう
な種々の態様で表したものであってもよい。電圧情報
は、充電装置側で取得するようにしてもよいし、例えば
二次電池が電池パック等の形態である場合には、電池パ
ック側で取得し、信号端子や伝送路等を介して充電装置
側が取得するようにしてもよい。
【0073】推定手段6は、取得手段5が取得した電圧
情報に基づいて、電池容量の推定や、充電手段、放電手
段の制御等を行う。
【0074】次に、本発明に係る充電装置を具体例を挙
げながら説明する。図4は、本発明に係る充電装置の第
1の実施例を表した構成図である。ROM62には、電
池電圧に対応する推定容量のテーブル、推定容量に対応
する満充電検出の検出感度のテーブル等が予め記憶され
ている。RAM61には、充電タイマの構成要素たるタ
イマレジスタ、目標値レジスタや、満充電検出用のピー
ク値レジスタ等が置かれ、充電開始時点にそれぞれふさ
わしい値に初期設定される。タイマ63は、所定時間毎
にCPU60に時間到来を知らせる。
【0075】充電開始とともに、CPU60の指示によ
り電源10から定電流回路等からなる出力回路20を介
して二次電池30に所定の充電電流が供給される。これ
に伴い電池電圧は上昇し、図2のような曲線上に収束す
る。CPU60は、この収束に十分な所定時間の経過を
待って、電池電圧をA/Dコンバータ51によりデジタ
ル値に変換し、電池電圧値を得る。
【0076】また、CPU60は温度センサ50の出力
電圧をA/Dコンバータ51により変換し、温度値を得
る。この結果に基づいて、上記取得した電池電圧値を次
式のようにして温度補償し、25℃下における電池電圧
V25に変換する。 V25=K(C−25)+V ここにCは測定した温度[℃]、Kは電池電圧の温度係
数、Vは測定した電池電圧である。なお、実際の計算で
は温度センサの基底温度の変換やリニアリティの補償等
の処理が付加される。
【0077】CPU60は、この変換結果に基づいて上
記ROM62上の推定容量テーブルを索引し、推定容量
値を得る。さらに、CPU60はこの推定容量値を係数
倍した値を充電タイマの目標値レジスタに格納する。従
って、電池容量の推定結果に比例した長さの充電タイマ
が設定されることになる。また、推定容量値に基づいて
検出感度テーブルを索引し、この値を検出感度レジスタ
に格納する。
【0078】これ以降、CPU60は所定時間毎にタイ
マレジスタの値をインクリメントし、目標値レジスタの
値と比較する。タイマレジスタの値が目標値レジスタの
値と等しいかまたは大きくなれば、充電完了とみなし、
CPU60は出力回路20を操作して充電電力を停止
し、充電を終了する。
【0079】また、これと並行してCPU60は以下の
ような満充電検出を行う。CPU60は所定期間毎に上
記のようにして新たな電池電圧値を得る。新たな電池電
圧値がピーク値レジスタの値と等しいかまたは大きい場
合には、新たな電池電圧値をピーク値レジスタに格納す
る。一方、ピーク値レジスタの値よりも小さい場合に
は、ピーク値レジスタの値から新たな電池電圧値を引き
算して電圧差を求める。この電圧差が検出感度レジスタ
の値よりも大きければ、満充電に達したものとみなし、
充電を終了する。
【0080】以上説明したように、本実施例に係る充電
装置は、被充電二次電池の電池容量を推定し、推定結果
に応じて最も適切なタイマ時間を設定するよう構成した
ので、容量の小さな電池にとっては過充電の危険が避け
られ、また容量の大きな電池にとっては不足充電が避け
られ、種々の容量の二次電池にとってそれぞれ過不足の
ない最も適切な充電が行える。
【0081】また、本実施例にかかる充電装置では、容
量推定結果に応じて最も適切な満充電検出感度を設定す
るよう構成したので、容量の異なる種々の二次電池に対
しても、誤検出や検出失敗のおそれのない安全確実な充
電が行える。
【0082】なお、充電開始前の二次電池の残存量には
種々のケースが考えられ、従って図2上の充電開始位置
(横軸上の位置)は種々異なるが、第2図からわかるよ
うに充電電圧のカーブは充電量(すなわち残存量)に関
わらず比較的平坦であるので、充電開始前の残存量の影
響を比較的受けないで容量推定が可能である。また、上
記のような容量推定を充電中に適宜継続的に行い、その
都度上記目標値レジスタの値や感度レジスタの値を修正
するようにすれば、このような影響を回避することがで
きる。また、本実施例で示した方法は、放電による容量
推定に適用した場合にも、同様に優れた効果を奏する。
【0083】次に、本発明に係る充電装置の第2の実施
例について説明する。構成を図5に示す。出力回路20
は、D/Aコンバータ21の出力信号により出力電流が
制御されるよう構成されており、従ってCPU60から
D/Aコンバータ21への指示により二次電池30への
充電電流が可変できるようになっている。
【0084】充電開始とともに、CPU60はD/Aコ
ンバータ21に値を設定することにより出力回路20に
より小さめの第1の充電電流を供給し、電池電圧が収束
するのに十分な所定時間だけ待って、第1の実施例と同
様にして温度補償した電池電圧値を得る。この値が所定
値未満であれば、充電電流に比して電池容量が大きいと
推定されるので、CPU20はD/Aコンバータ21へ
の設定値を変更して充電電流を増大させる。また、この
値が上記所定値以上であれば、充電電流に比して電池容
量が小さいと推定されるので、CPU60は充電電流を
減少させる。
【0085】この後電池電圧が収束するに十分な時間だ
け待って、CPU60は再び電池電圧を測定し、その結
果に応じてさらに充電電流を加減する。以上を繰り返
し、電池電圧が概略上記所定値となるようにする。
【0086】このときの充電電流(簡単にはD/Aコン
バータ21への設定値)から電池容量が推定できるわけ
であるが、上記所定値を適切に設定しておけば、このと
きの充電電流がそのままその二次電池にとって最も適切
な充電電流となるから、この充電電流をもってそのまま
これ以降の充電を継続する。
【0087】第1の実施例に述べたような方法で満充電
が検出されると、CPU60は充電電流を上記の充電電
流の1/30に減少させ、さらに数時間充電を行う。
【0088】以上説明したように、本実施例に係る充電
装置は、電池容量を推定し、推定結果に基づいて充電電
流を制御するようにしたので、種々の容量の二次電池に
とって最も適切な充電電流で充電が行え、従って電池寿
命を損なうことなく安全に、かつ短時間で充電を行うこ
とができる。
【0089】なお、充電開始前の二次電池の残存量には
種々のケースが考えられ、従って図2上の充電開始位置
(横軸上の位置)は種々異なるが、上記所定値を、例え
ば充電前の電池電圧に基づいて可変するようにすれば、
このような残存量の影響を回避することができる。
【0090】また、上記のような容量推定を充電中に適
宜継続的に行い、その都度充電電流を修正するようにす
れば、このような影響を回避することができる。このよ
うにした場合、充電量が少ない領域では推定容量は実際
の容量よりも大きめの値となるため、大きめの充電電流
が供給され高速に充電が行えるとともに、満充電に近い
領域では容量が実際よりも小さめの値となるため、充電
電流が小さめに設定され二次電池に優しい安全な充電が
行えるという、優れた効果を奏する。なお、本実施例で
示した方法は、放電による容量推定に適用した場合に
も、同様に優れた効果を奏する。
【0091】次に、本発明に係る充電装置の第3の実施
例について説明する。構成は図5と同様である。RAM
61には電圧レジスタ等が置かれている。充電開始とと
もに、CPU60は小さめの所定の第1の充電電流を供
給し、電池電圧が収束するのに十分な所定時間だけ待っ
て、第1の実施例と同様にして第1の電池電圧値を得
る。この値を電圧レジスタに記憶する。また、この小電
流充電時の電池電圧等により電池異常等のチェックを行
い、安全性を確認する。
【0092】次に、CPU60は第1の充電電流よりも
大きい所定の第2の充電電流を供給し、同様に電池電圧
が収束するのに十分な所定時間だけ待って、上と同様に
して第2の電池電圧値を得る。第1の充電電流と第2の
充電電流との相違が電池電圧に与える影響は、電池容量
の小さな電池ほど相対的に大きくなるから、容量の小さ
な電池ほど第1の電池電圧値と第2の電池電圧値との差
が大きくなる。CPU60は、この差をテーブル変換し
て推定容量値を得、さらに充電電流が当該推定容量値を
係数倍した値となるよう充電電流を操作して、これ以降
の充電を行う。
【0093】以上説明したように、本実施例に係る充電
装置は、第1の充電電流を供給した場合の第1の電池電
圧値と、第2の充電電流を供給した場合の第2の電池電
圧値とに基づいて容量を推定し、推定結果に基づいて充
電電流を可変するようにしたので、容量の異なる種々の
二次電池に対してそれぞれ最も適切な充電電流で充電を
行うことができる。
【0094】なお、上記電圧差は電池電圧と依存関係が
あり、電池電圧の高い領域即ち満充電に近い領域では差
が大きくなる傾向にある。従って、電池電圧による補正
を加えれば、電池の残量の影響を回避でき、従って推定
精度が向上し、さらに適切な充電を行うことができる。
具体的には、上記変換テーブルを電池電圧ごとに用意す
るか、演算により補正するようにすればよい。
【0095】また、第2の実施例と同様、上記の容量推
定を適宜行い、推定結果に従って充電電流を逐次修正す
るようにしてもよい。また、第1の実施例の推定方法と
併用することにより、さらに推定精度を向上させること
ができる。また、本実施例では2種類の充電電流下の電
池電圧に基づいて推定するようにしたが、例えば2種類
の放電電流下の電池電圧に基づいて推定するようにして
も良いし、充電下の電池電圧と放電下の電池電圧とに基
づいて推定するようにしても良い。後者の場合は電池の
残存量の影響が相殺されるためさらに好ましい結果が得
られる。なお、本実施例で示した方法は、放電による容
量推定に適用した場合にも、同様に優れた効果を奏す
る。
【0096】次に、本発明に係る充電装置の第4の実施
例について説明する。構成は図5と同様である。ROM
62には、容量推定の際の複数の充電電流を決定するデ
ータや、これらの充電電流下の各種電池電圧に対応する
推定容量のテーブル等が、予め記憶されている。
【0097】充電開始とともに、CPU60は上記RO
M62上のデータに基づいて最も小さい所定の第1の充
電電流を供給し、電池電圧が収束するのに十分な所定時
間だけ待って、第1の実施例と同様にして電池電圧値を
得る。この電池電圧値が所定電圧未満であれば、充電電
流を前よりも大きい所定の第2の充電電流に切り替え、
同様に収束を待って電池電圧値を得る。以上を繰り返
し、充電電流を第3の充電電流、第4の充電電流・・・
と段階的に増大させながら、それぞれ電池電圧を測定す
る。
【0098】電池電圧が所定値以上となれば、このとき
の充電電流と電池電圧とに基づいて上記ROM62上の
テーブルにより推定容量値を得る。充電電流が最大とな
ってもなお電池電圧が上記所定電圧に達しない場合に
は、最大の電流値を加えた時の電池電圧によって推定容
量値を得る。CPU60は、当該推定容量値に従って、
充電タイマ、満充電検出感度、充電電流等を設定し、第
1の実施例及び第3の実施例と同様にして充電を行う。
【0099】以上説明したように、本実施例に係る充電
装置は、複数種類の充電電流で試行を繰り返すことによ
り、容量推定にとって最も適切な充電電流を捉え、この
条件下での電池電圧に基づいて電池容量を推定するよう
にしたので、容量推定の精度を著しく向上することがで
きる。また、1種類の充電電流のみで推定する場合に比
べ、小容量電池から大容量電池まで広範囲の容量推定が
可能となり、従って適応範囲が著しく拡大する。
【0100】本実施例では充電電流を逐次増大し電池電
圧値が所定電圧を初めて超えたときの1種類の充電電流
下における電池電圧をもとに容量推定を行うようにした
が、複数の充電電流下でそれぞれ推定容量値を得、これ
らに基づいて最終的な推定容量値を決定するようにして
もよい。例えば、電池電圧値が上記所定電圧を超える前
後の数点の充電電流でそれぞれ推定容量値を得、これら
を平均したものを最終的な推定容量値とするようにして
もよい。また、上記充電電流の増大のステップが荒い場
合には、上記所定電圧を超える前後の充電電流でそれぞ
れ推定容量値を得、さらにこれらから上記所定電圧にち
ょうど達したときの推定容量値を補間演算により求める
ようにしてもよい。また、本実施例で示した方法は、放
電による容量推定に適用した場合にも、同様に優れた効
果を奏する。
【0101】次に、本発明に係る充電装置の第5の実施
例について説明する。図6に構成を示す。放電開始とと
もに、CPU60は半導体スイッチ回路等からなる放電
スイッチ41をONとし、二次電池30は定電流放電回
路等からなる放電負荷40により所定の放電電流で放電
される。これに伴い電池電圧は下降し、図3のような曲
線上に収束する。CPU60は、この収束に十分な所定
時間の経過を待って電池電圧値を得、温度補償を行う。
容量の推定方法は第1の実施例と同様である。
【0102】また、CPU60は所定時間毎に電池電圧
を監視する。電池電圧が所定の放電終止電圧に達する
と、CPU60は完全放電状態に達したものとみなし、
放電スイッチ41をOFFして放電を終了し、代わって
上記容量推定結果に基づいて第1の実施例及び第3の実
施例と同様にして充電タイマ、満充電検出感度、充電電
流等を設定し、第1の実施例等と同様にして充電を行
う。
【0103】以上説明したように、本実施例に係る充電
装置は、二次電池を放電し、当該放電中の電池電圧に基
づいて電池容量を推定し、完全放電に達した後当該推定
結果に対応した充電を行うようにしたので、容量の異な
る種々の二次電池に対してそれぞれ最も適切な充電電流
で充電を行うことができる。なお、放電終了判定は所定
の放電終止電圧と比較することにより判定するようにし
たが、放電終止電圧を容量推定結果に応じて可変するよ
うにしてもよい。
【0104】次に、本発明に係る充電装置の第6の実施
例について説明する。構成は図5と同様である。出力回
路20は、可変定電流回路等からなる。ROM62に
は、電池電圧に対応する充電量のテーブルが予め記憶さ
れている。RAM61には、タイマレジスタ、目標値レ
ジスタ等が置かれ、充電開始時点にそれぞれふさわしい
値に初期設定される。
【0105】充電開始が指示されると、CPU60はD
/Aコンバータ21を介して出力回路20により二次電
池30に所定の充電電流を流し、タイマ63に従い数分
程度の所定時間、予備充電を行う。予備充電が終わる
と、CPU60は充電電力を停止した後電池電圧が収束
するまで電池種類により数秒から数分程度の所定時間待
って、A/Dコンバータ51により二次電池30の電池
電圧を測定し、25℃下となるよう温度補償し、結果を
RAM61に記憶する。この電圧を仮にE1とする。
【0106】次に、CPU60は出力回路20により二
次電池30に所定の充電電流を供給し、所定時間充電を
続ける。所定時間経過すると、CPU60は二次電池3
0に供給していた充電電力を停止し、同様に所定時間待
って、二次電池30の電池電圧を再度測定し、同様に温
度補償する。この電圧を仮にE2とする。CPU60
は、E2とRAM61に記憶された電圧E1とから次式
により推定容量Cを求める。 C=I*T*K*100/(S(E2)−S(E1))
[Ah] ここにIは充電電流[A]、Tは充電時間[h]、Kは
充電率であり、S(En)は電池電圧Enに対応する充
電量[%]であってROM62上のテーブルからテーブ
ル変換により求められる。なお、本実施例では予め決め
られた充電電流Iによる定電流充電を行っており、また
充電時間Tは所定時間としているので、これらは改めて
計測する必要はない。この推定結果に基づいて、CPU
60は充電電流及び充電タイマを設定してそれ以降の充
電を継続する。
【0107】以上説明したように、本実施例に係る充電
装置は、二次電池に時間と電流とで決まる所定の充電量
だけ充電し、その充電の前後の電池電圧に基づいて電池
容量を推定し、推定結果に基づいて充電電流及び充電タ
イマを設定するようにしたので、容量の異なる種々の二
次電池に対応しそれぞれ最も適切な充電電流で安全に充
電を行うことができる。
【0108】なお、本実施例では長期間放置された場合
等のため予備充電を行うようにしたが、二次電池の種類
等によっては省略できる場合がある。また、充電率は温
度等により左右されるため、温度に応じて可変するよう
にしてもよい。また、例えば常に完全放電状態から充電
されるような場合には、充電開始前の電圧測定を省略し
て充電後の電圧のみをもって容量推定するようにしても
よい。また、上記のような推定を継続的に行えば、さら
に精度を向上させることができる。
【0109】次に、本発明に係る充電装置の第7の実施
例について説明する。構成は図6と同様である。ROM
62には、図8のような特性に基づいた電池電圧に対す
る放電量のテーブルが予め記憶されている。RAM61
には、タイマレジスタ、目標値レジスタ等が置かれ、充
電開始時点にそれぞれふさわしい値に初期設定される。
【0110】放電開始が指示されると、CPU60は放
電スイッチ41をONとし、定電流放電回路からなる放
電負荷40によりタイマ63に従い二次電池30を所定
時間予備放電する。予備放電が終わると、CPU60は
放電スイッチ41をOFFとし、電池電圧が収束するま
で所定時間待って、A/Dコンバータ51により二次電
池30の電池電圧を測定し、25℃下となるよう温度補
償し、RAM61に記憶する。この電圧を仮にE1とす
る。
【0111】次に、CPU60は放電スイッチ41をO
Nとし、二次電池30を所定時間放電する。所定時間経
過すると、CPU60は放電スイッチ41を再度OFF
にし、同様に所定時間待って、二次電池30の電池電圧
を再度測定し、同様に温度補償する。この電圧を仮にE
2とする。CPU60は、E2とRAM61に記憶され
た電圧E1とから次式により推定容量Cを求める。 C=I*T*100/(S(E2)−S(E1))
[Ah] ここにIは放電電流[A]、Tは放電時間[h]であ
り、またS(En)は電池電圧Enに対応する放電量
[%]であり、ROM62のテーブルからテーブル変換
により求められる。CPU60は、この結果に基づいて
劣化診断を行う。上記推定容量が所定値以下であれば、
容量が低下していると診断されるので、CPU60は図
示しない表示装置に電池寿命の警告表示を行う。また、
CPU60は推定結果に基づいて充電電流を設定し、充
電タイマを設定して充電を行う。
【0112】以上説明したように、本実施例に係る充電
装置は、二次電池を時間と電流とで決まる所定の充電量
だけ放電し、その前後の電池電圧に基づいて電池容量を
推定し、推定結果に基づいて電池の劣化判定を行い、警
告表示を行うようにしたので、電池容量に対応した適切
な充電が行えるとともに、現実の電池容量に即した的確
な劣化診断が行え、二次電池の保守管理を確実に行うこ
とができる。
【0113】なお、上記実施例では診断結果に応じて警
告表示を行うようにしたが、例えば診断の結果が正常で
あれば通常の充電を行う一方、容量低下と診断された場
合には、充電方法を回復充電等の態様に切り替えること
で容量回復を図るようにしてもよい。また、メモリ効果
を起こすような種類の電池への応用では、上記診断の結
果が正常であれば充電を行う一方、容量低下と診断され
た場合は放電を続行し、一旦完全放電状態まで放電を行
ってから充電を行うことで容量回復を図るようにしても
よい。
【0114】本発明は上記のような実施例に限定される
ものではなく、以下のような種々の変形が可能である。 (1)上記充電装置の実施例においては、異なる容量の
電池に対して、充電制御方法はそのままで充電制御パラ
メータを可変するようにしたが、電池容量に対応して充
電制御方法を可変するようにしてもよい。例えば、第1
の実施例の方法で電池容量を推定し、充電装置の電源容
量に比して推定電池容量が大きければ第1の実施例の方
法で充電し、小さければ第2の実施例の方法で充電する
ように構成しても良い。このようにすれば、大容量の電
池にも対応でき、かつ、充電装置の電源の能力の許す範
囲であれば高速充電が行え、充電装置の電源容量を最大
限に有効利用することができる。
【0115】(2)電池容量は温度に依存するため、所
望温度下の電池容量に換算するようにしてもよい。ま
た、劣化診断にあっては、例えば想定されている動作温
度範囲の内で最も容量の低下する温度下の電池容量に換
算して診断するようにしてもよいし、例えば診断時の温
度と使用時の温度とが異なるような場合には、使用時の
温度条件下における電池容量に換算するようにしてもよ
い。
【0116】
【発明の効果】本発明に係る容量推定方法は、外部から
の電池種類の指示や、電池パックの種別検出用端子等の
付帯物や、電池パックの形状等の付帯事項等によらず、
二次電池それ自体の電気的化学的特性に基づいて電池容
量を推定するようにしたので、これら付帯事項等の加え
られていない二次電池、例えば他のメーカーの同等品
や、形状の異なる電池、新たに開発された電池等であっ
ても対応することができる。
【0117】また、本発明に係る劣化診断方法は、上記
のような容量推定方法によって電池容量を推定し、推定
結果に基づいて劣化を診断するようにしたので、診断結
果は現実の使用可能容量に基づいたものであり、従って
従来の放電時の電圧に基づいて診断する方法等に比べて
直接的でかつ的確な診断が行える。また、上記のような
容量推定方法によるため、従来の満充電から完全放電ま
での放電量を測定する方法等に比べ、診断のために要す
る時間が著しく短縮できる。
【0118】また、本発明に係る充電装置は、上記のよ
うな容量推定方法によって電池容量を推定し、推定結果
に基づいて充電方法を適切に可変するよう構成したの
で、単一の充電装置でありながら種々の二次電池に対応
し、急速かつ安全に、過不足無く、種々の二次電池にと
ってそれぞれ最も適切な充電が行なえる。
【0119】しかも、電池容量を充電装置自らが自動推
定するので、充電に際して電池種類選択スイッチの設定
や外部からの電池種類の指示等を必要とせず、従って誤
操作等による危険を避けることができる。
【0120】また、電池パックに容量識別のための特別
の端子を設けたり、容量に応じて電池パックの形状を異
ならしめるような必要もないため、これらに要するコス
トを削減することができる。また、識別端子の接触不良
等の問題もない。
【0121】さらに、二次電池それ自体の特性に基づい
て電池容量を推定するようにしたので、例えば他のメー
カーの同等品や、形状の異なる電池等にも対応できる。
また、既存の種々の二次電池に対応できるばかりでな
く、将来開発されるであろう未来の電池にも適切に対応
できる。
【図面の簡単な説明】
【図1】本発明に係る充電装置の構成図
【図2】NiCd電池の充電特性を示す図
【図3】NiCd電池の放電特性を示す図
【図4】本発明に係る充電装置の第1の実施例の構成図
【図5】本発明に係る充電装置の第2の実施例、第3の
実施例、第4の実施例、第6の実施例の構成図
【図6】本発明に係る充電装置の第5の実施例、第7の
実施例の構成図
【図7】リチウムイオン二次電池の充電特性を示す図
【図8】リチウムイオン二次電池の放電特性を示す図
【符号の説明】
1 電源手段 2 充電手段 3 二次電池 4 放電手段 5 取得手段 6 推定手段

Claims (10)

    【特許請求の範囲】
  1. 【請求項1】 二次電池を充電または放電し、電池容量
    を推定する二次電池の容量推定方法。
  2. 【請求項2】 二次電池を充電または放電し、電池電圧
    に基づいて電池容量を推定する請求項1に記載の二次電
    池の容量推定方法。
  3. 【請求項3】 二次電池を所望の電池電圧まで充電また
    は放電し、充電電流または放電電流に基づいて電池容量
    を推定する二次電池の容量推定方法。
  4. 【請求項4】 二次電池を充電または放電し、充電電流
    または放電電流と、電池電圧とに基づいて電池容量を推
    定する二次電池の容量推定方法。
  5. 【請求項5】 二次電池を所定量充電または放電し、電
    池電圧に基づいて電池容量を推定する二次電池の容量推
    定方法。
  6. 【請求項6】 二次電池を所望の電池電圧まで充電また
    は放電し、充電量または放電量に基づいて電池容量を推
    定する二次電池の容量推定方法。
  7. 【請求項7】 二次電池を充電または放電し、充電量ま
    たは放電量と、電池電圧とに基づいて電池容量を推定す
    る二次電池の容量推定方法。
  8. 【請求項8】 二次電池を充電または放電して二次電池
    の容量を推定し、推定結果に基づいて当該二次電池の劣
    化状況を診断する二次電池の劣化診断方法。
  9. 【請求項9】 二次電池に充電する充電手段、二次電池
    の電圧情報を取得する取得手段、当該二次電池の電池容
    量を推定する推定手段を具備し、推定手段の推定結果に
    基づいて充電手段の充電方法を可変することを特徴とす
    る充電装置。
  10. 【請求項10】 さらに二次電池を放電する放電手段を
    具備してなる請求項9に記載の充電装置。
JP6170266A 1994-06-28 1994-06-28 二次電池の容量推定方法、劣化診断方法、及び充電装置 Pending JPH0817477A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6170266A JPH0817477A (ja) 1994-06-28 1994-06-28 二次電池の容量推定方法、劣化診断方法、及び充電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6170266A JPH0817477A (ja) 1994-06-28 1994-06-28 二次電池の容量推定方法、劣化診断方法、及び充電装置

Publications (1)

Publication Number Publication Date
JPH0817477A true JPH0817477A (ja) 1996-01-19

Family

ID=15901756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6170266A Pending JPH0817477A (ja) 1994-06-28 1994-06-28 二次電池の容量推定方法、劣化診断方法、及び充電装置

Country Status (1)

Country Link
JP (1) JPH0817477A (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924623B2 (en) 1998-08-10 2005-08-02 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
JP2005300418A (ja) * 2004-04-14 2005-10-27 Shin Kobe Electric Mach Co Ltd 鉛蓄電池の残存容量予測方法及び装置
JP2006337155A (ja) * 2005-06-01 2006-12-14 Matsushita Electric Ind Co Ltd 電池監視装置
JP2007057116A (ja) * 2005-08-22 2007-03-08 Sharp Corp 屋内換気システムとその方法
JP2009219704A (ja) * 2008-03-17 2009-10-01 Omron Healthcare Co Ltd 電子血圧計
US7680460B2 (en) 2005-01-03 2010-03-16 Rosemount Inc. Wireless process field device diagnostics
JP2010521948A (ja) * 2007-03-26 2010-06-24 ザ ジレット カンパニー 適応充電装置及び方法
JP2010148712A (ja) * 2008-12-25 2010-07-08 Omron Healthcare Co Ltd 電子血圧計
JP2010239705A (ja) * 2009-03-30 2010-10-21 Primearth Ev Energy Co Ltd 二次電池の充電制御方法及び充電器
JP2011169907A (ja) * 2002-10-28 2011-09-01 Panasonic Corp 電池管理システム、電池パック、及び充電状態計測方法
CN102738528A (zh) * 2011-03-31 2012-10-17 株式会社丰田自动织机 通过电流曲线的更新进行的电池控制
JP2013183509A (ja) * 2012-02-29 2013-09-12 Toshiba Corp 充放電量予測システム及び充放電量予測方法
WO2015151649A1 (ja) * 2014-03-31 2015-10-08 株式会社東芝 バックアップ電源システム、劣化推定装置及び劣化推定方法
CN105634063A (zh) * 2016-01-29 2016-06-01 中国电子科技集团公司第二十九研究所 一种基于电池历史数据的主动均衡方法
CN112793463A (zh) * 2020-12-29 2021-05-14 联合汽车电子有限公司 车载电池诊断方法及车载电池诊断装置

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235326B2 (en) 1998-08-10 2007-06-26 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
US7030618B2 (en) 1998-08-10 2006-04-18 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
US7075305B2 (en) 1998-08-10 2006-07-11 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
US6924623B2 (en) 1998-08-10 2005-08-02 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
US7180298B2 (en) 1998-08-10 2007-02-20 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
JP2011169907A (ja) * 2002-10-28 2011-09-01 Panasonic Corp 電池管理システム、電池パック、及び充電状態計測方法
JP2005300418A (ja) * 2004-04-14 2005-10-27 Shin Kobe Electric Mach Co Ltd 鉛蓄電池の残存容量予測方法及び装置
US7680460B2 (en) 2005-01-03 2010-03-16 Rosemount Inc. Wireless process field device diagnostics
JP2006337155A (ja) * 2005-06-01 2006-12-14 Matsushita Electric Ind Co Ltd 電池監視装置
JP2007057116A (ja) * 2005-08-22 2007-03-08 Sharp Corp 屋内換気システムとその方法
JP2011058799A (ja) * 2005-08-22 2011-03-24 Sharp Corp 屋内換気システムとその方法
JP4723952B2 (ja) * 2005-08-22 2011-07-13 シャープ株式会社 屋内換気システム
JP2010521948A (ja) * 2007-03-26 2010-06-24 ザ ジレット カンパニー 適応充電装置及び方法
JP2009219704A (ja) * 2008-03-17 2009-10-01 Omron Healthcare Co Ltd 電子血圧計
JP2010148712A (ja) * 2008-12-25 2010-07-08 Omron Healthcare Co Ltd 電子血圧計
JP2010239705A (ja) * 2009-03-30 2010-10-21 Primearth Ev Energy Co Ltd 二次電池の充電制御方法及び充電器
US8198867B2 (en) 2009-03-30 2012-06-12 Panasonic Ev Energy Co., Ltd. Charging control method for secondary battery and battery charger
CN102738528A (zh) * 2011-03-31 2012-10-17 株式会社丰田自动织机 通过电流曲线的更新进行的电池控制
JP2012217274A (ja) * 2011-03-31 2012-11-08 Toyota Industries Corp 電流プロファイルの更新による電池制御
JP2013183509A (ja) * 2012-02-29 2013-09-12 Toshiba Corp 充放電量予測システム及び充放電量予測方法
WO2015151649A1 (ja) * 2014-03-31 2015-10-08 株式会社東芝 バックアップ電源システム、劣化推定装置及び劣化推定方法
JP6058862B2 (ja) * 2014-03-31 2017-01-11 株式会社東芝 バックアップ電源システム、劣化推定装置及び劣化推定方法
JP2017060399A (ja) * 2014-03-31 2017-03-23 株式会社東芝 バックアップ電源システム、劣化推定装置及び劣化推定方法
CN105634063A (zh) * 2016-01-29 2016-06-01 中国电子科技集团公司第二十九研究所 一种基于电池历史数据的主动均衡方法
CN105634063B (zh) * 2016-01-29 2018-04-03 中国电子科技集团公司第二十九研究所 一种基于电池历史数据的主动均衡方法
CN112793463A (zh) * 2020-12-29 2021-05-14 联合汽车电子有限公司 车载电池诊断方法及车载电池诊断装置

Similar Documents

Publication Publication Date Title
US5160880A (en) Method and apparatus for charging and testing batteries
US5049803A (en) Method and apparatus for charging and testing batteries
US4745349A (en) Apparatus and method for charging and testing batteries
EP0067590B1 (en) Method and apparatus for charging a battery
AU669389B2 (en) Method for optimizing the charging of lead-acid batteries and an interactive charger
US5656920A (en) Method and apparatus for charging a lead-acid battery
US20060113959A1 (en) Rechargeable battery life judging method
EP0713101B1 (en) Remaining battery capacity meter and method for computing remaining capacity
US8643331B1 (en) Enhanced voltage-based fuel gauges and methods
CN108885242B (zh) 二次电池劣化估计装置和二次电池劣化估计方法
US7221125B2 (en) System and method for charging a battery
EP0067589A1 (en) Method and apparatus for testing a battery
EP3214456A1 (en) Secondary battery state detection device and secondary battery state detection method
JPH0817477A (ja) 二次電池の容量推定方法、劣化診断方法、及び充電装置
JP4210794B2 (ja) 電池の容量検出方法、電池パック及び電子機器システム
US20010035738A1 (en) Method for determining the state of charge of lead-acid rechargeable batteries
WO2002041466A2 (en) Adaptive battery charging based on battery condition
CN109073708B (zh) 二次电池劣化估计装置和二次电池劣化估计方法
KR20130129096A (ko) 개로 전압 추정 장치, 상태 추정 장치 및 개로 전압 추정 방법
JP7183576B2 (ja) 二次電池パラメータ推定装置、二次電池パラメータ推定方法及びプログラム
JP5131533B2 (ja) バッテリの充放電制御方法及び充放電制御装置
US20020053910A1 (en) Method and apparatus for measuring pure resistance of in-vehicle battery
JP2004271342A (ja) 充放電制御システム
US6094051A (en) Apparatus and method for detecting memory effect in nickel cadmium batteries
US20010005127A1 (en) Battery charger and method of detecting a fully charged condition of a secondary battery