JPH08174167A - Exothermic type molding powder for continuous casting - Google Patents

Exothermic type molding powder for continuous casting

Info

Publication number
JPH08174167A
JPH08174167A JP31897294A JP31897294A JPH08174167A JP H08174167 A JPH08174167 A JP H08174167A JP 31897294 A JP31897294 A JP 31897294A JP 31897294 A JP31897294 A JP 31897294A JP H08174167 A JPH08174167 A JP H08174167A
Authority
JP
Japan
Prior art keywords
powder
exothermic
sintering
mixed
heating assist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31897294A
Other languages
Japanese (ja)
Other versions
JP2973845B2 (en
Inventor
Norihiro Nishida
典弘 西田
Masayuki Kawamoto
正幸 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6318972A priority Critical patent/JP2973845B2/en
Publication of JPH08174167A publication Critical patent/JPH08174167A/en
Application granted granted Critical
Publication of JP2973845B2 publication Critical patent/JP2973845B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE: To improve the exothermic efficiency of an exothermic type molding powder for continuous casting and to decrease the generating rate of pin holes by previously mixing and sintering an exothermic material and a heating assist material and adding the mixture to a powder base material. CONSTITUTION: The exothermic material and heating assist material of the exothermic type powder raw material powder subjected to a design of mix in a prescribed range are mixed by using a mixer, such as V mixer. The powder mixture composed of the exothermic material and the heating assist material is then subjected to a sintering treatment to obtain a sintered compact. After this sintering treatment is continued down to room temp., the sintered compact is pulverized and the resulted powder is subjected to a grain size readjustment in such a manner that a grain size range of about 1 to 100μm is attained. The sintered compact powder subjected to this grain size readjustment is added to the powder base material and is mixed with equipment, such as mixer, by which the exothermic type powder is obtd. The state that the heating assist material and the metallic exothermic material to generate heat by combustion according to the reduction thereof exist extremely adjacently is obtd. by mixed sintering of the exothermic material and the heating assist material. The reaction of the exothermic material and the heating assist material is, therefore, effected efficiently even if the sintered compact powder is added to the powder base material and is uniformly mixed therewith.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼の連続鋳造用モール
ドパウダーに関する。
FIELD OF THE INVENTION The present invention relates to a mold powder for continuous casting of steel.

【0002】[0002]

【従来の技術】鋼の連続鋳造用モールドパウダーを成分
および製造方法から分類すると、混合タイプとプリメル
トタイプに分けられる。混合タイプの成分は、主原料と
しての石灰質原料、塩基度調整のために必要に応じて加
えるシリカ質原料、さらに炭酸ナトリウム、蛍石などの
凝固点、粘度などの溶融特性調整材としてのフラックス
原料、および溶融速度調整材としての炭素質原料からな
る。プリメルトタイプには、上記の炭素質原料を除く成
分を全部もしくは一部溶解して粉砕したプリメルト、セ
ミプリメルトタイプなどがある。一方、形状的には、粉
末原料を混合した粉末タイプと、さらに種々の方法で造
粒した顆粒タイプとがある。
2. Description of the Related Art Mold powders for continuous casting of steel are classified into a mixed type and a premelt type according to components and a manufacturing method. The mixed type component is a calcareous raw material as a main raw material, a siliceous raw material added as necessary for basicity adjustment, further sodium carbonate, a freezing point such as fluorite, a flux raw material as a melting property adjusting material such as viscosity, And a carbonaceous raw material as a melting rate adjusting material. The pre-melt type includes a pre-melt type and a semi-pre-melt type in which all or a part of the components except the above carbonaceous raw material are melted and crushed. On the other hand, in terms of shape, there are a powder type in which powder raw materials are mixed and a granule type in which granulation is performed by various methods.

【0003】連続鋳造用モールドパウダー(以下、単に
モールドパウダーまたはパウダーという)は、モールド
内に注入された溶鋼表面上に添加され、溶鋼表面上でス
ラグ化し、モールド内壁面と凝固シェルとの間の潤滑作
用、モールド内の溶鋼表面の保温作用、溶鋼中から浮上
する介在物の吸収作用、溶鋼表面の酸化防止作用等の役
割を果たしながら消費される。
Mold powder for continuous casting (hereinafter, simply referred to as mold powder or powder) is added on the surface of molten steel injected into the mold, slag is formed on the surface of molten steel, and it is between the inner wall surface of the mold and the solidified shell. It is consumed while fulfilling the roles of lubrication, heat retention on the surface of molten steel in the mold, absorption of inclusions floating from the molten steel, and antioxidant on the surface of molten steel.

【0004】このパウダーには、その溶解速度、粘性、
融点などの多くの管理要因があり、鋼種、鋳造速度、鋳
片断面形状などによって最適パウダーが異なるため、そ
の選択は極めて重要である。
This powder has its dissolution rate, viscosity,
Since there are many control factors such as melting point, and the optimum powder differs depending on the steel type, casting speed, slab cross-sectional shape, etc., its selection is extremely important.

【0005】連続鋳造された鋳片表面の欠陥、特にピン
ホールの発生率を低減するためにはモールド内溶鋼表面
の温度を高く保ち、モールド内の溶鋼中に存在する気泡
および介在物の浮上を容易にする必要がある。
In order to reduce the occurrence rate of defects on the surface of the continuously cast slab, especially pinholes, the temperature of the molten steel surface in the mold is kept high and the bubbles and inclusions present in the molten steel in the mold rise up. Need to be easy.

【0006】このため、パウダーによる溶鋼表面の保温
性を向上するについては、パウダー中にCa−Si、S
i、Al等の金属発熱材を添加し、その酸化による発熱
反応を生じさせて溶鋼表面に熱を供給することが指向さ
れてきている。
Therefore, in order to improve the heat retention of the molten steel surface by the powder, Ca-Si, S
It has been directed to add a metal heating material such as i or Al to generate an exothermic reaction due to the oxidation thereof and supply heat to the surface of the molten steel.

【0007】上記のようにパウダー中に金属発熱材を添
加して発熱させる方法としては、次のようなものが提案
されている。
The following methods have been proposed as a method for adding heat to the powder by adding a metal heating material to the powder.

【0008】特開平2−220749号公報には、Al2 3
−SiO2 −CaO系の無機粉末に、低融点調整材とし
てNa2 O、F、MgO、Fe2 3 、B2 3 および
BaOの1種以上を、発熱材としてCおよびCa−Si
の少なくともCa−Siを、これらの発熱材を発熱させ
る助燃材(酸化剤)としてKMnO4 、Fe2 3 およ
びMnOの1種以上を、それぞれ添加したパウダーが示
されている。
Japanese Patent Laid-Open No. 2-220749 discloses Al 2 O 3
Inorganic powder -SiO 2 -CaO-based, low-melting-adjusting material as Na 2 O, F, MgO, Fe 2 O 3, B 2 O 3 and BaO of one or more, C and Ca-Si as a heat generating material
At least Ca-Si, the KMnO 4, Fe 2 O 3 and one or more MnO these heat generating material as improve combustion to generate heat (oxidizing agent), and powder was added to the culture are shown in.

【0009】特開平3−226341号公報には、基材原料20
〜90重量%、SiO2 50重量%以上のシリカ質原料0〜
10重量%、フラックス原料0〜20重量%、さらに炭酸ナ
トリウム、炭酸水素ナトリウムおよび硝酸ナトリウムの
発熱材のうちの1種または2種以上3〜30重量%、シリ
コンおよびシリコン合金の還元材のうちの1種または2
種以上3〜30重量%、ならびに酸化鉄からなる火炎抑制
材0〜30重量%を含有したパウダーが示されている。
Japanese Patent Laid-Open No. 3-226341 discloses a base material 20
~ 90 wt%, SiO 2 50 wt% or more siliceous raw material 0
10% by weight, 0 to 20% by weight of flux material, one or more exothermic materials of sodium carbonate, sodium hydrogen carbonate and sodium nitrate, 3 to 30% by weight, of reducing agents of silicon and silicon alloy 1 or 2
Powders containing from 3 to 30% by weight of the seeds and from 0 to 30% by weight of a flame suppressant consisting of iron oxide are shown.

【0010】特開平3−169467号公報には、スラグ基材
と融剤、粘度調整剤およびカーボン等とを含有したパウ
ダーに、フラックスとCa−Al合金微粒子とを一体に
焼結して粉状にしたCa−Al合金フラックス粉末、な
らびにCa−Si合金粉末やAl−Mg合金粉末等の発
熱材を混合したパウダーが提案されている。
In Japanese Patent Laid-Open No. 3-169467, a powder containing a slag base material, a flux, a viscosity modifier, carbon and the like is integrally sintered with a flux and Ca-Al alloy fine particles to form a powder. The Ca-Al alloy flux powder and the powder in which a heat generating material such as Ca-Si alloy powder or Al-Mg alloy powder are mixed are proposed.

【0011】[0011]

【発明が解決しようとする課題】上記特開平2−220749
号公報および特開平3−226341号公報の発明の考え方に
基づけば、鋳片の欠陥を減少させるためにパウダーに発
熱性を具備させる目的で金属発熱材を添加するが、この
金属発熱材を効果的に燃焼させるためには助燃材の添加
が必要である。しかし、これらは粉末状態で混合して添
加するため、他のパウダー基材により、酸素源となる助
燃材と金属発熱材とが隣接して存在する確率が減るた
め、パウダー層内部などのような酸素ポテンシャルの低
い領域では、その反応効率に問題がある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Based on the idea of the inventions of Japanese Patent Laid-Open No. 3-226341 and Japanese Patent Laid-Open No. 3-226341, a metal heat-generating material is added for the purpose of providing powder with heat-generating property in order to reduce defects in a cast piece. It is necessary to add an auxiliary combustion material for effective combustion. However, since these are mixed and added in a powder state, the probability that the auxiliary combustion material serving as an oxygen source and the metal heating material are present adjacent to each other due to other powder base materials is reduced, and therefore, such as inside the powder layer. There is a problem in the reaction efficiency in the region where the oxygen potential is low.

【0012】特開平3−169467号公報にあるように、発
熱材とフラックスとを焼結することで、発熱材の酸化発
熱により溶鋼からの放熱が防止され、またフラックス成
分の溶融に伴う温度降下も、さらにパウダー層内部の金
属の酸化による発熱により補われ、温度降下を防ぐこと
ができる。しかし、この発明によるパウダーは鋳込み初
期のみに用いるフロントパウダーであって、その配合比
および成分は、鋳込み定常部用パウダーとしては使用で
きないものである。
As disclosed in Japanese Unexamined Patent Publication No. 3-169467, by sintering a heat generating material and a flux, heat generated by oxidation of the heat generating material is prevented from radiating heat from molten steel, and a temperature drop is caused by melting of the flux component. In addition, the heat generated by the oxidation of the metal inside the powder layer is compensated for, and the temperature drop can be prevented. However, the powder according to the present invention is a front powder used only in the initial stage of casting, and its compounding ratio and components cannot be used as the powder for the constant casting portion.

【0013】本発明の目的は、上記従来技術の欠点を解
消し、鋼の連続鋳造においてピンホールの少ない鋳片を
得ることができる発熱型モールドパウダーを提供するこ
とにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a heat-generating mold powder capable of obtaining a slab with few pinholes in continuous casting of steel.

【0014】[0014]

【課題を解決するための手段】本発明の要旨は、次の発
熱型の連続鋳造用モールドパウダーにある。
The gist of the present invention resides in the following exothermic mold powder for continuous casting.

【0015】鋼の連続鋳造用パウダーであって、パウダ
ー基材と発熱材および助燃材を予め混合、焼結したもの
とからなることを特徴とする発熱型連続鋳造用モールド
パウダー。
A powder for continuous casting of steel, comprising a powder base material, an exothermic material, and an auxiliary combustion material, which have been mixed and sintered in advance, and a mold powder for exothermic continuous casting.

【0016】望ましいパウダー基材は、ポルトランドセ
メント、黄リンスラグ、ウォラストナイトおよび合成珪
酸カルシウム等の粉末である。
The preferred powder bases are powders such as Portland cement, yellow phosphorus slag, wollastonite and synthetic calcium silicate.

【0017】同じく発熱材は、カルシウム、シリコンお
よびアルミニウムの金属粉末またはそれらの合金粉末の
うちの1種または2種以上、もしくはシリコン、カルシ
ウムおよびアルミニウムのうちの2種以上を含む合金粉
末である。
Similarly, the heat generating material is one or more kinds of metal powders of calcium, silicon and aluminum or alloy powders thereof, or an alloy powder containing two or more kinds of silicon, calcium and aluminum.

【0018】同じく助燃材は、Fe2 3 、FeO、M
nO、MnO2 およびKMnO4 のの粉末のうちの1種
以上である。
Similarly, the combustion improver is Fe 2 O 3 , FeO, M
One or more of powders of nO, MnO 2 and KMnO 4 .

【0019】[0019]

【作用】本発明の発熱型パウダーは基本的にパウダー基
材、発熱材および助燃材からなるものであるが、発熱材
および助燃材を予め混合して焼結し、さらに粉砕して粒
度調整を施したものをパウダー基材に添加したものであ
る。
The heat-generating powder of the present invention basically comprises a powder base material, a heat-generating material and an auxiliary combustion material. The heat-generating material and the auxiliary combustion material are premixed and sintered, and further pulverized to adjust the particle size. The applied product is added to the powder base material.

【0020】本発明の発熱型パウダーには、さらに上記
三種類の材料の他に塩基度調整材としてシリカ質原料
を、溶融特性調整材として炭酸ナトリウム、ほう砂、氷
晶石、蛍石等を、さらに溶融速度調整材として炭素質原
料を、質量%でそれぞれ20〜40%程度、合計10〜
50%程度、2〜8%程度の範囲で含有させても問題は
ない。
In addition to the above-mentioned three kinds of materials, the exothermic powder of the present invention further comprises a siliceous raw material as a basicity adjusting material, and sodium carbonate, borax, cryolite, fluorite, etc. as a melting characteristic adjusting material. Further, a carbonaceous raw material as a melting rate adjusting material is added in an amount of about 20 to 40% by mass, and a total of 10
There is no problem even if it is contained in the range of about 50%, 2-8%.

【0021】パウダー基材として望ましいのは、モール
ドパウダーの主成分となるSiO2、CaOおよびAl
2 3 を含むポルトランドセメント、黄リンスラグ、ウ
ォラストナイト、合成珪酸カルシウム等の粉末を挙げる
ことができる。パウダー基材の望ましい粒度範囲は、い
ずれも約1〜100μmである。これらを用いてパウダ
ー基材の組成を質量%で、SiO2 :30〜40%、C
aO:30〜40%、Al2 3 :2〜10%、Na2
0:5〜15%、T. F:5〜15%、塩基度を0.8
〜1.2程度にするのがよい。発熱型パウダー中に占め
るパウダー基材の望ましい配合率範囲は質量%で90〜
97%である。
Desirable powder base materials are SiO 2 , CaO and Al, which are the main components of the mold powder.
Powders of portland cement containing 2 O 3 , yellow phosphorus slag, wollastonite, synthetic calcium silicate and the like can be mentioned. The desirable particle size range of each powder base material is about 1 to 100 μm. Using these, the composition of the powder base material is% by mass, SiO 2 : 30 to 40%, C
aO: 30~40%, Al 2 O 3: 2~10%, Na 2
0: 5-15%, TF: 5-15%, basicity 0.8
It is good to be about 1.2. The desirable blending ratio range of the powder base material in the heat-generating powder is 90% by mass.
97%.

【0022】発熱材として望ましいのは、シリコン、カ
ルシウムおよびアルミニウムのうちの1種または2種以
上の金属粉末、もしくはシリコン、カルシウムおよびア
ルミニウムのうちの2種以上を含む合金粉末である。合
金粉末としては、Ca−Si、Al−Mg、Ca−Al
の合金粉末を挙げることができる。発熱材の望ましい粒
度範囲は、いずれも約1〜100μmである。これらを
用いて焼結体中の金属シリコン、カルシウムおよびアル
ミニウムのうちの1種または2種以上の合計が質量%で
30〜80%程度の範囲になるように配合するのがよ
い。シリコン、カルシウムおよびアルミニウムの組合せ
は特に限定されず、これらが金属単体もしくは合金のか
たちで焼結体中に上記範囲程度で含有されておればよ
い。
Desirable as the heat generating material is one or more metal powders of silicon, calcium and aluminum, or an alloy powder containing two or more kinds of silicon, calcium and aluminum. As alloy powder, Ca-Si, Al-Mg, Ca-Al
The alloy powder of can be mentioned. The desirable particle size range of the heat generating material is about 1 to 100 μm. It is preferable to use these and mix them so that the total of one kind or two kinds or more of metallic silicon, calcium and aluminum in the sintered body is in a range of about 30 to 80% by mass. The combination of silicon, calcium and aluminum is not particularly limited as long as they are contained in the sintered body in the form of a simple metal or an alloy within the above range.

【0023】助燃材として望ましいのは、Fe2 3
FeO、MnO、MnO2 およびKMnO4 の粉末のう
ちの1種以上である。望ましい粒度範囲は、いずれも約
1〜100μmである。これらが合計で焼結体中に質量
%で20〜70%程度の範囲になるように配合するのが
よい。これらの組合せは特に限定されない。
Fe 2 O 3 ,
One or more of powders of FeO, MnO, MnO 2 and KMnO 4 . The desirable particle size range is about 1 to 100 μm. It is preferable to mix these in the sintered body in a range of about 20 to 70% by mass. These combinations are not particularly limited.

【0024】上記のような範囲で配合設計した発熱型パ
ウダー原料粉末のうち、発熱材と助燃材とをVミキサー
などの混合装置を用いて混合する。次いで、発熱材と助
燃材との混合粉末に焼結処理を施し焼結体を得る。焼結
温度範囲は800〜1100℃、焼結雰囲気は処理中お
よび室温までの冷却中も不活性雰囲気である。
Among the exothermic powder raw material powders which are blended and designed in the above range, the exothermic material and the auxiliary combustion material are mixed using a mixing device such as a V mixer. Then, the mixed powder of the heat generating material and the auxiliary combustion material is sintered to obtain a sintered body. The sintering temperature range is 800 to 1100 ° C., and the sintering atmosphere is an inert atmosphere during processing and cooling to room temperature.

【0025】上記焼結後は室温まで冷却した後、粉砕し
て約1〜100μmの粒度範囲になるように粒度再調整
を施す。
After the above-mentioned sintering, after cooling to room temperature, it is pulverized and the particle size is adjusted again so that the particle size is in the range of about 1 to 100 μm.

【0026】この粒度再調整を施した焼結体粉を前述の
パウダー基材に添加し、Vミキサーなどの設備で混合
し、本発明の発熱型パウダーとする。
The sintered powder having the particle size re-adjusted is added to the above-mentioned powder base material and mixed with equipment such as a V mixer to obtain the exothermic powder of the present invention.

【0027】上記の発熱材と助燃材との混合焼結によ
り、助燃材とこれの還元に伴って燃焼発熱する金属発熱
材とが極めて隣接して存在する状態が得られており、こ
の焼結体粉をパウダー基材に添加して均一混合しても、
モールドパウダー中での発熱材と助燃材との反応が効率
よく行われ、効果的にモールドパウダーを発熱させるこ
とができ、モールド内溶鋼表面温度の低下が防止される
とともに鋳片のピンホール発生を抑制することができ
る。
By mixing and sintering the above exothermic material and the auxiliary combustion material, it is possible to obtain a state in which the auxiliary combustion material and the metallic exothermic material which generates heat by combustion due to the reduction of the auxiliary combustion material are very adjacent to each other. Even if body powder is added to the powder base and mixed evenly,
The reaction between the heat generating material and the auxiliary combustion material in the mold powder is carried out efficiently, the heat of the mold powder can be effectively generated, the decrease of the molten steel surface temperature in the mold is prevented, and pinholes in the slab are generated. Can be suppressed.

【0028】[0028]

【実施例】表1に示すSiO2 、CaO、Al2 3
主成分とするパウダー基材(粒度範囲:約1〜100μ
m)に、表2に示す組成の焼結体粉末または非焼結粉末
(粒度範囲:約1〜100μm)をモールドパウダー全
質量に対して5〜8質量%添加して発熱型のモールドパ
ウダーを製造した。
EXAMPLE A powder base material containing SiO 2 , CaO and Al 2 O 3 as main components shown in Table 1 (particle size range: about 1 to 100 μm)
m), a sintered powder or a non-sintered powder (particle size range: about 1 to 100 μm) having the composition shown in Table 2 is added in an amount of 5 to 8% by mass with respect to the total mass of the mold powder to obtain an exothermic mold powder. Manufactured.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】表2に示す焼結体粉末は、発熱材と助燃材
(粒度範囲:いずれも約1〜100μm)とを配合した
原料粉末を800℃の不活性雰囲気下で焼結させ、その
雰囲気で室温まで冷却した後取り出して粉砕し、粒度範
囲を約1〜100μmとしたものを使用した。非焼結粉
末はそのままの配合比でパウダー基材と混合して使用し
た。
The sintered powders shown in Table 2 are raw material powders containing a heat generating material and an auxiliary combustion material (particle size range: about 1 to 100 μm), which are sintered in an inert atmosphere at 800 ° C. It was cooled to room temperature at room temperature, taken out, and pulverized to have a particle size range of about 1 to 100 μm. The non-sintered powder was used by mixing it with the powder base material in the same mixing ratio.

【0032】得られた6種類のパウダーと湾曲半径10m
の一点矯正型連続鋳造機を用いて、表3に示す化学組成
のステンレス鋼SUS304の溶鋼を鋳造速度0.8m
/分で幅1280mm、厚さ206mmのスラブとし
た。このときのパウダー供給速度は、いずれも0.95
kg/分とした。
6 kinds of powders obtained and a bending radius of 10 m
Using a single-point straightening continuous casting machine, molten steel of stainless steel SUS304 having the chemical composition shown in Table 3 was cast at a speed of 0.8 m.
The width was 1280 mm and the slab had a thickness of 206 mm. The powder supply rate at this time was 0.95 for both cases.
kg / min.

【0033】[0033]

【表3】 [Table 3]

【0034】次いで、これらのスラブを熱間圧延して厚
さ4.0mmの熱延コイルとなし、下記式で示す熱延コ
イルの手入れ率で、鋳片の欠陥すなわちピンホール発生
率を評価し、5%以下を良好とした。その結果を図1に
示す。
Next, these slabs were hot-rolled to form hot-rolled coils having a thickness of 4.0 mm, and the defect rate of the slab, that is, pinhole occurrence rate, was evaluated by the maintenance rate of the hot-rolled coil represented by the following formula. 5% or less was considered good. The result is shown in FIG.

【0035】手入れ率(%)=(手入れコイル数/全コ
イル数)×100 図1は、コイルの手入れ率と使用モールドパウダーの種
類との関係を示す図である。表2および図1に示すよう
に、実施例1は発熱材にCa−Si合金、助燃材にFe
2 3 を用いて、助燃材と焼結させて添加した場合であ
るが、熱延コイルの成績は手入れ率5%以下と良好な結
果が得られた。
Maintenance rate (%) = (number of maintenance coils / total number of coils) × 100 FIG. 1 is a diagram showing the relationship between the maintenance rate of the coils and the type of mold powder used. As shown in Table 2 and FIG. 1, in Example 1, a Ca—Si alloy was used as the heat generating material, and Fe was used as the auxiliary combustion material.
In the case of using 2 O 3 and adding it after sintering with an auxiliary combustion material, the result of the hot rolled coil was 5% or less, which is a good result.

【0036】実施例2は発熱材にシリコン、助燃材にF
2 3 を用いて、助燃材と焼結させて添加した場合で
あるが、この場合も熱延コイルの成績は手入れ率5%以
下と良好な結果が得られた。
In Example 2, silicon is used as the heat generating material and F is used as the combustion supporting material.
This is the case where e 2 O 3 is used after sintering with an auxiliary combustion material, and in this case as well, the result of the hot rolled coil was 5% or less, which is a good result.

【0037】実施例3は発熱材にアルミニウム、助燃材
にFe2 3 を用いた場合である。
Example 3 is a case where aluminum is used as the heat generating material and Fe 2 O 3 is used as the auxiliary combustion material.

【0038】この場合も熱延コイルの手入れ率が5%以
下と良好な結果が得られた。
In this case as well, good results were obtained with the maintenance ratio of the hot rolled coil being 5% or less.

【0039】実施例4は発熱材をCa−Si合金、助燃
材をMnO2 とし、予め焼結させて用いた場合である。
熱延コイルの成績は手入れ率が5%以下となり、助燃材
にFe2 3 を用いた実施例1の場合と同様に良好な結
果が得られた。
Example 4 is a case where a Ca-Si alloy was used as a heat generating material and MnO 2 was used as a combustion supporting material, which was previously sintered and used.
As for the result of the hot rolled coil, the maintenance ratio was 5% or less, and the good result was obtained as in the case of Example 1 using Fe 2 O 3 as the combustion improver.

【0040】実施例5は発熱材にシリコンおよびアルミ
ニウムを合わせて用い、助燃材のFe2 3 と予め焼結
させて用いた場合である。この場合も実施例1〜3と同
様に熱延コイルの成績は手入れ率が5%以下と良好な結
果が得られた。
Example 5 is a case in which silicon and aluminum are used together as the heat generating material and pre-sintered with Fe 2 O 3 which is an auxiliary combustion material. Also in this case, as in the case of Examples 1 to 3, the result of the hot rolled coil was a good result that the maintenance ratio was 5% or less.

【0041】実施例6は発熱材にCa−Si合金とアル
ミニウムを合わせて用い、助燃材のFe2 3 と予め焼
結させて用いた場合である。この場合も熱延コイルの成
績は手入れ率が5%以下と良好な結果が得られた。
Example 6 is a case where a Ca-Si alloy and aluminum were used together as a heat generating material, and pre-sintered with Fe 2 O 3 which was an auxiliary combustion material. Also in this case, the result of the hot-rolled coil was a good result that the maintenance ratio was 5% or less.

【0042】比較例1は発熱材にCa−Si合金、助燃
材にFe2 3 を用いた場合であるが、助燃材と焼結さ
せずに添加を行ったため発熱効率が低下し、同じ発熱材
と助燃材を用いた実施例1と比較して熱延コイルの手入
れ率が上昇した。
In Comparative Example 1, a Ca-Si alloy was used as the heat generating material and Fe 2 O 3 was used as the combustion supporting material. However, since the addition was performed without sintering with the combustion supporting material, the heat generation efficiency decreased and the same heat generation was achieved. The maintenance ratio of the hot-rolled coil was increased as compared with Example 1 in which the material and the auxiliary material were used.

【0043】比較例2は発熱材にシリコン、助燃材にF
2 3 を用いた場合であるが、この場合も助燃材と焼
結させずに添加を行ったため発熱効率が低下し、同じ発
熱材と助燃材を用いた実施例2と比較して熱延コイルの
手入れ率が上昇した。
In Comparative Example 2, the heat generating material is silicon, and the combustion supporting material is F.
In the case where e 2 O 3 was used, the heat generation efficiency was lowered also in this case because the addition was made without sintering with the auxiliary combustion material, and the heat generation was lower than that in Example 2 using the same exothermic material and auxiliary combustion material. The maintenance rate of the rolled coil has increased.

【0044】比較例3は発熱材にアルミニウム、助燃材
にFe2 3 を用いた場合であるが、この場合も助燃材
と焼結させずに添加を行ったため発熱効率が低下し、同
じ発熱材と助燃材を用いた実施例3と比較して熱延コイ
ルの手入れ率が上昇した。
Comparative Example 3 is a case where aluminum is used as the heat generating material and Fe 2 O 3 is used as the auxiliary combustion material. In this case as well, the addition of the auxiliary combustion material without sintering results in a decrease in the heat generation efficiency and the same heat generation. The maintenance ratio of the hot-rolled coil was increased as compared with Example 3 in which the material and the auxiliary material were used.

【0045】比較例4は、発熱材をCa−Si合金、助
燃材をMnO2 とし、比較例1と同様に焼結させずに用
いた場合である。比較例5は、発熱材にシリコンとアル
ミニウムを合わせて用い、助燃材をFe2 3 とし、予
め焼結しない場合である。比較例6は、発熱材にCa−
Si合金とアルミニウムを合わせて用い、助燃材をFe
2 3 とし、予め焼結しない場合である。これらの比較
例4〜6の場合はいずれも、発熱材と助燃材とを焼結せ
ずに用いたため熱延コイルの手入れ率が上昇した。
Comparative Example 4 is a case in which a Ca—Si alloy was used as the heat generating material and MnO 2 was used as the combustion supporting material, and the same material as in Comparative Example 1 was used without sintering. Comparative Example 5 is a case in which silicon and aluminum are used together as the heat generating material, Fe 2 O 3 is used as the auxiliary combustion material, and sintering is not performed in advance. Comparative Example 6 uses Ca-as the heat generating material.
Using a Si alloy and aluminum together, the auxiliary material is Fe
2 O 3 and not sintered in advance. In all of these Comparative Examples 4 to 6, since the heat generating material and the auxiliary combustion material were used without sintering, the maintenance ratio of the hot rolled coil was increased.

【0046】[0046]

【発明の効果】発熱材と助燃材とを予め混合焼結してパ
ウダー基材に添加した本発明の発熱型連続鋳造用モール
ドパウダーを使用すれば、発熱効率が向上し、鋳片のピ
ンホール発生率を減少させることができる。
EFFECT OF THE INVENTION If the exothermic-type continuous casting mold powder of the present invention in which the exothermic material and the auxiliary combustion material are mixed and sintered in advance and added to the powder base material is used, the exothermic efficiency is improved and the pinhole of the slab is improved. The incidence can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】製品コイルの手入れ率と使用モールドパウダー
種類との関係を示す図である。
FIG. 1 is a diagram showing a relationship between a maintenance rate of a product coil and a type of mold powder used.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鋼の連続鋳造用パウダーであって、パウダ
ー基材と発熱材および助燃材を予め混合、焼結したもの
とからなることを特徴とする発熱型連続鋳造用モールド
パウダー。
1. A mold powder for continuous casting of exothermic type, which is a powder for continuous casting of steel, comprising a powder base material, a heating material and an auxiliary combustion material which are mixed and sintered in advance.
JP6318972A 1994-12-22 1994-12-22 Mold powder for continuous heating type casting Expired - Lifetime JP2973845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6318972A JP2973845B2 (en) 1994-12-22 1994-12-22 Mold powder for continuous heating type casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6318972A JP2973845B2 (en) 1994-12-22 1994-12-22 Mold powder for continuous heating type casting

Publications (2)

Publication Number Publication Date
JPH08174167A true JPH08174167A (en) 1996-07-09
JP2973845B2 JP2973845B2 (en) 1999-11-08

Family

ID=18105055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6318972A Expired - Lifetime JP2973845B2 (en) 1994-12-22 1994-12-22 Mold powder for continuous heating type casting

Country Status (1)

Country Link
JP (1) JP2973845B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210010A (en) * 2006-02-09 2007-08-23 Sumitomo Metal Ind Ltd Mold powder for continuously casting steel, and continuous casting method
JP2017051971A (en) * 2015-09-08 2017-03-16 新日鐵住金株式会社 Powder for continuous casting of steel, and continuous casting method of steel
JP2020142262A (en) * 2019-03-05 2020-09-10 日本製鉄株式会社 Method for producing mold powder for continuous casting and continuous casting method for steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210010A (en) * 2006-02-09 2007-08-23 Sumitomo Metal Ind Ltd Mold powder for continuously casting steel, and continuous casting method
JP4687489B2 (en) * 2006-02-09 2011-05-25 住友金属工業株式会社 Steel continuous casting method
JP2017051971A (en) * 2015-09-08 2017-03-16 新日鐵住金株式会社 Powder for continuous casting of steel, and continuous casting method of steel
JP2020142262A (en) * 2019-03-05 2020-09-10 日本製鉄株式会社 Method for producing mold powder for continuous casting and continuous casting method for steel

Also Published As

Publication number Publication date
JP2973845B2 (en) 1999-11-08

Similar Documents

Publication Publication Date Title
JP4727773B2 (en) Mold powder for continuous casting of steel using synthetic calcium silicate
JPH0673730B2 (en) Exothermic mold powder for continuous casting
JP2973845B2 (en) Mold powder for continuous heating type casting
KR20190061324A (en) METHOD FOR RECOVERING Fe FROM CONVERTER SLAG CONTAINING Fe AND REDUCING AGENT FOR THE METHOD
US3897244A (en) Method for refining iron-base metal
JP4648133B2 (en) Melting method of copper alloy containing active metal
JP4427370B2 (en) Method for reforming slag of chromium ore smelting reduction furnace
JP2917824B2 (en) Mold powder for continuous casting of steel
KR101084579B1 (en) Steel refinery flux using ferro vanadium slag
US6945077B2 (en) Method for treating steel plant slag
JP2963434B1 (en) Mold powder for continuous casting of steel
JPH10263768A (en) Method for reusing converter slag
JP2003033849A (en) Mold powder for continuous casting
JP2008105051A (en) Exothermic material
JP3577995B2 (en) Manufacturing method of fired flux for submerged arc welding
RU2092573C1 (en) Charge preparation for metallurgical refining process
JP3261554B2 (en) Continuous casting powder of Cu and Sn steel containing
JP5943539B2 (en) Front powder for continuous casting of steel
JP6992513B2 (en) How to prevent melting damage of gas blowing lance
JPH07178520A (en) Mold powder for continuous casting of steel
JP2000042706A (en) Premelting flux for centrifugal casting
JPH03234352A (en) Manufacture of ceramic dispersing reinforced copper
JPH0125363B2 (en)
JP2006348335A (en) Iron-based mixed powder for powder metallurgy
JPH09118911A (en) Granular state complex refining material