JPH08172912A - Method for judging acclimation of transplanted seedling - Google Patents

Method for judging acclimation of transplanted seedling

Info

Publication number
JPH08172912A
JPH08172912A JP32693994A JP32693994A JPH08172912A JP H08172912 A JPH08172912 A JP H08172912A JP 32693994 A JP32693994 A JP 32693994A JP 32693994 A JP32693994 A JP 32693994A JP H08172912 A JPH08172912 A JP H08172912A
Authority
JP
Japan
Prior art keywords
transplanted seedlings
acclimation
transplanted
change
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32693994A
Other languages
Japanese (ja)
Inventor
Takashi Mukai
隆司 向井
Toru Torii
徹 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP32693994A priority Critical patent/JPH08172912A/en
Publication of JPH08172912A publication Critical patent/JPH08172912A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE: To provide a means capable of objectively carrying out judgement of acclimation of transplanted seedlings. CONSTITUTION: Transplanted seedlings 2 are put into a chamber 1 hardly having the change in environment and water content stress is given by irradiation of light and response of transplanted seedlings to water content stress is measured by change in stem diameter and water absorbing ability of the root is estimated by state of change in stem diameter to judge acclimation of the transplanted seedlings. The correlation coefficient between the light irradiation signal as a input for giving water content stress and response signal of the transplanted seedlings is judged by comparing both signals before transplanting. Thereby, acclimation of transplanted seedlings can be judged as a objective scale and consequently, production efficiency is increased, because acclimation is carried out by only setting acclimation period which is minimally required.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は移植苗の順化測定方法に
関するものである。
FIELD OF THE INVENTION The present invention relates to a method for acclimatizing transplanted seedlings.

【0002】[0002]

【従来の技術】移植苗の順化は、ほぼ、苗が移植した培
地に活着したことと置き換えられる。移植苗の活着と
は、移植された培地に”根づいた”場合を指し、具体的
には移植前と同等か、それ以上に根が発達し、養水分の
吸収が行われる状態をいう。従来、移植した苗が活着し
たか否かの判定は、経験者により目視で行うか、あるい
はある定められた順化期間を経過した時点で活着したと
みなす等の方法が行われており、定量的、定性的な評価
基準は現在確立されていない。
BACKGROUND OF THE INVENTION Acclimation of transplanted seedlings is almost replaced by the establishment of seedlings in the transplanted medium. The survival of transplanted seedlings refers to the case where the roots are "rooted" in the transplanted medium, and specifically, a state in which the roots are equal to or more than before transplantation and the roots are developed to absorb nutrients. Conventionally, a method for determining whether or not the transplanted seedlings have lived is visually performed by an experienced person, or it is considered that the transplanted seedlings have been lived after a certain acclimation period has passed. And qualitative evaluation criteria are not currently established.

【0003】[0003]

【発明が解決しようとする課題】目視による判定では、
個人差があり、また誤った判定を下しやすい。また、順
化期間を設ける方法では、安全を考えるため一般的に長
い期間が設定されることになり、生産効率が低くなる。
上述したとおり、移植苗の活着とは、移植前と同等か、
それ以上に根が発達し、養水分の吸収が行われる状態で
あり、従って、その判定は根の吸水能力を測定すればよ
い。ところが、植物の吸水速度・吸水量の測定方法は現
在全く確立されておらず、僅かにいくつかのポトメータ
ー(吸水計)法が提案されている程度である。しかしな
がら、これらの方法は、幼植物体が対象であったり、水
耕が前提であったりして、いずれも実用的ではない。そ
こで本発明は、以上の課題を解決することを目的とする
ものである。
Problems to be Solved by the Invention In visual judgment,
There are individual differences and it is easy to make an incorrect decision. In addition, in the method of providing the acclimation period, a long period is generally set in consideration of safety, resulting in low production efficiency.
As mentioned above, survival of transplanted seedlings is the same as before transplantation,
It is a state in which the root is further developed and absorption of nutrient water is carried out. Therefore, the determination may be made by measuring the water absorption capacity of the root. However, the method for measuring the water absorption rate and water absorption of plants has not been established at present, and only a few potometer (water absorption meter) methods have been proposed. However, these methods are not practical because they are intended for young plants and are premised on hydroponics. Then, this invention aims at solving the above subject.

【0004】[0004]

【課題を解決するための手段】上述した課題を解決する
ために、本発明では、移植苗を環境変化の少ない室内に
入れ、光の照射により水分ストレスを与えて、水分スト
レスに対する移植苗の応答を茎径の変化により測定し、
茎径の変化の状態により根の吸水能力を推定して順化を
判定することを提案する。
In order to solve the above-mentioned problems, in the present invention, the transplanted seedlings are placed in a room with little environmental change, and water stress is applied by light irradiation, and the response of the transplanted seedlings to the water stress. Is measured by the change in stem diameter,
We propose to judge acclimation by estimating the water absorption capacity of roots based on the state of change in stem diameter.

【0005】上記方法において、茎径は茎に装着したひ
ずみゲージにより測定したり、レーザ式外径測定器によ
り測定することができる。そして後者の方法において
は、測定対象の移植苗の複数を並べて置き、外径をレー
ザ式外径測定器により同時に測定することができる。
In the above method, the stem diameter can be measured by a strain gauge attached to the stem or a laser type outer diameter measuring device. In the latter method, a plurality of transplanted seedlings to be measured can be placed side by side and the outer diameter can be measured simultaneously by a laser type outer diameter measuring device.

【0006】また本発明では、移植苗の順化は、水分ス
トレスを与える入力としての光照射信号と、その応答出
力としての移植苗の茎径との相互相関係数を、移植前の
ものと比較して判定することを提案する。
In the present invention, the acclimatization of transplanted seedlings is carried out by taking the cross-correlation coefficient between the light irradiation signal as an input giving water stress and the stem diameter of the transplanted seedlings as a response output as that before transplantation. We propose to make a comparison.

【0007】[0007]

【作用】土壌−植物−大気を一つの連続体として考える
というSPAC(Soil-Plant-Atmosphere-Continuum)
理論に示されるように、植物体内の水は連続体であるの
で、根における吸水の状態が直接的に測定できなくと
も、他の植物部位における水分変化の状態が的確に測定
できれば根の吸水状態を評価でき、そして、植物に短期
的にあまり重くない水分ストレス(欠乏)を生じさせた
場合の水分変化の状態により、活着の判定が可能とな
る。
[Function] SPAC (Soil-Plant-Atmosphere-Continuum) that considers soil-plant-atmosphere as one continuum
As the theory indicates, water in the plant is a continuum, so even if the water absorption state in the root cannot be directly measured, if the water change state in other plant parts can be accurately measured, the water absorption state of the root And the state of water change in the case where the plant is caused to exert less heavy water stress (deficiency) in the short term, it becomes possible to judge the survival.

【0008】短期的な、あまり重くない水分ストレス
は、植物に光を照射して蒸散量を一時的に増大させるこ
とにより与えることができる。水分ストレスに対する植
物の応答として測定可能な項目としては、蒸散速度、茎
径、葉の温度等が考えられるが、茎径に着目すると、植
物の吸水能力が十分な場合には、光照射開始後、ある時
間遅れでの茎の収縮、そして回復が起こる。従ってこの
ような茎径の変化の状態を検出することにより、根の吸
水能力を推定して順化を判定することができる。
Short-term, less severe water stress can be given by irradiating plants with light to temporarily increase the transpiration amount. As items that can be measured as the response of plants to water stress, transpiration rate, stem diameter, leaf temperature, etc. are considered, but focusing on the stem diameter, if the water absorption capacity of the plant is sufficient, after the start of light irradiation. , Stalk contraction and recovery occurs with a certain time delay. Therefore, by detecting the state of such a change in stem diameter, it is possible to estimate the water absorption capacity of the root and determine the acclimation.

【0009】水分ストレスに対する応答としての茎径の
変化の状態は、水分ストレスを与える入力としての光照
射信号と、その応答出力としての移植苗の茎径との相互
相関係数を、移植前のものと比較することにより、迅速
に、且つ正確に検出することができる。
The state of change in stem diameter as a response to water stress is determined by calculating the cross-correlation coefficient between the light irradiation signal as an input that gives water stress and the stem diameter of the transplanted seedling as its response output before transplantation. By comparing with those, it is possible to detect them quickly and accurately.

【0010】[0010]

【実施例】次に本発明を、図示の実施例を参照して説明
する。図1は本発明を適用する装置の構成の実施例を概
念的に示すもので、符号1は室内に移植苗2等を収容し
て測定を行う測定室であり、この測定室1は空調が行え
る人工気象室として構成している。即ち、符号3は移植
苗2を収容する収容室で、この収容室3に隣接して空気
循環路4を構成しており、この空気循環路4内に空調用
の適当な熱源5(クーラーを含む)とファン6を設けて
いる。また収容室3内には加湿器7を設けている。測定
室1の上側には光源8を設置し、この光源8をON−O
FFするためのソリッドステートリレー等のスイッチ手
段9を設けている。光源8は、蛍光灯、メタルハライド
ランプ、高圧ナトリウムランプ等を適宜に用いることが
できるが、移植苗2に水分ストレスを与えるために、光
強度は、光合成有効光量子束密度で、100μ mol m-2 s
-1 以上、望ましくは200μ mol m-2 s-1 以上とする。
The present invention will now be described with reference to the illustrated embodiments. FIG. 1 conceptually shows an embodiment of the configuration of an apparatus to which the present invention is applied. Reference numeral 1 is a measurement room for accommodating transplanted seedlings 2 etc. in a room for measurement. It is configured as an artificial weather room. That is, reference numeral 3 is a storage chamber for storing the transplanted seedlings 2, and an air circulation passage 4 is formed adjacent to the storage chamber 3. In the air circulation passage 4, an appropriate heat source 5 for air conditioning (a cooler is installed). And a fan 6 are provided. A humidifier 7 is provided in the storage chamber 3. A light source 8 is installed on the upper side of the measurement chamber 1, and the light source 8 is turned ON-O.
Switch means 9 such as a solid state relay for FF is provided. Light source 8, a fluorescent lamp, a metal halide lamp, can be used appropriately high pressure sodium lamp or the like, to provide a water stress for transplantation seedlings 2, the light intensity is a photosynthetic photon flux density, 100 microns mol m -2 s
-1 or more, preferably 200 μmol m -2 s -1 or more.

【0011】測定対象の、鉢10に移植した移植苗2は
電子天秤等の重量計測手段11の台上に載置して蒸散に
よる重量変化を計測可能としている。また移植苗2の茎
の適当な個所、図の例では上下方向の3個所に茎径計測
手段12a,12b,12cを装着している。図1の茎
径計測手段12はひずみゲージを用いた接触式の構成と
しているが、後述するようにレーザー式変位計のような
非接触式で高分解能のものを用いるのが好ましい。また
収容室3内には移植苗2の葉の温度を測定する赤外線カ
メラ13を設置している。符号14は以上の各機器を制
御し、データを収集する手段を概念的に示すものであ
る。
The transplanted seedlings 2 transplanted into the pot 10 to be measured are placed on a table of a weight measuring means 11 such as an electronic balance so that the weight change due to evaporation can be measured. Further, the stem diameter measuring means 12a, 12b, 12c are attached to the stems of the transplanted seedling 2 at appropriate places, ie, three places in the vertical direction in the illustrated example. Although the stem diameter measuring means 12 of FIG. 1 has a contact type structure using a strain gauge, it is preferable to use a non-contact type and high resolution type such as a laser type displacement meter as described later. In addition, an infrared camera 13 for measuring the temperature of the leaves of the transplanted seedling 2 is installed in the storage chamber 3. Reference numeral 14 conceptually indicates a means for controlling each of the above devices and collecting data.

【0012】図2はレーザー式変位計を用いた茎径計測
手段12の実施例を示すもので、この茎径計測手段12
は、コリメータレンズで平行光線としたレーザー光を投
光部13から受光部14に投射することにより、投光部
15と受光部16間に置いた移植苗2の茎径を測定可能
に構成したものである。レーザ式外径測定器を用いた茎
径計測手段12では、コリメータレンズにより平行光線
の幅を広くすることにより、図2に示すように複数の植
物2の茎径を同時に測定することが可能である。
FIG. 2 shows an embodiment of the stem diameter measuring means 12 using a laser type displacement meter.
Is configured to measure the stem diameter of the transplanted seedling 2 placed between the light projecting section 15 and the light receiving section 16 by projecting the laser light made into parallel rays by the collimator lens from the light projecting section 13 to the light receiving section 14. It is a thing. In the stem diameter measuring means 12 using the laser type outer diameter measuring device, it is possible to measure the stem diameters of a plurality of plants 2 at the same time by widening the width of the parallel rays by the collimator lens, as shown in FIG. is there.

【0013】以上の構成において、測定対象の移植苗
2、即ち、鉢10に移植して適宜期間経過した移植苗2
を収容室3内に入れた後、光源8を、例えば図3に示す
ような不規則な信号系列としてON−OFFすると共
に、茎計測手段12等による計測を開始する。光源8か
らの光照射により蒸散並びに光合成が促進されるため、
移植苗2に対して、あまり重くない水分ストレス、即ち
水分欠乏を引き起こすことができる。光源8の光強度
は、このような水分ストレスを与えるために、上述した
ように光合成有効光量子束密度で、100μ mol m-2 s-1
以上、望ましくは200μ mol m-2 s-1 以上とする。
In the above-mentioned structure, the transplanted seedling 2 to be measured, that is, the transplanted seedling 2 which has been transplanted to the pot 10 and passed for an appropriate period of time
After putting into the storage chamber 3, the light source 8 is turned on and off as an irregular signal series as shown in FIG. 3, and the measurement by the stem measuring means 12 and the like is started. Since the transpiration and photosynthesis are promoted by the light irradiation from the light source 8,
It is possible to cause less severe water stress, that is, water deficiency, on the transplanted seedling 2. The light intensity of the light source 8 is 100 μmol m −2 s −1 , which is the photosynthetic effective photon flux density as described above in order to give such a water stress.
Or more, and preferably 200 μmol m −2 s −1 or more.

【0014】図3に示すように、吸水能力が十分な移植
前の苗では、光照射開始後、ある時間遅れで茎が収縮
し、そして回復することが顕著に現れるのに対して、移
植1週間後の苗では、このような変化がはっきりしな
い。そして移植5週間後の移植苗では、再び上述した変
化が現れて来て、移植8週間後では、茎径の変化の状態
が移植前の苗に大分似て来る。そこで、移植後の期間が
異なるこれらの移植苗につき目視による観察を行うと、
5週間後以降の移植苗では、新根の発生具合等から順化
されつつあることが確認され、水分ストレスによる茎径
の変化パターンと順化の程度が相関することが確認され
た。尚、計測値は、必要に応じてデジタルフィルタ等に
よる平滑化処理等のノイズ処理を行う。
As shown in FIG. 3, in the seedlings before transplantation having sufficient water absorption capacity, the stems contracted and recovered remarkably after a certain time delay after the start of light irradiation, whereas the transplantation 1 Such changes are not obvious in the seedlings after a week. Then, in the transplanted seedlings 5 weeks after the transplantation, the above-mentioned change appears again, and 8 weeks after the transplantation, the state of the change in the stem diameter becomes similar to that of the seedlings before the transplantation. Therefore, when visually observing these transplanted seedlings with different periods after transplantation,
It was confirmed that the transplanted seedlings after 5 weeks were acclimatized due to the generation of new roots, etc., and that the pattern of change in stem diameter due to water stress was correlated with the degree of acclimatization. The measured value is subjected to noise processing such as smoothing processing using a digital filter or the like as necessary.

【0015】このような水分ストレスによる茎径の変化
パターンは、そのままの形で判定することもできるが、
水分ストレスを入力、茎径を応答出力とした場合の相互
相関係数を用いることにより、より確実に、容易に判定
を行うことができる。即ち、移植苗2に与える水分スト
レスの尺度として、光照射の光強度を入力、茎径を応答
出力として線形離散時間システムを考えると、相互相関
関数及び相互相関係数は次式のように表せる。
The change pattern of the stem diameter due to such water stress can be judged as it is,
By using the cross-correlation coefficient when the water stress is input and the stem diameter is used as the response output, the determination can be performed more reliably and easily. That is, considering a linear discrete-time system in which the light intensity of light irradiation is input and the stem diameter is the response output as a measure of the water stress applied to the transplanted seedling 2, the cross-correlation function and the cross-correlation coefficient can be expressed as follows. .

【数1】 ここで、Cxy(τ):相互相関関数,Rxy(τ):相互相関
係数 x(t):入力信号(光強度),y(t+τ):応答出力(茎
径) 尚、光強度は、光源としての光強度の他、収容室3内に
設置した光強度計による実測値を用いることもできる。
[Equation 1] Where Cxy (τ): cross-correlation function, Rxy (τ): cross-correlation coefficient x (t): input signal (light intensity), y (t + τ): response output (stem diameter) light intensity In addition to the light intensity as the light source, a measured value by a light intensity meter installed in the housing chamber 3 can be used.

【0016】図4は図3の夫々のデータにつき求めた相
互相関係数を示すもので、移植前の苗の相互相関係数で
は、信号入力後(光照射後)20〜30分後に、茎の収縮に
起因する負の相関が見られのに対して、移植1週間後の
移植苗では、このような相関が見られない。しかし移植
5週間後及び8週間後の移植苗では、移植前の苗と同様
な応答が見られるようになる。上述したとおり目視によ
る観察では、5週間後以降の移植苗では、新根の発生具
合等から順化されつつあることが確認され、従って、上
記相互相関係数を用いることにより、移植苗の順化の程
度が迅速に、且つ正確に判定できることわかる。具体的
には、移植苗について測定により求めた相互相関係数
を、移植前に予め測定して求めておいた相互相関係数と
比較して、同等な場合には順化がなされたと判定するこ
とができる。
FIG. 4 shows the cross-correlation coefficient obtained for each data shown in FIG. 3, and the cross-correlation coefficient of the seedlings before transplantation shows that the stems 20 to 30 minutes after the signal input (after light irradiation). Although a negative correlation due to the contraction of the above was observed, such a correlation was not observed in the transplanted seedlings one week after the transplantation. However, in the transplanted seedlings 5 weeks and 8 weeks after the transplantation, the same response as that of the seedlings before the transplantation can be seen. As described above, it was confirmed by visual observation that the transplanted seedlings after 5 weeks had been acclimatized from the appearance of new roots. Therefore, by using the above cross-correlation coefficient, It can be seen that the degree of change can be determined quickly and accurately. Specifically, the cross-correlation coefficient obtained by measurement of transplanted seedlings is compared with the cross-correlation coefficient obtained by measurement before transplantation, and if they are equivalent, it is determined that acclimation has been performed. be able to.

【0017】尚、以上の測定における条件は、以下の通
りである。 入力信号:M系列不規則信号 Xn=Xn-p(xor)Xn-q (但し,xor:排他的論理和) 次数5,1パルス15分,初期値n=1〜4;Xn=
1,X5=0 光強度:点灯時 110μ mol m-2 s-1 供試植物:カポック(Schefflera Actophylla cv Hong
Kong) 測定環境:気温25℃、相対湿度60% 使用測定手段:レーザー変位計(測定誤差0.2μm)
The conditions in the above measurement are as follows. Input signal: M-sequence irregular signal Xn = X np (xor) X nq (where xor: exclusive OR) Order 5, 1 pulse 15 minutes, initial value n = 1 to 4; Xn =
1, X5 = 0 Light intensity: Lighted 110μ mol m -2 s -1 Test plant: Kapok (Schefflera Actophylla cv Hong
Kong) Measuring environment: Air temperature 25 ℃, Relative humidity 60% Measuring method: Laser displacement meter (measurement error 0.2μm)

【0018】[0018]

【発明の効果】本発明は以上のとおりであるので、以下
のような効果がある。 移植苗の順化を、客観的な尺度として判定することが
できる。 従って必要最小限の順化期間を設定すれば良いので、
生産効率が高くなる。
As described above, the present invention has the following effects. Acclimation of transplanted seedlings can be determined as an objective measure. Therefore, it is only necessary to set the necessary minimum acclimatization period.
Higher production efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を適用する装置の構成を示す概念図で
ある。
FIG. 1 is a conceptual diagram showing a configuration of an apparatus to which the present invention is applied.

【図2】 レーザ式外径測定器を用いた茎径計測手段の
実施例を示す斜視図である。
FIG. 2 is a perspective view showing an embodiment of a stem diameter measuring means using a laser type outer diameter measuring device.

【図3】 水分ストレスを与える光照射信号と、この光
照射信号による茎径の変化の測定結果を示すものであ
る。
FIG. 3 shows a light irradiation signal that gives water stress and a measurement result of a change in stem diameter due to the light irradiation signal.

【図4】 図3のデータの夫々の相互相関係数を示すも
のである。
4 shows respective cross-correlation coefficients of the data of FIG.

【符号の説明】[Explanation of symbols]

1 測定室 2 移植苗 3 収容室 4 空気循環路 5 空調用熱源 6 ファン 7 加湿器 8 光源 9 スイッチ手段 10 鉢 11 重量計測手段 12a,12b,12c 茎径計測手段 13 赤外線カメラ 14 制御、データ収集手段 15 投光部 16 受光部 1 Measuring Room 2 Transplanting Seedling 3 Storage Room 4 Air Circulation Path 5 Air Conditioning Heat Source 6 Fan 7 Humidifier 8 Light Source 9 Switch Means 10 Pots 11 Weight Measuring Means 12a, 12b, 12c Stem Diameter Measuring Means 13 Infrared Camera 14 Control, Data Collection Means 15 Light emitting unit 16 Light receiving unit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 移植苗を環境変化の少ない室内に入れ、
光の照射により水分ストレスを与えて、水分ストレスに
対する移植苗の応答を茎径の変化により測定し、茎径の
変化の状態により根の吸水能力を推定して順化を判定す
ることを特徴とする移植苗の順化判定方法
1. A transplanted seedling is placed in a room with little environmental change,
Water stress is given by irradiation of light, the response of transplanted seedlings to water stress is measured by the change in stem diameter, and the water absorption capacity of the root is estimated from the state of change in stem diameter to determine acclimation. Acclimation determination method for transplanted seedlings
【請求項2】 茎径は茎に装着するひずみゲージにより
測定することを特徴とする請求項1記載の移植苗の順化
判定方法
2. The acclimation determination method for transplanted seedlings according to claim 1, wherein the stem diameter is measured by a strain gauge attached to the stem.
【請求項3】 茎径はレーザ式外径測定器により測定す
ることを特徴とする請求項1記載の移植苗の順化判定方
3. The acclimatization judging method for transplanted seedlings according to claim 1, wherein the stem diameter is measured by a laser type outer diameter measuring instrument.
【請求項4】 測定対象の移植苗は、複数を並べて置
き、外径をレーザ式外径測定器により同時に測定するこ
とを特徴とする請求項1記載の移植苗の順化判定方法
4. The acclimatization determination method for transplanted seedlings according to claim 1, wherein a plurality of transplanted seedlings to be measured are placed side by side, and the outer diameters are simultaneously measured by a laser type outer diameter measuring device.
【請求項5】 移植苗の順化は、水分ストレスを与える
入力としての光照射信号と、移植苗の応答信号との相互
相関係数を、移植前のものと比較して判定することを特
徴とする請求項1記載の移植苗の順化判定方法
5. Acclimation of transplanted seedlings is characterized by determining a cross-correlation coefficient between a light irradiation signal as an input that gives water stress and a response signal of transplanted seedlings compared with that before transplantation. The method for determining acclimation of transplanted seedlings according to claim 1.
JP32693994A 1994-12-28 1994-12-28 Method for judging acclimation of transplanted seedling Pending JPH08172912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32693994A JPH08172912A (en) 1994-12-28 1994-12-28 Method for judging acclimation of transplanted seedling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32693994A JPH08172912A (en) 1994-12-28 1994-12-28 Method for judging acclimation of transplanted seedling

Publications (1)

Publication Number Publication Date
JPH08172912A true JPH08172912A (en) 1996-07-09

Family

ID=18193468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32693994A Pending JPH08172912A (en) 1994-12-28 1994-12-28 Method for judging acclimation of transplanted seedling

Country Status (1)

Country Link
JP (1) JPH08172912A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137354A (en) * 2010-12-27 2012-07-19 Ehime Prefecture Plant water stress evaluation device and method
JP2017051125A (en) * 2015-09-08 2017-03-16 国立大学法人埼玉大学 Growth diagnostic method, growth diagnostic apparatus, data measurement device, growth diagnostic program, growth assisting method, growth assisting device, and growth assisting program
CN107302875A (en) * 2016-04-20 2017-10-31 青岛农业大学 A kind of water-saving irrigation method based on the crucial moisture information of soil-plant system
JP2020065456A (en) * 2018-10-22 2020-04-30 株式会社Ihi Management controller and management control method of plant cultivation facility
JP2020137415A (en) * 2019-02-26 2020-09-03 国立大学法人静岡大学 Irrigation timing determination system, irrigation control system, and irrigation timing determination method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137354A (en) * 2010-12-27 2012-07-19 Ehime Prefecture Plant water stress evaluation device and method
JP2017051125A (en) * 2015-09-08 2017-03-16 国立大学法人埼玉大学 Growth diagnostic method, growth diagnostic apparatus, data measurement device, growth diagnostic program, growth assisting method, growth assisting device, and growth assisting program
CN107302875A (en) * 2016-04-20 2017-10-31 青岛农业大学 A kind of water-saving irrigation method based on the crucial moisture information of soil-plant system
JP2020065456A (en) * 2018-10-22 2020-04-30 株式会社Ihi Management controller and management control method of plant cultivation facility
JP2020137415A (en) * 2019-02-26 2020-09-03 国立大学法人静岡大学 Irrigation timing determination system, irrigation control system, and irrigation timing determination method

Similar Documents

Publication Publication Date Title
Hammer et al. Base-line Growth Studies of ‘Grand Rapids’ Lettuce in Controlled Environments1
Campelo et al. Climatic significance of tree-ring width and intra-annual density fluctuations in Pinus pinea from a dry Mediterranean area in Portugal
Reddy et al. Soil-Plant-Atmosphere-Research (SPAR) facility: A tool for plant research and modeling
Meinzer et al. Carbon isotope discrimination, gas exchange, and growth of sugarcane cultivars under salinity
Reddy et al. Carbon dioxide and temperature effects on pima cotton development
Seelig et al. Irrigation control of cowpea plants using the measurement of leaf thickness under greenhouse conditions
Kang et al. Identifying CO2 advection on a hill slope using information flow
Krauss et al. Sap flow characteristics of neotropical mangroves in flooded and drained soils
Lambs et al. Sap flow and water transfer in the Garonne River riparian woodland, France: first results on poplar and willow
JPH08172912A (en) Method for judging acclimation of transplanted seedling
Nadezhdina Revisiting the Heat Field Deformation (HFD) method for measuring sap flow
Esperon-Rodriguez et al. Contrasting heat tolerance of urban trees to extreme temperatures during heatwaves
Kucera Some relationships of evaporation rate to vapor pressure deficit and low wind velocity
Irmak et al. On the dynamics of stomatal resistance: Relationships between stomatal behavior and micrometeorological variables and performance of Jarvis-type parameterization
Floyd et al. A simple method for fitting average diurnal temperature curves
JPH08266156A (en) Judgment of acclimatization of transplanted seedling
JP2006345768A (en) Calculating method of evapotranspiration, and watering control method
JP2014198012A (en) Activity analysis program for plant
Braun Sap flow measurements in fruit trees-Advantages and shortfalls of currently used systems
Baille et al. Some comparative results on evapotranspiration of greenhouse ornamental crops, using lysimeter, greenhouse H2O balance and LVDT sensors
ROMDHONAH et al. Averaging techniques in processing the high time-resolution photosynthesis data of cherry tomato plants for model development
Wang et al. Height growth of planted black spruce seedlings in response to interspecific vegetation competition: a comparison of four competition measures at two measuring positions
Nadezhdina Specificity of sap flow index for mist irrigation control
JPH09172869A (en) Acclimatization judging method for transplanted seedling
Mutiibwa et al. Transferability of jarvis-type models developed and re-parameterized for maize to estimate stomatal resistance of soybean: analyses on model calibration, validation, performance, sensitivity, and elasticity