JPH08171986A - Microwave heating device - Google Patents

Microwave heating device

Info

Publication number
JPH08171986A
JPH08171986A JP31507494A JP31507494A JPH08171986A JP H08171986 A JPH08171986 A JP H08171986A JP 31507494 A JP31507494 A JP 31507494A JP 31507494 A JP31507494 A JP 31507494A JP H08171986 A JPH08171986 A JP H08171986A
Authority
JP
Japan
Prior art keywords
microwave
irradiating
magnetrons
wave
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31507494A
Other languages
Japanese (ja)
Inventor
Hirokazu Ogi
裕和 扇
Kazuhisa Kaneko
一久 金子
Kenichi Kasaba
賢一 笠羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31507494A priority Critical patent/JPH08171986A/en
Publication of JPH08171986A publication Critical patent/JPH08171986A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To operate two microwave radiation units at the same time without generating the interference with each other by forming a device so that the reflected wave of the microwave, which is radiated from one radiation unit, inside of a heating container does not enter the other radiation wave, of which deflected wave surface crossing the deflected wave surface of the former radiation unit, even in the case where the deflected wave surfaces of two microwave radiation units cross each other. CONSTITUTION: A power source transformer 4b drives magnetrons 1a, 1b, and the excited microwave is radiated inside of a heating container 5 by radiation units 3a, 3b through waveguides 2a, 2b. Since each magnetron 1a, 1b has the vertical and the horizontal components, even in the case where two magnetrons are excited at the same time, reflected wave of the microwave, which is radiated from the radiation unit 3a, inside of the heating container does not enter the other radiation unit 3b, of which deflected wave surface cross the deflected wave of the radiation unit 3a. As long as two magnetron units are normally operated, the two magnetron units can be operated without generating the interference with each other, and the synthesized output can be radiated inside of the heating container.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マイクロ波を用いた加
熱装置に関し、特に複数のマイクロ波を用いた加熱装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating device using microwaves, and more particularly to a heating device using a plurality of microwaves.

【0002】[0002]

【従来の技術】マイクロ波加熱装置においては、加熱さ
れる物体と空気との誘電率が一様でないため、物体に照
射されるマイクロ波は、容器内部で多重の反射が生じ、
何回かの再入射により物体に吸収される。複数個のマグ
ネトロンを用いて加熱する場合、それぞれの反射波によ
るマグネトロン間の相互干渉等の負荷変動によりマグネ
トロンのインピ−ダンスに不整合を生じる。このインピ
ーダンスの不整合が生ずると、マグネトロン自体は加熱
され、その出力効率は劣化してしまう。
2. Description of the Related Art In a microwave heating apparatus, the object to be heated and the air do not have a uniform dielectric constant, so that the microwave applied to the object causes multiple reflection inside the container.
It is absorbed by the object after several re-incidents. When heating is performed using a plurality of magnetrons, the impedances of the magnetrons are mismatched due to load fluctuations such as mutual interference between the magnetrons due to the respective reflected waves. When this impedance mismatch occurs, the magnetron itself is heated and its output efficiency deteriorates.

【0003】従来は、マグネトロンの出力部に負荷側か
ら反射する反射波を除去するためのアイソレ−タ−を取
り付けたり、マグネトロンが互いに干渉しないようマイ
クロ波照射部を容器ごとに分離して用いられていた。
Conventionally, an isolator for removing a reflected wave reflected from the load side is attached to the output part of the magnetron, or a microwave irradiating part is separately used for each container so that the magnetron does not interfere with each other. Was there.

【0004】また、特にマグネトロンの個数が2個の場
合は、マグネトロンを駆動する半波整流された高電圧2
組の位相を90°ずらすことで、つまり互いに重ならな
いように組み合わせる間欠発信方式で駆動することによ
り、マグネトロン間の相互干渉の影響を受けずに出力電
力を合成していた。
Further, especially when the number of magnetrons is two, a half-wave rectified high voltage 2 for driving the magnetrons is used.
The output power is combined without being affected by the mutual interference between the magnetrons by shifting the phases of the pairs by 90 °, that is, by driving them by an intermittent transmission method in which they are combined so as not to overlap each other.

【0005】2個のマグネトロンをこの間欠発振方式で
駆動する場合、2組の高電圧整流波形は重ならないた
め、一方のマグネトロンが発振している時には他方のマ
グネトロンは動作しない状態にある。このため、一方の
マグネトロンから照射されるマイクロ波が加熱容器内部
で反射して他方のマグネトロンに入射しても、この動作
していないマグネトロンには何ら影響を与えない。従っ
て、2個のマグネトロンにおいて各マグネトロンが単体
でインピ−ダンスの整合が取れ正常に出力するのであれ
ば、間欠発振方式でこの2個のマグネトロンをそのまま
相互干渉することなく正常に動作させていた。
When two magnetrons are driven by this intermittent oscillation method, two sets of high-voltage rectified waveforms do not overlap each other, so that when one magnetron is oscillating, the other magnetron is in a non-operating state. Therefore, even if the microwave radiated from one magnetron is reflected inside the heating container and is incident on the other magnetron, it does not affect the non-operating magnetron. Therefore, in the case of two magnetrons, if each magnetron alone provides impedance matching and outputs normally, the two magnetrons are normally operated by the intermittent oscillation method without mutual interference.

【0006】このような複数のマグネトロンを加熱装置
に適用する方式は、加熱装置の容量を大型化する際に必
要な技術となる。
The method of applying such a plurality of magnetrons to the heating device is a technique necessary for increasing the capacity of the heating device.

【0007】[0007]

【発明が解決しようとする課題】しかし、前述のアイソ
レ−タを用いて複数のマグネトロンを使用する方法で
は、製品価格が高価になってしまう。
However, in the method of using a plurality of magnetrons using the above-mentioned isolator, the product price becomes high.

【0008】また、マイクロ波照射部を容器ごと分離す
れば、全体構造が大きくなるとともに加熱むらが生じて
しまう。
If the microwave irradiator is separated from the container, the entire structure becomes large and uneven heating occurs.

【0009】一方、半波整流された高電圧2組の位相を
90°ずらした間欠発信方式では、マグネトロンの個数
が2個の場合は有効であるが、例えば4個の場合には適
用できない。半波整流でなく1/4波整流等を利用する
方法も考えられるが、照射されるマグネトロンの電力
(出力)を期待する値にするにはマグネトロンに供給す
る電力は大きくしなければならず、省電力化は図れな
い。
On the other hand, the intermittent transmission method in which the phases of two sets of half-wave rectified high voltages are shifted by 90 ° is effective when the number of magnetrons is two, but cannot be applied when it is four, for example. A method of using 1 / 4-wave rectification instead of half-wave rectification is also possible, but in order to obtain the expected power (output) of the magnetron, the power supplied to the magnetron must be increased, Power saving cannot be achieved.

【0010】本発明の第一の目的は、マグネトロンを複
数用いる場合において、前述の間欠発信方式に替わる、
マグネトロン間の相互干渉が小さくなる加熱装置を提供
することにある。
A first object of the present invention is to replace the above-mentioned intermittent transmission method when a plurality of magnetrons are used,
It is to provide a heating device in which mutual interference between magnetrons is reduced.

【0011】また、本発明の第二の目的は、マグネトロ
ンを4個以上設ける場合の、構成の簡易な加熱装置を提
供することにある。
A second object of the present invention is to provide a heating device having a simple structure when four or more magnetrons are provided.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決するた
め、本発明は、2組のマグネトロンを、それぞれの照射
する直線偏波を直交するように組合わせる方式(直交偏
波照射方式)とした。
In order to solve the above-mentioned problems, the present invention relates to a method of combining two sets of magnetrons so that the linearly polarized waves to be irradiated are orthogonal to each other (orthogonal polarized wave irradiation method). did.

【0013】具体的には、被加熱物を配置する加熱室
と、前記加熱室に第一のマイクロ波を照射する第一のマ
イクロ波照射手段と、前記加熱室に第二のマイクロ波を
照射する第二のマイクロ波照射手段とから構成され、前
記第一のマイクロ波照射手段と前記第二のマイクロ波照
射手段は、前記第一のマイクロ波と前記第二のマイクロ
波のもつ直線偏波を直交させるよう照射した。
Specifically, a heating chamber for arranging an object to be heated, a first microwave irradiating means for irradiating the heating chamber with a first microwave, and a second microwave for irradiating the heating chamber. And a second microwave irradiating means, wherein the first microwave irradiating means and the second microwave irradiating means are linearly polarized waves of the first microwave and the second microwave. Were radiated so as to be orthogonal to each other.

【0014】さらに本発明は、4個のマグネトロンを駆
動する場合、従来から用いられている間欠発振方式(マ
グネトロンを駆動する半波整流さた2組の高電圧の位相
を90°ずらし互いに重ならないようにを組み合わせる
方式)と、上記直交偏波照射方式との2方式をマグネト
ロンの駆動方法として併用した。つまり、同一の直線偏
波で照射する2個のマグネトロンを間欠発信で駆動し、
これと偏波を直交させてもう2個のマグネトロンを間欠
発信で駆動するものとした。
Further, according to the present invention, when four magnetrons are driven, an intermittent oscillation method which has been conventionally used (two sets of high-voltage half-wave rectified high voltage driving the magnetrons are shifted in phase by 90 ° and do not overlap each other. And a method of irradiating the orthogonally polarized wave described above are used together as a driving method of the magnetron. In other words, two magnetrons that irradiate with the same linear polarization are driven by intermittent transmission,
It is assumed that the polarized waves are orthogonal to this and the other two magnetrons are driven by intermittent transmission.

【0015】具体的には、被加熱物を配置する加熱室
と、前記加熱室にマイクロ波を照射する複数のマイクロ
波照射手段とから構成され、前記複数のマイクロ波照射
手段は、第一の駆動電圧で照射する第一、第二のマイク
ロ波照射手段と、第二の駆動電圧で照射する第三、第四
のマイクロ波照射手段とを有し、かつ前記周期に従って
マイクロ波を照射する場合、それぞれのマイクロ波のも
つ直線偏波を直交させるよう照射した。
Specifically, it comprises a heating chamber for arranging an object to be heated, and a plurality of microwave irradiating means for irradiating the heating chamber with microwaves. In the case of having first and second microwave irradiation means for irradiating with a driving voltage and third and fourth microwave irradiating means for irradiating with a second driving voltage, and irradiating microwaves in accordance with the cycle The irradiation was performed so that the linearly polarized waves of the respective microwaves were made orthogonal to each other.

【0016】また、この1ユニットの加熱容器を前後左
右に対称な構造とし、この4個の各マイクロ波照射部に
指向性をもたせ、相互の位置関係が同一となるような位
置に設置し90°ごとに照射方向を変えて組み合わせる
こととした。
Further, the one-unit heating container has a symmetrical structure in the front-rear direction and the left-right direction, and each of the four microwave irradiating parts is provided with directivity so that they are installed at positions such that their mutual positional relationships are the same. It was decided to combine by changing the irradiation direction for each °.

【0017】[0017]

【作用】2個のマイクロ波照射部の偏波面が直交する場
合、これと接続するマグネトロンが同時に励振されて
も、一方の照射部から照射されるマイクロ波の加熱容器
内部での反射波は、偏波面が直交する他方の照射部に入
射することはない。従って、この2組も上記と同様に各
マグネトロン単体が正常に動作するのであればそのまま
同時に相互干渉すること無く動作させることができる。
When the polarization planes of the two microwave irradiators are orthogonal to each other, even if the magnetrons connected to the two microwave irradiators are excited at the same time, the reflected waves of the microwaves radiated from one of the irradiators in the heating container are It does not enter the other irradiation section whose polarization plane is orthogonal. Therefore, as in the above case, these two sets can be operated at the same time without mutual interference if the individual magnetrons operate normally.

【0018】さらにこの間欠発振方式と直交偏波照射方
式の2方式を併用し、同一の直線偏波で照射する2個の
マグネトロンを間欠発振により相互干渉がないように駆
動し、これと偏波を直交するもう2個のマグネトロンも
間欠発振により相互干渉がないように駆動させた場合、
先の2個と後の2個のマグネトロンは偏波が直交するこ
ため、これら4組を同時に相互干渉すること無く動作さ
せることができる。また、前後左右に対称な構造の加熱
容器に相互の位置関係が同一となるような位置に同一の
指向性を有するこの4個のマイクロ波照射部を設置し、
90°ごとに照射方向を変えて組み合わせた場合、マイ
クロ波照射部を回転させたような効果を期待することが
でき、加熱容器内部にむらが小さくなるようにマイクロ
波を照射することが可能となる。従来は、マイクロ波照
射部を回転させることで、加熱むらをなくしていたが、
マイクロ波の容器内の反射を考えると、マイクロ波が容
器の内壁に届くまでの距離は変化してしまい、マグネト
ロンのインピーダンスに不整合を生ずる。つまり、マイ
クロ波照射部を回転させると、マグネトロンのインピー
ダンスの不整合により、マグネトロン自体が加熱されて
しまう。
Further, by using both the intermittent oscillation method and the orthogonal polarization irradiation method in combination, two magnetrons that irradiate with the same linearly polarized wave are driven by intermittent oscillation so as not to cause mutual interference. If two other magnetrons that are orthogonal to each other are driven so that there is no mutual interference due to intermittent oscillation,
Since the polarizations of the former two magnetrons and the latter two magnetrons are orthogonal to each other, these four pairs can be operated simultaneously without mutual interference. In addition, the four microwave irradiators having the same directivity are installed at the positions where the mutual positional relationship is the same in the heating container having a symmetrical structure in the front-rear and left-right directions,
When the irradiation directions are changed every 90 ° and combined, it is possible to expect the effect of rotating the microwave irradiation part, and it is possible to irradiate the microwave so as to reduce the unevenness inside the heating container. Become. In the past, by rotating the microwave irradiation unit, uneven heating was eliminated.
Considering the reflection of microwaves inside the container, the distance at which the microwaves reach the inner wall of the container changes, causing a mismatch in the impedance of the magnetron. That is, when the microwave irradiation unit is rotated, the magnetron itself is heated due to the impedance mismatch of the magnetron.

【0019】しかし、本発明のように、容器内にマグネ
トロンを4つ設け、かつそれぞれのマグネトロンに指向
性を持たせて加熱むらをなくせば、マイクロ波が容器の
内壁に届くまでの距離は一定となり、従来のマグネトロ
ン自体が加熱されることはなくなる。また当然、マイク
ロ波照射部を回転させるモータは不要となる。
However, as in the present invention, if four magnetrons are provided in the container and each magnetron has directivity to eliminate uneven heating, the distance until the microwave reaches the inner wall of the container is constant. Therefore, the conventional magnetron itself is not heated. Also, of course, a motor for rotating the microwave irradiator is unnecessary.

【0020】[0020]

【実施例】以下、図面を参照して本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】第1図は本発明の直交する直線偏波によ
り、2個のマグネトロンからのマイクロ波を照射する方
式のマイクロ波加熱装置の基本構成となる一実施例を示
すもので、第1図(a)は平面図、(b)は側面図であ
る。
FIG. 1 shows an embodiment which is a basic constitution of a microwave heating apparatus of the type which radiates microwaves from two magnetrons by orthogonal linearly polarized waves according to the present invention. (A) is a plan view and (b) is a side view.

【0022】本加熱装置は、マグネトロン1a,1b,
導波管2a,2b,照射部(アンテナ)3a,3b,電
源トランス4a,4b,加熱容器5、等より構成され
る。
The heating device comprises magnetrons 1a, 1b,
The waveguides 2a and 2b, the irradiation units (antennas) 3a and 3b, the power transformers 4a and 4b, the heating container 5, and the like.

【0023】電源トランス4a,4bは、マグネトロン
1a,1bを駆動し、励振されたマイクロ波は導波管2
a,2bを介して照射部(アンテナ)3a,3bより加
熱容器5内部に照射される。照射部(アンテナ)3a,
3bより照射される直線偏波の向き6a,6bを直交さ
せるため導波管2a,2bは加熱容器5上に直交して取
付けられている。なおマイクロ波は、第1図(b)に示
すアンテナの向きに照射される。第1図(a)に示され
る矢印は、照射するマイクロ波のもつ成分が垂直成分
か、水平成分かを示している。、マグネトロン1a,1
bのそれぞれが垂直成分、水平成分を持つことで、2つ
のマグネトロンが同時に励振されても、照射部3aから
照射されるマイクロ波の加熱容器内部での反射波は、偏
波面が直交する他方の照射部3bに入射することはな
い。つまり、直線偏波で照射するアンテナは、これと同
一偏波しか受信できないため、第1図に示すように2組
のマイクロ波照射部の偏波面を直交させた場合、これと
接続するマグネトロンを同時に励振させても、一方の照
射部から照射されるマイクロ波の加熱容器からの反射波
は他方の照射部に入射することはなく、2個の各マグネ
トロン単体が正常に動作するのであれば2個ともそのま
ま同時に相互干渉すること無く動作させることができ、
合成した出力を加熱容器内部に照射することができる。
The power transformers 4a and 4b drive the magnetrons 1a and 1b, and the excited microwaves are guided by the waveguide 2
The inside of the heating container 5 is irradiated from the irradiation units (antennas) 3a and 3b via a and 2b. Irradiator (antenna) 3a,
The waveguides 2a and 2b are mounted orthogonally on the heating container 5 in order to make the directions 6a and 6b of the linearly polarized waves emitted from 3b orthogonal. The microwave is applied in the direction of the antenna shown in FIG. 1 (b). The arrow shown in FIG. 1 (a) indicates whether the microwave component to be irradiated has a vertical component or a horizontal component. , Magnetron 1a, 1
Since each of b has a vertical component and a horizontal component, even if two magnetrons are excited at the same time, the reflected wave of the microwave irradiated from the irradiation unit 3a inside the heating container is It does not enter the irradiation unit 3b. In other words, since an antenna that irradiates with linearly polarized waves can receive only the same polarized wave, when the polarization planes of the two sets of microwave irradiation units are made orthogonal to each other as shown in FIG. Even if excited at the same time, the reflected wave from the heating container of the microwave radiated from one irradiation unit does not enter the other irradiation unit, and if each of the two magnetrons operates normally, 2 Both can be operated at the same time without mutual interference,
The combined output can be applied to the inside of the heating container.

【0024】第2図に照射部の構成を示す。これは直線
偏波を照射する照射部(アンテナ)として、導波管にス
ロット設けた構造である。第2図(a)は、スロットが
1個設けられた場合の実施例であり、単に開口方向にマ
イクロ波を照射するものである。なお、11aはマグネ
トロン、3はスロット、7はマグネトロン11aから出
力されるマイクロ波である。
FIG. 2 shows the structure of the irradiation unit. This is a structure in which a waveguide is provided with a slot as an irradiation unit (antenna) for irradiating linearly polarized waves. FIG. 2 (a) shows an embodiment in which one slot is provided, and the microwave is simply irradiated in the opening direction. In addition, 11a is a magnetron, 3 is a slot, and 7 is a microwave output from the magnetron 11a.

【0025】第2図に示すスロットの幅tを、スロット
の長さsより短くとると、そのスロット上には長さs方
向と直交する方向に電界が励振され、この方向に振動す
る直線偏波が照射される。これより図1に示すマイクロ
波の直線偏波を実現する。
When the width t of the slot shown in FIG. 2 is set shorter than the length s of the slot, an electric field is excited on the slot in a direction orthogonal to the length s direction, and a linear polarization vibrating in this direction is generated. Waves are emitted. As a result, the linearly polarized microwave shown in FIG. 1 is realized.

【0026】次に加熱装置に4個のマグネトロンを用い
る場合を説明する。本発明では、直交偏波照射方式と間
欠発振方式を組み合わせて4個のマグネトロンを駆動す
る。第3図(a)は本発明のマイクロ波加熱装置の平面
図、第3図(b)は側面図、第3図(c)は間欠発振方
式に用いる半波整流電源波形の組合せを示す。
Next, the case where four magnetrons are used in the heating device will be described. In the present invention, four magnetrons are driven by combining the orthogonal polarization irradiation method and the intermittent oscillation method. FIG. 3 (a) is a plan view of the microwave heating apparatus of the present invention, FIG. 3 (b) is a side view, and FIG. 3 (c) shows a combination of half-wave rectified power supply waveforms used in the intermittent oscillation method.

【0027】第3図に於いて、同一の直線偏波で照射す
る照射部(アンテナ)を3a,3cとし、これと直交す
る偏波で照射する照射部(アンテナ)を3b,3dとす
る。この4個の照射部(アンテナ)に対し、同一の半波
整流波形で駆動する照射部(アンテナ)を3a,3bと
し、これと90°位相の異なる半波整流波形で駆動する
照射部(アンテナ)を3c,3dとする。
In FIG. 3, irradiation parts (antennas) for irradiating with the same linear polarized wave are designated as 3a and 3c, and irradiation parts (antennas) for irradiating with polarized waves orthogonal to this are designated as 3b and 3d. For these four irradiation units (antennas), irradiation units (antennas) driven by the same half-wave rectified waveform are defined as 3a and 3b, and irradiation units (antennas driven by half-wave rectified waveforms that are 90 ° out of phase with each other). ) Are 3c and 3d.

【0028】3a,3bの組合せは、偏波が直交するた
め相互干渉せずに励振することができ、同様に3c,3
dの組合せも相互干渉せずに励振することができる。そ
して、これら2組は間欠発振するため、全4個の照射部
(アンテナ)は相互干渉せずに励振することができ、合
成した出力を加熱容器内部に照射することができる。
The combination of 3a and 3b can be excited without mutual interference because the polarized waves are orthogonal to each other.
The combination of d can also be excited without mutual interference. Since these two sets oscillate intermittently, all four irradiation units (antennas) can be excited without mutual interference, and the combined output can be irradiated inside the heating container.

【0029】それぞれの照射部は、垂直成分のマイクロ
波を照射するか、水平成分のマイクロ波を照射するかを
予め設定されており、同一の半波整流波形で駆動する照
射部をどれにするかは、同時に照射されるマイクロ波が
同一成分(水平、垂直)でなければいずれの組み合わせ
でも良いこととなる。
It is preset for each irradiation unit whether to irradiate the vertical component microwave or the horizontal component microwave, and which irradiation unit is driven by the same half-wave rectified waveform is selected. This means that any combination may be used as long as the microwaves irradiated at the same time are not the same component (horizontal, vertical).

【0030】第4図は、本発明の直交偏波照射方式と間
欠発振方式を組み合わせて4個のマグネトロンを駆動す
る方式のマイクロ波加熱装置に於いて、4個の同一の指
向性を有するマイクロ波照射部を90°ごとに照射方向
を変えて設置した一実施例を示す。この実施例では、マ
イクロ波照射部を回転させたような効果を期待すること
ができ、加熱容器内部にむらが小さくなるようにマイク
ロ波を照射することが可能となる。
FIG. 4 shows a microwave heating device of the present invention in which the orthogonal polarization irradiation method and the intermittent oscillation method are combined to drive four magnetrons. An example in which the wave irradiator is installed by changing the irradiation direction every 90 ° will be shown. In this embodiment, it is possible to expect the effect of rotating the microwave irradiator, and it is possible to irradiate the microwave so that the unevenness in the heating container is reduced.

【0031】第2図(b)に照射部に指向性を持たせる
ための一実施例を示す。
FIG. 2B shows an embodiment for giving directivity to the irradiation part.

【0032】第2図(b)において、複数のスロットを
持たせることにより、マイクロ波は、各々のスロットに
励振され、指向性を持つこととなる。つまり、スロット
の個数及びスロットの間隔uを変えることによりスロッ
トからの照射方向を変えた。
In FIG. 2 (b), by providing a plurality of slots, the microwave is excited in each slot and has a directivity. That is, the irradiation direction from the slots was changed by changing the number of slots and the interval u of the slots.

【0033】このように、容器内にマグネトロンを4つ
設け、かつそれぞれのマグネトロンに指向性を持たせて
加熱むらをなくせば、マイクロ波が容器の内壁に届くま
での距離は一定となり、従来のマイクロ波照射部を回転
させると、マグネトロンのインピーダンスの不整合によ
り、マグネトロン自体が加熱されることはない。また当
然、マイクロ波照射部を回転させるモータは不要とな
る。
As described above, if four magnetrons are provided in the container and each magnetron has directivity to eliminate uneven heating, the distance until the microwave reaches the inner wall of the container becomes constant, and the conventional When the microwave irradiation unit is rotated, the magnetron itself is not heated due to the impedance mismatch of the magnetron. Also, of course, a motor for rotating the microwave irradiator is unnecessary.

【0034】第5図は、加熱装置をさらに大型化する場
合の一実施例である。この加熱装置では、本発明の直交
偏波照射方式と間欠発振方式を組み合わせて4個のマグ
ネトロンを1単位として駆動するものとし、全体のマグ
ネトロンをこの4個の倍数に分け、4個ごとに金網製の
間仕切り(パンチングプレ−ト)により区切った一実施
例をしめす。これにより、各間仕切り内部は、マグネト
ロンどうし相互干渉せずに励振されるので、間仕切りに
より各ユニットどうし干渉を防止することができ全体と
して合成された出力で照射することができる。なお金網
製の間仕切り(パンチングプレ−ト)は、マイクロ波は
遮蔽するが、加熱の際に発生する水蒸気等はユニット間
を移動することができ、加熱させる(熱の循環等)に問
題のない構成である。
FIG. 5 shows an embodiment in which the heating device is further enlarged. In this heating apparatus, the orthogonal polarization irradiation method of the present invention and the intermittent oscillation method are combined to drive four magnetrons as one unit, and the entire magnetron is divided into multiples of these four wire meshes. An example is shown, which is separated by a manufacturing partition (punching plate). As a result, since the interiors of the partitions are excited without mutual interference between the magnetrons, the partitions can prevent the units from interfering with each other, and irradiation can be performed with the combined output as a whole. Note that the metal mesh partition (punching plate) shields microwaves, but water vapor and the like generated during heating can move between units, causing problems in heating (circulation of heat, etc.). There is no configuration.

【0035】なお、これまでの説明でマイクロ波の照射
手段として、マグネトロンを主に説明してきたが、本発
明はこれに限定されるものではない。
Although a magnetron has been mainly described as a microwave irradiating means in the above description, the present invention is not limited to this.

【0036】[0036]

【発明の効果】以上のように本発明によれば、マグネト
ロンを複数用いる場合において、マグネトロン間の相互
干渉が小さくなる加熱装置を提供できる。
As described above, according to the present invention, it is possible to provide a heating device in which mutual interference between magnetrons is reduced when a plurality of magnetrons are used.

【0037】また、マグネトロンを4個以上設ける場合
の、間欠発振方式と直交偏波照射方式の2方式を併用し
た簡易な構成の加熱装置を提供できる。これによりマグ
ネトロンを4個以上配置することも可能なので、加熱装
置の大型化に対応することができる。また、マグネトロ
ン間に相互干渉がないため、各マグネトロン単体のイン
ピ−ダンスの整合をとり正常に出力するようにすればそ
のまま4個の主力を合成することが可能となる。
Further, when four or more magnetrons are provided, it is possible to provide a heating device having a simple structure which uses both the intermittent oscillation system and the orthogonal polarization irradiation system. As a result, it is possible to arrange four or more magnetrons, so that it is possible to cope with an increase in size of the heating device. Further, since there is no mutual interference between the magnetrons, if the impedances of the individual magnetrons are matched and output normally, the four main forces can be combined as they are.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)本発明の直交する直線偏波を用いたマイ
クロ波加熱装置の平面図 (b)本発明の直交する直線偏波を用いたマイクロ波加
熱装置の側面図
FIG. 1A is a plan view of a microwave heating apparatus using orthogonal linearly polarized waves of the present invention. FIG. 1B is a side view of a microwave heating apparatus using orthogonal linearly polarized waves of the present invention.

【図2】(a)マイクロ波照射部の一実施例 (b)マイクロ波照射部の一実施例FIG. 2A is an example of a microwave irradiation unit. FIG. 2B is an example of a microwave irradiation unit.

【図3】(a)本発明の直交偏波照射方式と間欠発振方
式を組合せたマイクロ波加熱装置の平面図 (b)本発明の直交偏波照射方式と間欠発振方式を組合
せたマイクロ波加熱装置の側面図 (c)間欠発振方式に用いる半波整流電圧波形図
FIG. 3A is a plan view of a microwave heating apparatus that combines the orthogonal polarization irradiation method and the intermittent oscillation method of the present invention. FIG. 3B is a microwave heating that combines the orthogonal polarization irradiation method and the intermittent oscillation method of the present invention. Side view of device (c) Waveform diagram of half-wave rectified voltage used for intermittent oscillation method

【図4】マイクロ波照射部に指向性を持たせた場合の一
実施例
FIG. 4 is an example of a case where a microwave irradiator is provided with directivity.

【図5】マイクロ波加熱装置に間仕切りを設けた一実施
FIG. 5: One embodiment in which a microwave heating device is provided with a partition

【符号の説明】 1a,1b,1c,1d,11a … マグネトロン 2a,2b,2c,2d … 導波管 3a,3b,3c,3d … マイクロ波照射
部 4b,4c … 電源トランス 5 … 加熱容器 6 … スロット 7 … 偏波の励振方向 8 … マイクロ波照射部の照射方向 9 … 加熱容器内部間仕切り
[Explanation of Codes] 1a, 1b, 1c, 1d, 11a ... Magnetrons 2a, 2b, 2c, 2d ... Waveguides 3a, 3b, 3c, 3d ... Microwave irradiation parts 4b, 4c ... Power transformer 5 ... Heating container 6 ... Slot 7 ... Polarized wave excitation direction 8 ... Microwave irradiation part irradiation direction 9 ... Heating chamber internal partition

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】被加熱物を配置する加熱室と、前記加熱室
に第一のマイクロ波を照射する第一のマイクロ波照射手
段と、前記加熱室に第二のマイクロ波を照射する第二の
マイクロ波照射手段とから構成され、前記第一のマイク
ロ波照射手段と前記第二のマイクロ波照射手段は、前記
第一のマイクロ波と前記第二のマイクロ波のもつ直線偏
波を直交させるよう照射することを特徴とするマイクロ
波加熱装置。
1. A heating chamber for arranging an object to be heated, a first microwave irradiating means for irradiating the heating chamber with a first microwave, and a second irradiating the heating chamber with a second microwave. The microwave irradiating means, and the first microwave irradiating means and the second microwave irradiating means make the linearly polarized waves of the first microwave and the second microwave orthogonal to each other. The microwave heating device is characterized by irradiating the microwave.
【請求項2】前記マイクロ波照射手段は、マグネトロン
と、マイクロ波を前記加熱室に照射するマイクロ波照射
部を含む導波管とから構成され、前記導波管に給電する
ことで前記直線偏波を発生させることを特徴とする請求
項1記載のマイクロ波加熱装置。
2. The microwave irradiating means is composed of a magnetron and a waveguide including a microwave irradiating section for irradiating the heating chamber with microwaves, and the linear polarization is obtained by feeding power to the waveguides. The microwave heating device according to claim 1, wherein a wave is generated.
【請求項3】前記マイクロ波照射部は、前記導波管に設
けられた照射用開口部であることを特徴とする請求項2
記載のマイクロ波加熱装置。
3. The microwave irradiation section is an irradiation opening provided in the waveguide.
Microwave heating device described.
【請求項4】被加熱物を配置する加熱室と、前記加熱室
にマイクロ波を照射する複数のマイクロ波照射手段とか
ら構成され、前記複数のマイクロ波照射手段は、第一の
駆動電圧で照射する第一、第二のマイクロ波照射手段
と、第二の駆動電圧で照射する第三、第四のマイクロ波
照射手段とを有し、かつ前記駆動電圧に従ってマイクロ
波を照射する場合、それぞれのマイクロ波のもつ直線偏
波を直交させるよう照射することを特徴とするマイクロ
波加熱装置。
4. A heating chamber for arranging an object to be heated, and a plurality of microwave irradiating means for irradiating the heating chamber with microwaves, wherein the plurality of microwave irradiating means use a first drive voltage. Irradiating first and second microwave irradiating means, and third and fourth microwave irradiating means for irradiating with a second drive voltage, and when irradiating microwaves according to the drive voltage, respectively, The microwave heating device is characterized in that the linearly polarized wave of the microwave is irradiated so as to be orthogonal.
【請求項5】前記マイクロ波照射手段は、同一の直線偏
波で照射する2つのマグネトロンと、これと直交する直
線偏波で照射する2つのマグネトロンとで構成され、か
つ前記第一、第二の駆動電圧は、2組の半波整流波形の
組合せにより発生させることを特徴とする請求項4記載
のマイクロ波加熱装置。
5. The microwave irradiating means is composed of two magnetrons for irradiating with the same linearly polarized wave and two magnetrons for irradiating with a linearly polarized wave orthogonal to the same, and the first and second The microwave heating device according to claim 4, wherein the driving voltage is generated by a combination of two sets of half-wave rectified waveforms.
【請求項6】前記複数のマイクロ波照射手段は、照射す
るマイクロ波に指向性を持たせたことを特徴とする請求
項4および5記載のマイクロ波加熱装置。
6. The microwave heating apparatus according to claim 4, wherein the microwave irradiating means has directivity to the microwaves to be radiated.
【請求項7】前記4つのマイクロ波照射手段を1単位の
ユニットとし、マイクロ波を遮蔽する仕切りを取り付け
ることで前記ユニットを複数設けたことを特徴とする請
求項4、5及び6記載のマイクロ波加熱装置。
7. The micro according to claim 4, wherein the four microwave irradiating means are one unit, and a plurality of the units are provided by attaching a partition for shielding the microwave. Wave heating device.
JP31507494A 1994-12-19 1994-12-19 Microwave heating device Pending JPH08171986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31507494A JPH08171986A (en) 1994-12-19 1994-12-19 Microwave heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31507494A JPH08171986A (en) 1994-12-19 1994-12-19 Microwave heating device

Publications (1)

Publication Number Publication Date
JPH08171986A true JPH08171986A (en) 1996-07-02

Family

ID=18061109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31507494A Pending JPH08171986A (en) 1994-12-19 1994-12-19 Microwave heating device

Country Status (1)

Country Link
JP (1) JPH08171986A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1018856A1 (en) * 1999-01-06 2000-07-12 Snowdrift Corp. N.V. Microwave system with at least two magnetrons and method for controlling such a system
JP2004526649A (en) * 2000-12-29 2004-09-02 コーニング インコーポレイテッド Apparatus and method for treating ceramics
CN103021845A (en) * 2011-09-26 2013-04-03 东京毅力科创株式会社 Microwave processing apparatus and method for processing object to be processed
KR101413786B1 (en) * 2011-09-26 2014-06-30 도쿄엘렉트론가부시키가이샤 Microwave processing apparatus and method for processing object to be processed
JP5645168B2 (en) * 2009-09-07 2014-12-24 パナソニックIpマネジメント株式会社 Microwave heating device
JP2015536440A (en) * 2012-12-07 2015-12-21 エンウェイブ コーポレイションEnwave Corporation Microwave vacuum drying of organic matter
JP2017063095A (en) * 2015-09-24 2017-03-30 株式会社東芝 Microwave irradiation device and substrate processing method
US9648670B2 (en) 2009-09-16 2017-05-09 Panasonic Intellectual Property Management Co., Ltd. Microwave heating device
EP3195695A4 (en) * 2014-09-17 2018-05-16 Whirlpool Corporation Direct heating through patch antennas
US10764970B2 (en) 2016-01-08 2020-09-01 Whirlpool Corporation Multiple cavity microwave oven insulated divider
US10772165B2 (en) 2018-03-02 2020-09-08 Whirlpool Corporation System and method for zone cooking according to spectromodal theory in an electromagnetic cooking device
US10820382B2 (en) 2016-01-28 2020-10-27 Whirlpool Corporation Method and apparatus for delivering radio frequency electromagnetic energy to cook foodstuff
US10827569B2 (en) 2017-09-01 2020-11-03 Whirlpool Corporation Crispness and browning in full flat microwave oven
US10827570B2 (en) 2016-02-15 2020-11-03 Whirlpool Corporation Method and apparatus for delivering radio frequency electromagnetic energy to cook foodstuff
US10904962B2 (en) 2015-06-03 2021-01-26 Whirlpool Corporation Method and device for electromagnetic cooking
US10904961B2 (en) 2015-03-06 2021-01-26 Whirlpool Corporation Method of calibrating a high power amplifier for a radio frequency power measurement system
US10912160B2 (en) 2018-07-19 2021-02-02 Whirlpool Corporation Cooking appliance
US11039510B2 (en) 2017-09-27 2021-06-15 Whirlpool Corporation Method and device for electromagnetic cooking using asynchronous sensing strategy for resonant modes real-time tracking
US11404758B2 (en) 2018-05-04 2022-08-02 Whirlpool Corporation In line e-probe waveguide transition
US11483905B2 (en) 2016-01-08 2022-10-25 Whirlpool Corporation Method and apparatus for determining heating strategies

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1018856A1 (en) * 1999-01-06 2000-07-12 Snowdrift Corp. N.V. Microwave system with at least two magnetrons and method for controlling such a system
JP2004526649A (en) * 2000-12-29 2004-09-02 コーニング インコーポレイテッド Apparatus and method for treating ceramics
JP5645168B2 (en) * 2009-09-07 2014-12-24 パナソニックIpマネジメント株式会社 Microwave heating device
US9648670B2 (en) 2009-09-16 2017-05-09 Panasonic Intellectual Property Management Co., Ltd. Microwave heating device
CN103021845A (en) * 2011-09-26 2013-04-03 东京毅力科创株式会社 Microwave processing apparatus and method for processing object to be processed
KR101411116B1 (en) * 2011-09-26 2014-06-25 도쿄엘렉트론가부시키가이샤 Microwave processing apparatus and method for processing object to be processed
KR101413786B1 (en) * 2011-09-26 2014-06-30 도쿄엘렉트론가부시키가이샤 Microwave processing apparatus and method for processing object to be processed
JP2015536440A (en) * 2012-12-07 2015-12-21 エンウェイブ コーポレイションEnwave Corporation Microwave vacuum drying of organic matter
US11191133B2 (en) 2014-09-17 2021-11-30 Whirlpool Corporation Direct heating through patch antennas
EP3195695A4 (en) * 2014-09-17 2018-05-16 Whirlpool Corporation Direct heating through patch antennas
US10904961B2 (en) 2015-03-06 2021-01-26 Whirlpool Corporation Method of calibrating a high power amplifier for a radio frequency power measurement system
US10904962B2 (en) 2015-06-03 2021-01-26 Whirlpool Corporation Method and device for electromagnetic cooking
JP2017063095A (en) * 2015-09-24 2017-03-30 株式会社東芝 Microwave irradiation device and substrate processing method
US10764970B2 (en) 2016-01-08 2020-09-01 Whirlpool Corporation Multiple cavity microwave oven insulated divider
US11483905B2 (en) 2016-01-08 2022-10-25 Whirlpool Corporation Method and apparatus for determining heating strategies
US10820382B2 (en) 2016-01-28 2020-10-27 Whirlpool Corporation Method and apparatus for delivering radio frequency electromagnetic energy to cook foodstuff
US10827570B2 (en) 2016-02-15 2020-11-03 Whirlpool Corporation Method and apparatus for delivering radio frequency electromagnetic energy to cook foodstuff
US10827569B2 (en) 2017-09-01 2020-11-03 Whirlpool Corporation Crispness and browning in full flat microwave oven
US11039510B2 (en) 2017-09-27 2021-06-15 Whirlpool Corporation Method and device for electromagnetic cooking using asynchronous sensing strategy for resonant modes real-time tracking
US10772165B2 (en) 2018-03-02 2020-09-08 Whirlpool Corporation System and method for zone cooking according to spectromodal theory in an electromagnetic cooking device
US11404758B2 (en) 2018-05-04 2022-08-02 Whirlpool Corporation In line e-probe waveguide transition
US10912160B2 (en) 2018-07-19 2021-02-02 Whirlpool Corporation Cooking appliance

Similar Documents

Publication Publication Date Title
JPH08171986A (en) Microwave heating device
CN103718644B (en) Microwave heating equipment
KR20100068409A (en) Microwave heating device
EP2852251A1 (en) Microwave heating device
KR19980017873A (en) Microwave Waveguide Structure
US3471672A (en) Slotted waveguide applicator
KR101840684B1 (en) Microwave range and radiation module thereof
JP7230802B2 (en) Microwave processor
CN103650637B (en) Microwave heating equipment
JP2558877B2 (en) High frequency heating equipment
US3521019A (en) Microwave heating cavity with a venetian blind mode stirrer
KR100729909B1 (en) Dielectric heating device
US7462978B1 (en) Apparatus and method for generating ultraviolet radiation
CN111183708B (en) Microwave processing apparatus
JP7178556B2 (en) High frequency heating device
JP2736793B2 (en) High frequency heating equipment
JP7285413B2 (en) High frequency heating device
JP3619044B2 (en) High frequency heating device
KR100197113B1 (en) Plasma processing device
KR100275968B1 (en) Feed system of microwave oven
JP2015162321A (en) Radio frequency heating device
KR100284500B1 (en) Waveguide system for electronic range
JPH1154258A (en) Microwave oven
JPS62295386A (en) Radio frequency heater
JPS63279596A (en) High-frequency heating device