JP7178556B2 - High frequency heating device - Google Patents

High frequency heating device Download PDF

Info

Publication number
JP7178556B2
JP7178556B2 JP2019060084A JP2019060084A JP7178556B2 JP 7178556 B2 JP7178556 B2 JP 7178556B2 JP 2019060084 A JP2019060084 A JP 2019060084A JP 2019060084 A JP2019060084 A JP 2019060084A JP 7178556 B2 JP7178556 B2 JP 7178556B2
Authority
JP
Japan
Prior art keywords
frequency power
transmission line
wave transmission
surface wave
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019060084A
Other languages
Japanese (ja)
Other versions
JP2020161348A (en
Inventor
利幸 岡島
義治 大森
和樹 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019060084A priority Critical patent/JP7178556B2/en
Publication of JP2020161348A publication Critical patent/JP2020161348A/en
Application granted granted Critical
Publication of JP7178556B2 publication Critical patent/JP7178556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Description

本発明は、周期構造体を用いた表面波伝送線路を備えた高周波加熱装置に関する。 The present invention relates to a high-frequency heating device having a surface wave transmission line using a periodic structure.

従来から、周期構造体を用いた表面波伝送線路に高周波電力を給電して、食品等の被加熱物に加熱処理を施す高周波加熱装置に関する技術が開示されている。 Conventionally, there has been disclosed a technique related to a high-frequency heating apparatus that heats an object to be heated such as food by supplying high-frequency power to a surface wave transmission line using a periodic structure.

例えば、特許文献1には、平面型の表面波伝送線路の端部より高周波電力を給電し、表面波伝送線路の上に、表面波の進行方向に並べて被加熱物を置き、表面波伝送線路に近い側が強く加熱される特徴を用いて、被加熱物の下側を加熱する高周波解凍加熱装置が開示されている。 For example, in Patent Document 1, high-frequency power is fed from the end of a planar surface wave transmission line, an object to be heated is placed on the surface wave transmission line in the direction in which the surface wave travels, and the surface wave transmission line is heated. A high-frequency thawing heating apparatus is disclosed that heats the underside of the object to be heated using the feature that the side closer to the point is heated more strongly.

また、特許文献2には、電子レンジなどの金属壁に覆われた筐体にマイクロ波が閉じ込められた環境内に、周期的にスロット穴を設けた筒状の金属板を置き、その内側に被加熱物を設置することにより、金属壁と筒状の金属板で導波管が形成され、筒状の金属板に周期的に設けられたスロット穴に発生する表面波により、被加熱物を集中的に加熱することで、特に丸い形状や徳利などの高さのある被加熱物に対して効率よく加熱できる、高周波加熱器が開示されている。 Further, in Patent Document 2, a cylindrical metal plate with periodic slot holes is placed in an environment where microwaves are confined in a case of a microwave oven or the like covered with a metal wall. By setting the object to be heated, a waveguide is formed by the metal wall and the cylindrical metal plate, and the surface waves generated in the slot holes provided periodically in the cylindrical metal plate move the object to be heated. Disclosed is a high-frequency heater that can efficiently heat an object to be heated, particularly a round object or a tall object such as a sake bottle, by intensively heating the object.

特開平8-166133号公報JP-A-8-166133 実開昭57-78597号公報Japanese Utility Model Laid-Open No. 57-78597

しかしながら、特許文献1に示される前記従来の構成では、被加熱物の形状が丸い場合や高さ方向の寸法が大きい場合には、表面波伝送線路に近接している下側のみが加熱されることになり、充分な加熱処理を施すことができない。 However, in the conventional configuration shown in Patent Document 1, when the object to be heated is round in shape or has a large height dimension, only the lower side adjacent to the surface wave transmission line is heated. As a result, sufficient heat treatment cannot be applied.

また、特許文献2に示される前記従来の構成では、被加熱物の形状が丸い場合や高さ方向の寸法が大きい場合にも充分な加熱処理を施すことができるとされているが、金属壁と筒状の金属板で形成される導波管は、適切な導波管の形状が形成できないことと、筒状の金属板の大きさや置き位置により導波管の形状が変化するので、筒状の金属板に周期的に設けたスロット穴に発生する表面波は不安定であり、また被加熱物の表面を焦がすほどの表面波のパワーは得られない。 In addition, in the conventional configuration shown in Patent Document 2, it is said that sufficient heat treatment can be performed even when the shape of the object to be heated is round or when the dimension in the height direction is large. A waveguide made of a cylindrical metal plate cannot be formed in an appropriate shape, and the shape of the waveguide changes depending on the size and placement position of the cylindrical metal plate. The surface waves generated in the slot holes periodically provided in the shaped metal plate are unstable, and the power of the surface waves to scorch the surface of the object to be heated cannot be obtained.

本発明は、上記従来の課題を解決するもので、丸い形状や高さ寸法が大きい形状の被加熱物に対して、充分な加熱処理を施すことができる、高周波加熱装置を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a high-frequency heating apparatus capable of sufficiently heat-treating an object to be heated having a round shape or a large height dimension. and

前記従来の課題を解決するため、本発明の高周波加熱装置は、少なくとも1つの表面波伝送線路と、高周波電力を発生させる少なくとも1つの高周波電力発生部と、前記表面波伝送線路に高周波電力を給電する少なくとも1つの高周波電力給電部と、を備え、前記表面波伝送線路は筒状に構成され、前記高周波電力発生部で発生した高周波電力を前記高周波電力給電部を介して前記表面波伝送線路に給電する。 In order to solve the above conventional problems, the high-frequency heating apparatus of the present invention includes at least one surface wave transmission line, at least one high-frequency power generator for generating high-frequency power, and supplying high-frequency power to the surface wave transmission line. and at least one high-frequency power feeder, wherein the surface wave transmission line is configured in a cylindrical shape, and the high-frequency power generated by the high-frequency power generator is supplied to the surface wave transmission line via the high-frequency power feeder. supply power.

この構成により、筒状に構成された表面波伝送線路に、高周波電力発生部で発生した高周波電力を高周波電力給電部を介して直接に給電するので、表面波伝送線路に供給された高周波電力は、表面波伝送線路を伝搬する表面波電力に、効率よく変換される。これにより、筒状に構成された表面波伝送線路の内側に設置した被加熱物が丸い形状や高さ寸法が大きい形状であっても、充分な加熱処理を施すことができる。 With this configuration, the high-frequency power generated by the high-frequency power generator is directly fed to the cylindrical surface wave transmission line through the high-frequency power feeder, so the high-frequency power supplied to the surface wave transmission line is , is efficiently converted into surface wave power propagating in the surface wave transmission line. As a result, even if the object to be heated placed inside the cylindrical surface wave transmission line has a round shape or a shape with a large height dimension, sufficient heat treatment can be performed.

実施の形態1の高周波加熱装置の基本構成を示す概略図Schematic diagram showing the basic configuration of the high-frequency heating apparatus of Embodiment 1 実施の形態1の高周波電力給電部の構成を示す概略図Schematic diagram showing the configuration of the high-frequency power feeding unit of the first embodiment 実施の形態1の表面波伝送線路に給電された高周波電力の伝搬を示す図FIG. 4 is a diagram showing propagation of high-frequency power fed to the surface-wave transmission line of the first embodiment; 実施の形態1の筒状の表面波伝送線路から放射される高周波電力の様子を示す図FIG. 4 is a diagram showing how high-frequency power is radiated from the cylindrical surface wave transmission line of the first embodiment; 実施の形態1の筒状の表面波伝送線路の近傍に形成される電界強度分布を示す図FIG. 4 is a diagram showing an electric field strength distribution formed in the vicinity of the cylindrical surface wave transmission line of Embodiment 1; 実施の形態1の表面波伝送線路に短絡箇所を設けた構成を示す概略図Schematic diagram showing a configuration in which a short circuit is provided in the surface wave transmission line of Embodiment 1. FIG. 実施の形態1の短絡箇所を設けた表面波伝送線路を伝搬する高周波電力を示す展開図FIG. 2 is a developed view showing high-frequency power propagating through a surface wave transmission line provided with a short-circuited portion according to the first embodiment; 実施の形態2の高周波加熱装置の基本構成を示す概略図Schematic diagram showing the basic configuration of the high-frequency heating apparatus of Embodiment 2 実施の形態2の表面波伝送線路から放射される高周波電力の様子を示す図FIG. 10 is a diagram showing how high-frequency power is radiated from the surface-wave transmission line of the second embodiment; 実施の形態2の表面波伝送線路の近傍に形成される電界強度分布を示す図FIG. 11 shows an electric field intensity distribution formed near the surface wave transmission line of the second embodiment; 実施の形態3の高周波加熱装置の基本構成を示す概略図Schematic diagram showing the basic configuration of the high-frequency heating apparatus of Embodiment 3 実施の形態3の表面波伝送線路を伝搬する高周波電力を示す展開図FIG. 10 is an exploded view showing high-frequency power propagating through the surface-wave transmission line of the third embodiment;

第1の発明は、少なくとも1つの表面波伝送線路と、高周波電力を発生させる少なくとも1つの高周波電力発生部と、前記表面波伝送線路に高周波電力を給電する少なくとも1つの高周波電力給電部と、を備え、前記表面波伝送線路は筒状に構成され、前記高周波電力発生部で発生した高周波電力を前記高周波電力給電部を介して前記表面波伝送線路に給電することにより、筒状に構成された表面波伝送線路に、高周波電力発生部で発生した高周波電力を高周波電力給電部を介して給電し、筒状に構成された前記表面波伝送線路の内側に設置した被加熱物を加熱処理するので、表面波伝送線路に供給された高周波電力は、表面波伝送線路を伝搬する表面波電力に効率よく変換される。これにより、筒状に構成された表面波伝送線路の内側に設置した被加熱物が丸い形状や高さ寸法が大きい形状であっても、被加熱物の表面を広範囲に焦がすなどの充分な加熱処理を安定して施すことができる。 A first invention comprises at least one surface wave transmission line, at least one high frequency power generating section for generating high frequency power, and at least one high frequency power feeding section for feeding high frequency power to the surface wave transmission line. The surface wave transmission line is configured in a cylindrical shape, and is configured in a cylindrical shape by feeding high-frequency power generated by the high-frequency power generating section to the surface wave transmission line through the high-frequency power feeding section. A high-frequency power generated by a high-frequency power generator is fed to the surface wave transmission line via the high-frequency power feeder, so that an object to be heated placed inside the tubular surface wave transmission line is heat-treated. , the high-frequency power supplied to the surface-wave transmission line is efficiently converted into surface-wave power propagating through the surface-wave transmission line. As a result, even if the object to be heated installed inside the cylindrical surface wave transmission line has a round shape or a shape with a large height dimension, the surface of the object to be heated can be sufficiently heated such that the surface of the object is scorched in a wide range. Treatment can be stably applied.

第2の発明は、特に第1の発明の、前記表面波伝送線路は、板状に周期構造体を形成したので、表面波伝送線路を筒状に形成する際の形状の自由度が増すと共に、周期構造体の加工がし易く、コストの低減にも貢献できる。 In a second aspect of the invention, particularly in the first aspect, the surface wave transmission line has a plate-like periodic structure. , the periodic structure can be easily processed, and can contribute to cost reduction.

第3の発明は、特に第2の発明の、前記高周波電力給電部は、電界結合型アンテナにより、前記表面波伝送線路に高周波電力を給電するので、板上に周期構造体を形成した表面波伝送線路との整合が向上し、表面波伝送線路への高周波電力の給電効率を向上することができる。 In a third aspect of the invention, particularly in the second aspect, the high-frequency power feeding section feeds high-frequency power to the surface wave transmission line by means of an electric field coupling type antenna. The matching with the transmission line is improved, and the efficiency of supplying high frequency power to the surface wave transmission line can be improved.

第4の発明は、特に第1~第3のいずれかの発明の、前記表面波伝送線路は、短絡となる箇所が設けられているので、高周波電力給電部より表面波伝送線路を伝搬する高周波電力は短絡点でほぼ全反射され、逆方向に再度表面波伝送線路を伝搬するので、表面波伝送
線路を伝搬する高周波電力の被加熱物への吸収量を増加させることができ、表面波伝送線路の内側に設置した被加熱物への高周波電力による加熱効率を向上することができる。
In a fourth aspect of the invention, since the surface wave transmission line according to any one of the first to third aspects is provided with a short-circuit portion, a high frequency wave propagates through the surface wave transmission line from the high frequency power feeder. The power is almost totally reflected at the short-circuit point and propagates through the surface wave transmission line again in the opposite direction. It is possible to improve the heating efficiency of the object to be heated installed inside the line by the high-frequency power.

第5の発明は、特に第1~第4のいずれかの発明の、前記表面波伝送線路の外側に、前記表面波伝送線路に接触しないように金属壁を設置したので、表面波伝送線路を伝搬する高周波電力の伝搬を妨げることなく、筒状に構成した表面波伝送線路の外側に放射される高周波電力を金属壁で反射させて内側へ導くことができ、表面波伝送線路の内側に設置した被加熱物への、高周波電力による加熱効率を向上することができる。 In a fifth aspect of the invention, in any one of the first to fourth aspects of the invention, a metal wall is installed outside the surface wave transmission line so as not to contact the surface wave transmission line. The high-frequency power radiated to the outside of the cylindrical surface wave transmission line can be reflected by the metal wall and led to the inside without hindering the propagation of the propagating high-frequency power. It is possible to improve the efficiency of heating the object to be heated by the high-frequency power.

第6の発明は、特に第1~第5のいずれかの発明の、複数の前記高周波電力給電部を備え、前記表面波伝送線路は、隣り合う前記高周波電力給電部の間に短絡となる箇所が設けられているので、筒状に構成した表面波伝送線路に複数の給電区間を設ける事ができ、部分的な加熱状態の制御ができると共に、加熱の均一性も向上することができる。 A sixth aspect of the invention is particularly provided with a plurality of the high-frequency power feeding units according to any one of the first to fifth aspects of the invention, wherein the surface wave transmission line has a short circuit between adjacent high-frequency power feeding units. is provided, a plurality of feeding sections can be provided in the cylindrical surface wave transmission line, the heating state can be partially controlled, and the uniformity of heating can be improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the present invention is not limited by this embodiment.

(実施の形態1)
図1は、本発明の実施形態1における、高周波加熱装置100の基本構成を示す概略図である。同図に示す高周波加熱装置100は、筒状に構成された表面波伝送線路101により、表面波伝送線路101の内側に設置された被加熱物102を加熱処理する高周波加熱装置であって、高周波電力発生部103と、高周波電力給電部110を備えている。
(Embodiment 1)
FIG. 1 is a schematic diagram showing the basic configuration of a high-frequency heating device 100 according to Embodiment 1 of the present invention. A high-frequency heating apparatus 100 shown in FIG. A power generator 103 and a high-frequency power feeder 110 are provided.

なお、図1において、高周波加熱装置100は、少なくとも1つの表面波伝送線路と、少なくとも1つの高周波電力発生部と、少なくとも1つの高周波電力給電部を有しているが、表面波伝送線路、高周波電力発生部および高周波電力給電部の数はこれに限定されるものではない。 In FIG. 1, the high-frequency heating device 100 has at least one surface wave transmission line, at least one high-frequency power generator, and at least one high-frequency power feeder. The number of power generators and high-frequency power feeders is not limited to this.

高周波電力発生部103で発生された高周波電力は、高周波電力給電部110を介して、表面波伝送線路101へ給電される。 High-frequency power generated by high-frequency power generator 103 is fed to surface wave transmission line 101 via high-frequency power feeder 110 .

高周波電力発生部103は、被加熱物102を加熱処理するのに適した周波数(例えば、2.45GHzのマイクロ波)とパワーを有する高周波電力を出力する高周波発信器である。例えば、マグネトロンとインバータ電源回路で構成してもよいし、固体発振器と電力増幅器で構成してもよい。 The high-frequency power generator 103 is a high-frequency oscillator that outputs high-frequency power having a frequency (for example, microwaves of 2.45 GHz) and power suitable for heat-treating the object 102 to be heated. For example, it may be composed of a magnetron and an inverter power supply circuit, or it may be composed of a solid-state oscillator and a power amplifier.

マグネトロンは、電波の一種である強力なノンコヒーレントマイクロ波を発生する発振用真空管の一種で、レーダーや電子レンジなどの数百ワット~数キロワットの高出力用途に多く使われている。マグネトロンの駆動には数キロボルトの高電圧が必要である為、マグネトロンの駆動電源には一般的にインバータ電源が用いられる。インバータ電源は整流機能を有するコンバーター回路と、昇圧(もしくは降圧)機能と出力周波数変換機能を有するインバータ回路で構成された電源回路であり、照明装置やモーター制御に広く用いられている技術である。 A magnetron is a type of oscillating vacuum tube that generates powerful non-coherent microwaves, a type of radio wave, and is often used for high-power applications of several hundred watts to several kilowatts, such as radar and microwave ovens. Since a high voltage of several kilovolts is required to drive the magnetron, an inverter power supply is generally used as the drive power supply for the magnetron. An inverter power supply is a power supply circuit composed of a converter circuit with a rectifying function and an inverter circuit with a step-up (or step-down) function and an output frequency conversion function, and is a technology widely used in lighting equipment and motor control.

一方、固体発振器はトランジスタと、コンデンサ、インダクタ、抵抗器等の高周波電子部品で帰還回路を構成した半導体発振回路であり、通信機器等の小電力出力用途の発振器に広く用いられている技術である。固体発振器から出力される高周波電力は、近年では50ワット程度の高出力のモノもあるが、一般的には数十ミリワット~数百ミリワット程度であり、加熱処理用途に用いる為には数百ワットの出力パワーが必要であるので、一般的には、固体発振器から出力された高周波電力をトランジスタなどの電力増幅器で増幅する
Solid-state oscillators, on the other hand, are semiconductor oscillator circuits in which feedback circuits are composed of high-frequency electronic components such as transistors and capacitors, inductors, and resistors, and are widely used in oscillators for low-power output applications such as communication equipment. . High-frequency power output from a solid-state oscillator has a high output of about 50 watts in recent years, but it is generally about tens of milliwatts to hundreds of milliwatts. , the high-frequency power output from the solid-state oscillator is generally amplified by a power amplifier such as a transistor.

本発明に於いては、高周波電力発生部103の構成を限定するものではないので、詳細の説明は省略する。 The present invention does not limit the configuration of the high-frequency power generation section 103, so detailed description thereof will be omitted.

高周波電力給電部110は、高周波電力発生部103で発生された高周波電力を表面波伝送線路101に給電する電力接続部に相当する。高周波電力給電部110の構成については後述する。 The high-frequency power feeder 110 corresponds to a power connector that feeds the high-frequency power generated by the high-frequency power generator 103 to the surface wave transmission line 101 . The configuration of high-frequency power feeding section 110 will be described later.

表面波伝送線路101は、金属板で周期的にインピーダンス素子を配列した金属周期構造体や、誘電体板などで形成される。例えば、金属周期構造体では、金属平板上に複数の金属平板を一定間隔で並べたスタブ型表面波伝送線路や、金属平板を交叉指状に打ち抜いたインターデジタル型表面波伝送線路を用いることができ、誘電体板では、アルミナ板やベークライト板を用いることができる。また、インターデジタル型表面波伝送線路は、樹脂板の表面に金属膜をメッキ加工することも可能である。 The surface wave transmission line 101 is formed of a metal periodic structure in which impedance elements are periodically arranged on a metal plate, a dielectric plate, or the like. For example, in a metal periodic structure, a stub type surface wave transmission line in which a plurality of metal plates are arranged on a metal plate at regular intervals, or an interdigital type surface wave transmission line in which a metal plate is punched in the shape of interdigitated fingers can be used. An alumina plate or bakelite plate can be used as the dielectric plate. In addition, the surface of the resin plate of the interdigital surface wave transmission line can be plated with a metal film.

図1に示す本実施の形態では、金属平板を交叉指状に打ち抜いたインターデジタル型表面波伝送線路を円筒状に形成した例を示している。表面波伝送線路を板状に周期構造体を形成して構成することにより、筒形状の自由度が増すと共に、加工も容易になり、コストの低減が可能となる。 The present embodiment shown in FIG. 1 shows an example in which an interdigital surface wave transmission line is formed in a cylindrical shape by punching out a metal flat plate in the shape of interdigitated fingers. By constructing the surface wave transmission line by forming the periodic structure in the form of a plate, the degree of freedom of the cylindrical shape is increased, the processing is facilitated, and the cost can be reduced.

表面波伝送線路101は、高周波電力給電部110を介して高周波電力発生部103より供給された高周波電力を表面波で伝搬し、表面波伝送線路101から放射される高周波電力により、表面波伝送線路101の内側に設置した被加熱物102が加熱される。 The surface wave transmission line 101 propagates the high frequency power supplied from the high frequency power generation unit 103 via the high frequency power supply unit 110 as a surface wave. An object to be heated 102 placed inside 101 is heated.

次に、高周波電力給電部110の構成について、図を用いて説明する。 Next, the configuration of high-frequency power feeding section 110 will be described with reference to the drawings.

図2は、高周波電力給電部110の構成の一例を示す概略図である。図2(a)は平面視、図2(b)は側方断面視の様子をそれぞれ示している。 FIG. 2 is a schematic diagram showing an example of the configuration of the high-frequency power feeding section 110. As shown in FIG. FIG. 2(a) shows a plan view, and FIG. 2(b) shows a side sectional view.

同図では、図1で示した高周波電力発生部103で発生された高周波電力を同軸ケーブル線111を用いて高周波電力給電部110へ導き、アンテナ113により表面波伝送線路101に高周波電力を給電する場合の構成を示している。 In the figure, the high frequency power generated by the high frequency power generator 103 shown in FIG. 1 shows the configuration for the case.

図2に示すように、高周波電力発生部103で発生された高周波電力は、同軸ケーブル線111により高周波電力給電部110に導かれ、同軸ケーブル線111の芯線112にはアンテナ113が取り付けられ、アンテナ113の先端部は表面波伝送線路101にボルト114により固定されている。また、同軸ケーブル線111の外皮導体は、表面波伝送線路101に設けられた同軸ケーブル線固定用突起部117に、同軸ケーブル線固定具115とボルト116a,116b,116c,116dにより固定されている。 As shown in FIG. 2, the high-frequency power generated by the high-frequency power generating section 103 is guided to the high-frequency power feeding section 110 through the coaxial cable line 111, and the antenna 113 is attached to the core wire 112 of the coaxial cable line 111. The tip of 113 is fixed to surface wave transmission line 101 by bolt 114 . The outer conductor of the coaxial cable line 111 is fixed to a coaxial cable line fixing projection 117 provided on the surface wave transmission line 101 by a coaxial cable line fixture 115 and bolts 116a, 116b, 116c, and 116d. .

この高周波電力給電部110の構成により、高周波電力発生部103より同軸ケーブル線111により導かれた高周波電力は、アンテナ113を介して表面波伝送線路101に、直接に給電される。ここで、図2では、アンテナ113の先端部の表面波伝送線路101への固定、および同軸ケーブル線111の外皮導体の表面波伝送線路101に設けられた同軸ケーブル線固定用突起部117への固定の手段に、ボルト114,116a,116b,116c,116d、および同軸ケーブル線固定具115を用いているが、それぞれの固定手段はこれに限るものではなく、加熱に使用する高周波電力の周波数において、確実に導通を維持できる方法であればよい。例えば、導電テープによる固定や溶接などの方法を用いてもよい。 With this configuration of high-frequency power feeding section 110 , high-frequency power guided from high-frequency power generating section 103 through coaxial cable line 111 is directly fed to surface wave transmission line 101 via antenna 113 . Here, in FIG. 2, the tip of the antenna 113 is fixed to the surface wave transmission line 101, and the outer skin conductor of the coaxial cable line 111 is fixed to the coaxial cable line fixing protrusion 117 provided on the surface wave transmission line 101. Bolts 114, 116a, 116b, 116c, 116d and coaxial cable wire fixture 115 are used as fixing means, but each fixing means is not limited to this, and the frequency of the high-frequency power used for heating , any method can be used as long as it can reliably maintain continuity. For example, a method such as fixing with a conductive tape or welding may be used.

以上のような構成により、本実施の形態に係る高周波加熱装置100は、高周波電力発生部103で発生した高周波電力を、高周波電力給電部110を介して、筒状に構成した表面波伝送線路101に直接に給電することにより、表面波伝送線路101に供給された高周波電力は、表面波伝送線路101を伝搬する表面波電力に効率よく変換され、筒状に構成した表面波伝送線路101の内側に設置した被加熱物102に、焦げ目を付けるなどの加熱処理を施すことができる。 With the configuration described above, the high-frequency heating apparatus 100 according to the present embodiment supplies the high-frequency power generated by the high-frequency power generation section 103 to the surface wave transmission line 101 configured in a cylindrical shape through the high-frequency power supply section 110. , the high-frequency power supplied to the surface-wave transmission line 101 is efficiently converted into surface-wave power propagating through the surface-wave transmission line 101. Heat treatment such as browning can be applied to the object to be heated 102 placed in the .

次に、上述の高周波加熱装置100の、被加熱物102を加熱処理する動作について説明する。 Next, the operation of the high-frequency heating apparatus 100 for heat-treating the object to be heated 102 will be described.

図3は、高周波電力発生部103で発生し、高周波電力給電部110を介して表面波伝送線路101に供給された高周波電力120が、表面波伝送線路101を伝搬する様子を示した図である。 FIG. 3 is a diagram showing how high-frequency power 120 generated by high-frequency power generator 103 and supplied to surface wave transmission line 101 via high-frequency power feeder 110 propagates along surface wave transmission line 101 . .

図3に示すように、高周波電力給電部110を介して表面波伝送線路101に供給された高周波電力120は、左右の2方向へ伝搬する高周波電力121および122に分配され、表面波伝送線路101の溝にそって伝搬する。 As shown in FIG. 3, high-frequency power 120 supplied to surface wave transmission line 101 via high-frequency power feeder 110 is divided into high-frequency powers 121 and 122 propagating in two left and right directions. propagates along the groove of

図4は、筒状に構成した表面波伝送線路101に高周波電力給電部110より高周波電力が供給された時、表面波伝送線路101を伝搬する高周波電力により、表面波伝送線路101の表面から放射される高周波電力の様子を示した図である。 FIG. 4 shows that when high-frequency power is supplied from a high-frequency power feeder 110 to a cylindrical surface-wave transmission line 101, the high-frequency power propagating through the surface-wave transmission line 101 radiates from the surface of the surface-wave transmission line 101. FIG. 3 is a diagram showing the state of high-frequency power that is applied.

図4に示すように、高周波電力給電部110より供給された高周波電力は、高周波電力123および124に分配され、それぞれ表面波伝送線路101を表面波で伝搬する。そして、表面波伝送線路101を表面波で伝搬する高周波電力123および124により、表面波伝送線路101の表面から、筒状の内側に放射される高周波電力126が発生すると共に、筒状の外側に放射される高周波電力125が発生する。この内の、筒状の内側に放射される高周波電力126により、被加熱物102が加熱される。 As shown in FIG. 4, the high-frequency power supplied from the high-frequency power feeder 110 is divided into high-frequency powers 123 and 124, which propagate through the surface wave transmission line 101 as surface waves. High-frequency power 123 and 124 propagating through the surface-wave transmission line 101 as surface waves generates high-frequency power 126 that is radiated inside the cylinder from the surface of the surface-wave transmission line 101 , and also radiates outside the cylinder. Radiated RF power 125 is generated. Of these, the object to be heated 102 is heated by the high-frequency power 126 radiated to the inner side of the cylinder.

図5は、筒状に構成した表面波伝送線路101に高周波電力給電部110より高周波電力が供給された時の、表面波伝送線路101の近傍に形成される電界強度分布の様子を示した図である。 FIG. 5 is a diagram showing an electric field intensity distribution formed in the vicinity of the cylindrical surface wave transmission line 101 when high frequency power is supplied from the high frequency power supply unit 110 to the surface wave transmission line 101. FIG. is.

図5に示すように、高周波電力給電部110より供給され、表面波伝送線路101を表面波で伝搬する高周波電力により、表面波伝送線路101の近傍には内側の電界強度分布130および外側の電界強度分布131がそれぞれ形成される。ここで、同図に示す電界強度分布130および131は、色の濃さで電界強度の大きさを示しており、色が濃いほど電界強度の大きさが大きい事を示している。 As shown in FIG. 5, due to high-frequency power supplied from the high-frequency power feeder 110 and propagating through the surface wave transmission line 101 as surface waves, an electric field intensity distribution 130 on the inside and an electric field on the outside are generated near the surface wave transmission line 101 . An intensity distribution 131 is formed respectively. Here, the electric field strength distributions 130 and 131 shown in the figure indicate the magnitude of the electric field strength by the depth of color, and the darker the color, the greater the magnitude of the electric field strength.

図5に示すように、表面波伝送線路101の近傍に形成される電界強度分布は、内側の電界強度分布130および外側の電界強度分布131の何れにおいても、表面波伝送線路101の表面付近がもっとも電界強度の大きさが大きく、表面波伝送線路101の表面から離れるにつれて電界強度の大きさが小さくなっている。さらに、外側の電界強度分布131は、表面波伝送線路101から放射される高周波電力が外側の空間へ拡散されるので、全体的に電界強度の大きさが小さくなるので色が薄くなっているのに対し、内側の電界強度分布130は、表面波伝送線路101から放射される高周波電力が中心方向に集中するので、全体的に電界強度の大きさが大きくなり色が濃くなっている。 As shown in FIG. 5, the electric field intensity distribution formed in the vicinity of the surface wave transmission line 101 is such that in both the inner electric field intensity distribution 130 and the outer electric field intensity distribution 131, the vicinity of the surface of the surface wave transmission line 101 is The magnitude of the electric field intensity is the largest, and the magnitude of the electric field intensity decreases as the distance from the surface of the surface wave transmission line 101 increases. Furthermore, the electric field strength distribution 131 on the outer side has a lighter color because the high-frequency power radiated from the surface wave transmission line 101 is diffused to the outer space, and the magnitude of the electric field strength decreases as a whole. On the other hand, the electric field intensity distribution 130 on the inner side has a large electric field intensity and a dark color because the high-frequency power radiated from the surface wave transmission line 101 is concentrated toward the center.

すなわち、筒状に形成した表面波伝送線路101の内側には高周波電力が集中すること
を示しており、図示はしないが、筒状に形成した表面波伝送線路101の内側に被加熱物を設置することにより、表面波伝送線路101の内側に形成される電界強度分布130により、被加熱物に高周波電力が集中し、被加熱物を焦がすなどの加熱処理を施すことができる。
That is, it shows that high-frequency power concentrates inside the surface wave transmission line 101 formed in a cylindrical shape. As a result, the electric field intensity distribution 130 formed inside the surface wave transmission line 101 concentrates the high-frequency power on the object to be heated, and heat treatment such as scorching the object to be heated can be performed.

以上のような構成により、本実施形態に係る高周波加熱装置100は、筒状に構成された表面波伝送線路101に、高周波電力発生部103で発生した高周波電力を高周波電力給電部110を介して直接に給電することにより、表面波伝送線路101に給電された高周波電力は、表面波伝送線路101を伝搬する表面波電力に、効率よく変換される。これにより、筒状に構成された表面波伝送線路101の内側に設置した被加熱物102が丸い形状や高さ寸法が大きい形状であっても、表面を焦がすなどの充分な加熱処理を安定に施すことができる。 With the configuration as described above, the high-frequency heating apparatus 100 according to the present embodiment applies high-frequency power generated by the high-frequency power generation section 103 to the cylindrical surface wave transmission line 101 through the high-frequency power supply section 110. By supplying power directly, high-frequency power fed to the surface wave transmission line 101 is efficiently converted into surface wave power propagating through the surface wave transmission line 101 . As a result, even if the object to be heated 102 installed inside the cylindrical surface wave transmission line 101 has a round shape or a shape with a large height dimension, sufficient heat treatment such as scorching of the surface can be stably performed. can apply.

ここで、図2に示すアンテナ113は、電極どうしが近接することで発生する電界により電力が伝わる電界結合型のアンテナを用いてもよい。 Here, as the antenna 113 shown in FIG. 2, an electric field coupling antenna in which electric power is transmitted by an electric field generated when electrodes are close to each other may be used.

これにより、例えば平板導体により構成したインターデジタル型表面波伝送線路などの、平板導体間に発生する電界により表面波が形成され伝搬する表面波伝送線路においては、給電手段として電界結合型のアンテナを用いることにより、表面波伝送線路との整合が取り易くなるので、表面波電力への変換効率を向上させることができる。 As a result, in a surface wave transmission line in which a surface wave is formed and propagated by an electric field generated between flat plate conductors, such as an interdigital type surface wave transmission line composed of flat plate conductors, an electric field coupling type antenna is used as a feeding means. By using it, matching with the surface wave transmission line can be easily achieved, so that the efficiency of conversion to surface wave power can be improved.

また、筒状に構成した表面波伝送線路に、加熱処理に用いる高周波電力の周波数において、高周波的に短絡となる箇所を設けてもよい。 In addition, the tubular surface wave transmission line may be provided with a portion that is short-circuited at high frequencies at the frequency of the high frequency power used for the heat treatment.

図6は、図1に示す高周波加熱装置100において、表面波伝送線路101を、線路内に高周波的に短絡となる箇所を設けた表面波伝送線路150に置き換えた様子を示している。同図に示すように、表面波伝送線路150には、高周波電力給電部110の対面部に当たる箇所に、加熱処理に用いる高周波電力の周波数において、高周波的に短絡となる短絡部151が設けられている。 FIG. 6 shows a state in which the surface wave transmission line 101 in the high frequency heating apparatus 100 shown in FIG. As shown in the figure, the surface wave transmission line 150 is provided with a short-circuit portion 151 that short-circuits at a high frequency at the frequency of the high-frequency power used for the heat treatment at a portion facing the high-frequency power feeding portion 110 . there is

図7は、図6に示す表面波伝送線路150のB-B’面からの平面図への展開図で、高周波電力給電部110から給電された高周波電力が表面波伝送線路150を伝搬する様子を示している。同図に示すように、高周波電力発生部103で発生され、高周波電力給電部110を介して表面波伝送線路150に給電された高周波電力160は、右方向に伝播する高周波電力161と左方向に伝播する高周波電力162に分配される。その後、短絡部153に到達した高周波電力163および短絡部154に到達した高周波電力164は、短絡部でほぼ全反射となり、逆方向へ伝搬する高周波電力165および166となって伝播する。 FIG. 7 is an expanded view of the surface wave transmission line 150 shown in FIG. is shown. As shown in the figure, high-frequency power 160 generated by high-frequency power generator 103 and fed to surface wave transmission line 150 via high-frequency power feeder 110 propagates rightward and leftward. A propagating RF power 162 is distributed. After that, high-frequency power 163 reaching short-circuit portion 153 and high-frequency power 164 reaching short-circuit portion 154 are almost totally reflected at the short-circuit portion, and propagate as high-frequency powers 165 and 166 propagating in opposite directions.

これにより、高周波電力給電部110より給電され、表面波伝送線路150を伝搬する高周波電力は、短絡部153および154でほぼ全反射し、逆方向に再度表面波伝送線路150を伝搬するので、表面波伝送線路150を伝搬する高周波電力の被加熱物102への吸収量を増加させることができ、表面波伝送線路150の内側に設置した被加熱物102への加熱効率を向上することができる。 As a result, the high-frequency power supplied from the high-frequency power feeding section 110 and propagating through the surface wave transmission line 150 is substantially totally reflected by the short-circuiting portions 153 and 154 and propagates through the surface wave transmission line 150 again in the opposite direction. It is possible to increase the absorption amount of the high-frequency power propagating through the wave transmission line 150 to the object 102 to be heated, and to improve the heating efficiency of the object 102 to be heated installed inside the surface wave transmission line 150 .

(実施の形態2)
以下、本発明の実施の形態2を、図面を参照しながら説明する。
(Embodiment 2)
A second embodiment of the present invention will be described below with reference to the drawings.

なお、本実施の形態2の説明において、前述の実施の形態1と同じ機能を有する構成要素には同じ参照符号を付し、説明を省略する。また、前述の実施の形態1と同じ作用を有
する内容についても、説明を省略する。
In the description of the second embodiment, constituent elements having the same functions as those of the first embodiment are given the same reference numerals, and the description thereof is omitted. Further, the description of the contents having the same functions as those of the first embodiment will be omitted.

図8は、本発明の実施形態2に係る、高周波加熱装置200の構成を示す概略図である。 FIG. 8 is a schematic diagram showing the configuration of a high-frequency heating device 200 according to Embodiment 2 of the present invention.

同図に示す高周波加熱装置200は、図1に示した実施形態1に係る高周波加熱装置100と比較して、筒状の金属壁201をさらに備える。 The high-frequency heating device 200 shown in the figure further includes a cylindrical metal wall 201, as compared with the high-frequency heating device 100 according to the first embodiment shown in FIG.

筒状の金属壁201は、筒状の表面波伝送線路101の外側に、表面波伝送線路101に接触しないように設置されている。表面波伝送線路101の外側表面と金属壁201との間隔は3mm~10mm程度が望ましいが、これに限るものではない。 The cylindrical metal wall 201 is installed outside the cylindrical surface wave transmission line 101 so as not to come into contact with the surface wave transmission line 101 . The distance between the outer surface of the surface wave transmission line 101 and the metal wall 201 is preferably about 3 mm to 10 mm, but is not limited to this.

金属壁201は、金属板を筒状に成形したものや、筒状に成形した樹脂板に金属メッキを施したものでも使用できる。 The metal wall 201 may be formed by forming a metal plate into a cylindrical shape, or by applying metal plating to a resin plate formed into a cylindrical shape.

前述の実施の形態1と同様に、高周波電力発生部103で発生した高周波電力は、高周波電力給電部110を介して筒状に構成した表面波伝送線路101に給電される。表面波伝送線路101に給電された高周波電力は、表面波伝送線路101を表面波電力として伝搬し、表面波伝送線路101の表面から放射される高周波電力により、筒状に構成した表面波伝送線路101の内側に設置した被加熱物102に、加熱処理を施す。 As in the first embodiment described above, high-frequency power generated by high-frequency power generating section 103 is fed to surface wave transmission line 101 configured in a cylindrical shape via high-frequency power feeding section 110 . The high-frequency power supplied to the surface-wave transmission line 101 propagates through the surface-wave transmission line 101 as surface-wave power. An object to be heated 102 placed inside 101 is subjected to heat treatment.

次に、上述の高周波加熱装置200の、被加熱物102を加熱処理する動作について説明する。 Next, the operation of the high-frequency heating device 200 for heat-treating the object 102 to be heated will be described.

図9は、筒状に構成した表面波伝送線路101に高周波電力給電部110より高周波電力が供給された時、表面波伝送線路101を伝搬する高周波電力により、表面波伝送線路101の表面から放射される高周波電力の様子を示した図である。 FIG. 9 shows that when high-frequency power is supplied from a high-frequency power feeder 110 to a cylindrical surface-wave transmission line 101, the high-frequency power propagating through the surface-wave transmission line 101 radiates from the surface of the surface-wave transmission line 101. FIG. 3 is a diagram showing the state of high-frequency power that is applied.

図9に示すように、高周波電力給電部110より供給された高周波電力は、高周波電力221および222に分配され、それぞれ表面波伝送線路101を表面波で伝搬する。そして、表面波伝送線路101を表面波で伝搬する高周波電力221および222により、表面波伝送線路101の表面から、筒状の内側に放射される高周波電力223が発生すると共に、外側に放射される高周波電力224が発生する。筒状の内側に放射される高周波電力223は、筒状の中心方向に放射され被加熱物102の加熱に直接に寄与する。一方、筒状の外側に放射される高周波電力224は、筒状の金属壁201で反射して筒状の中心方向に放射される。 As shown in FIG. 9, the high-frequency power supplied from the high-frequency power feeder 110 is divided into high-frequency powers 221 and 222, which propagate through the surface wave transmission line 101 as surface waves. High-frequency powers 221 and 222 propagating through the surface wave transmission line 101 as surface waves generate a high-frequency power 223 that is radiated inward from the surface of the surface wave transmission line 101 and radiated outward. High frequency power 224 is generated. The high-frequency power 223 radiated inside the cylinder directly contributes to the heating of the object 102 to be heated by being radiated toward the center of the cylinder. On the other hand, the high-frequency power 224 radiated to the outside of the cylinder is reflected by the metal wall 201 of the cylinder and radiated toward the center of the cylinder.

これにより、表面波伝送線路101の表面から、筒状の内側に放射される高周波電力223と外側に放射される高周波電力224の何れも筒状に構成した表面波伝送線路101の内側に設置した被加熱物102の加熱に寄与する。 As a result, both the high-frequency power 223 radiated to the inside of the cylinder and the high-frequency power 224 radiated to the outside from the surface of the surface-wave transmission line 101 are placed inside the surface-wave transmission line 101 configured in the cylinder. It contributes to the heating of the object 102 to be heated.

図10は、筒状に構成した表面波伝送線路101に高周波電力給電部110より高周波電力が供給された時の、表面波伝送線路101の近傍に形成される電界強度分布の様子を示した図である。 FIG. 10 is a diagram showing an electric field intensity distribution formed in the vicinity of the cylindrical surface wave transmission line 101 when high frequency power is supplied from the high frequency power supply unit 110 to the surface wave transmission line 101. FIG. is.

図10に示すように、高周波電力給電部110より供給され、表面波伝送線路101を表面波で伝搬する高周波電力により、表面波伝送線路101の近傍には内側の電界強度分布230および外側の電界強度分布231がそれぞれ形成される。ここで、同図に示す電界強度分布230および231は、色の濃さで電界強度の大きさを示しており、色が濃いほど電界強度の大きさが大きい事を示している。 As shown in FIG. 10, due to the high-frequency power supplied from the high-frequency power feeder 110 and propagating through the surface wave transmission line 101 as surface waves, an inner electric field strength distribution 230 and an outer electric field are generated near the surface wave transmission line 101 . An intensity distribution 231 is formed respectively. Here, the electric field strength distributions 230 and 231 shown in the figure indicate the magnitude of the electric field strength by the depth of color, and the darker the color, the greater the magnitude of the electric field strength.

図10に示すように、表面波伝送線路101の近傍に形成される電界強度分布は、表面波伝送線路101から外側に放射される高周波電力が金属壁201で反射して、内側に放射される高周波電力に重畳されることにより、内側の電界強度分布230の電界強度の大きさが大きくなり色が非常に濃くなっている。 As shown in FIG. 10, the electric field strength distribution formed near the surface wave transmission line 101 is such that the high frequency power radiated outward from the surface wave transmission line 101 is reflected by the metal wall 201 and radiated inward. By being superimposed on the high-frequency power, the magnitude of the electric field strength of the inner electric field strength distribution 230 increases and the color becomes very dark.

以上のような構成により、本実施形態に係る高周波加熱装置200は、高周波電力発生部103で発生され、高周波電力給電部110を介して筒状に構成された表面波伝送線路101に給電された高周波電力の、筒状に構成された表面波伝送線路101の内側に設置した被加熱物102の加熱への寄与率を大幅に向上することができる。これにより、筒状に構成された表面波伝送線路101の内側に設置した被加熱物102が丸い形状や高さ寸法が大きい形状であっても、表面を焦がすなどの充分な加熱処理を安定に、かつ高効率に施すことができる。 With the configuration as described above, the high-frequency heating apparatus 200 according to the present embodiment generates power in the high-frequency power generator 103 and feeds it to the cylindrical surface wave transmission line 101 through the high-frequency power feeder 110. The contribution rate of the high-frequency power to the heating of the object to be heated 102 placed inside the cylindrical surface wave transmission line 101 can be greatly improved. As a result, even if the object to be heated 102 installed inside the cylindrical surface wave transmission line 101 has a round shape or a shape with a large height dimension, sufficient heat treatment such as scorching of the surface can be stably performed. and can be applied with high efficiency.

(実施の形態3)
以下、本発明の実施の形態3を、図面を参照しながら説明する。
(Embodiment 3)
A third embodiment of the present invention will be described below with reference to the drawings.

なお、本実施の形態3の説明において、前述の実施の形態1および実施の形態2と同じ機能を有する構成要素には同じ参照符号を付し、説明を省略する。また、前述の実施の形態1および実施の形態2と同じ作用を有する内容についても、説明を省略する。 In the description of the third embodiment, constituent elements having the same functions as those of the first and second embodiments are denoted by the same reference numerals, and descriptions thereof are omitted. Further, the description of the contents having the same effects as those of the above-described first and second embodiments will be omitted.

図11は、本発明の実施の形態3に係る、高周波加熱装置300の構成を示す概略図である。 FIG. 11 is a schematic diagram showing the configuration of a high-frequency heating device 300 according to Embodiment 3 of the present invention.

同図に示す高周波加熱装置300は、図1および図6に示した実施形態1に係る高周波加熱装置100の構成と比較して、表面波伝送線路101もしくは表面波伝送線路150に代わり表面波伝送線路301を備え、高周波電力発生部103に代わり高周波電力発生部303を備え、高周波電力給電部110に代わり隣り合う第1の高周波電力給電部310aおよび第2の高周波電力給電部310bを備え、加熱処理に用いる高周波電力の周波数において、短絡部151に代わり、隣り合う第1の高周波電力給電部310aおよび第2の高周波電力給電部310bの間に第1の短絡部320aおよび第2の短絡部320bを備える。 The high-frequency heating apparatus 300 shown in FIG. A line 301 is provided, a high-frequency power generation unit 303 is provided instead of the high-frequency power generation unit 103, a first high-frequency power supply unit 310a and a second high-frequency power supply unit 310b are provided adjacent to each other instead of the high-frequency power supply unit 110, and heating At the frequency of the high frequency power used for processing, instead of the short circuit 151, a first short circuit 320a and a second short circuit 320b are provided between the adjacent first high frequency power supply 310a and second high frequency power supply 310b. Prepare.

なお、図11において、高周波加熱装置300は、1つの表面波伝送線路に対して、1つの高周波電力発生部と、2つの高周波電力給電部と、2つの短絡部を有しているが、1つの表面波伝送線路に対する、高周波電力発生部、高周波電力給電部および短絡部の数は、これに限定されるものではない。 In FIG. 11, the high-frequency heating device 300 has one high-frequency power generating section, two high-frequency power feeding sections, and two short-circuiting sections for one surface wave transmission line. The number of high-frequency power generators, high-frequency power feeders, and short-circuiting parts for one surface wave transmission line is not limited to this.

高周波電力発生部303で発生された高周波電力は分配され、第1の高周波電力給電部310aおよび第2の高周波電力給電部310bをそれぞれ介して、筒状に構成された表面波伝送線路301へ給電される。なお、高周波電力発生部303と、第1の高周波電力給電部310aおよび第2の高周波電力給電部310bの構成は、前述した実施の形態1で説明した、高周波電力発生部103と高周波電力給電部110の構成と同一であるので、説明は省略する。 The high-frequency power generated by the high-frequency power generating section 303 is distributed and supplied to the cylindrical surface wave transmission line 301 via the first high-frequency power feeding section 310a and the second high-frequency power feeding section 310b, respectively. be done. High-frequency power generating section 303, first high-frequency power feeding section 310a, and second high-frequency power feeding section 310b have the same configuration as high-frequency power generating section 103 and high-frequency power feeding section described in the first embodiment. Since the configuration is the same as that of 110, the description is omitted.

また、表面波伝送線路301には、第1の高周波電力給電部310aと第2の高周波電力給電部310bとの間に、第1の短絡部320aと第2の短絡部320bが設けられている。なお、第1の短絡部320aおよび第2の短絡部320bの構成は、前述した実施の形態1で説明した短絡部151の構成と同一であるので、説明は省略する。 Further, the surface wave transmission line 301 is provided with a first short-circuiting portion 320a and a second short-circuiting portion 320b between the first high-frequency power feeding portion 310a and the second high-frequency power feeding portion 310b. . The configurations of the first short-circuit portion 320a and the second short-circuit portion 320b are the same as the configuration of the short-circuit portion 151 described in the first embodiment, and thus the description thereof will be omitted.

図12は、図11に示す表面波伝送線路301のC-C’面からの平面図への展開図で、第1の高周波電力給電部310aおよび第2の高周波電力給電部310bからそれぞれ給電された高周波電力が表面波伝送線路301を伝搬する様子を示している。 FIG. 12 is a development view of the surface wave transmission line 301 shown in FIG. It shows how the high frequency power propagates through the surface wave transmission line 301 .

同図に示すように、高周波電力発生部303で発生され、第1の高周波電力給電部310aを介して表面波伝送線路301に給電された高周波電力330aは、右方向に伝播する高周波電力331aと左方向に伝播する高周波電力332aに分配される。その後、短絡部320aに到達した高周波電力333aおよび短絡部320bに到達した高周波電力334aは、それぞれの短絡部でほぼ全反射となり、逆方向へ伝搬する高周波電力335aおよび336aとなって伝播する。 As shown in the figure, the high-frequency power 330a generated by the high-frequency power generator 303 and fed to the surface wave transmission line 301 via the first high-frequency power feeder 310a is combined with the rightward propagating high-frequency power 331a. The leftward propagating high frequency power 332a is distributed. After that, high-frequency power 333a reaching short-circuited portion 320a and high-frequency power 334a reaching short-circuited portion 320b are almost totally reflected at the respective short-circuited portions, and propagate as high-frequency powers 335a and 336a propagating in opposite directions.

一方、第2の高周波電力給電部310bを介して表面波伝送線路301に給電された高周波電力330bは、右方向に伝播する高周波電力331bと左方向に伝播する高周波電力332bに分配される。その後、短絡部320bに到達した高周波電力333bおよび短絡部320aに到達した高周波電力334bは、それぞれの短絡部でほぼ全反射となり、逆方向へ伝搬する高周波電力335bおよび336bとなって伝播する。 On the other hand, the high frequency power 330b fed to the surface wave transmission line 301 via the second high frequency power feeding section 310b is divided into rightward propagating high frequency power 331b and leftward propagating high frequency power 332b. After that, high-frequency power 333b reaching short-circuited portion 320b and high-frequency power 334b reaching short-circuited portion 320a are almost totally reflected at the respective short-circuited portions, and propagate as high-frequency powers 335b and 336b propagating in opposite directions.

すなわち、隣り合う第1の高周波電力給電部310aと第2の高周波電力給電部310bから表面波伝送線路301へ給電された高周波電力は、第1の短絡部320aと第2の短絡部320bにより分離される。これにより、第1の高周波電力給電部310aから給電された高周波電力330aにより被加熱物102が加熱処理される第1の加熱領域340aと、第2の高周波電力給電部310bから給電された高周波電力330bにより被加熱物102が加熱処理される第2の加熱領域340bが形成される。 That is, the high-frequency power supplied to the surface wave transmission line 301 from the first high-frequency power feeding section 310a and the second high-frequency power feeding section 310b adjacent to each other is separated by the first short-circuiting section 320a and the second short-circuiting section 320b. be done. As a result, a first heating region 340a in which the object to be heated 102 is heated by high-frequency power 330a fed from the first high-frequency power feeder 310a, and a high-frequency power fed from the second high-frequency power feeder 310b. A second heating region 340b in which the object 102 to be heated is heat-treated is formed by 330b.

これにより、第1の高周波電力給電部310aおよび第2の高周波電力給電部310bより給電され、表面波伝送線路301を伝搬するそれぞれの高周波電力は、第1の短絡部320aおよび第2の短絡部320bにより、第1の加熱領域340aおよび第2の加熱領域340bに分離され、1つの筒状に構成した表面波伝送線路に複数の給電区間を設ける事ができ、部分的な加熱状態の制御ができると共に、加熱の均一性も向上することができる。 As a result, the high-frequency powers supplied from the first high-frequency power feeding section 310a and the second high-frequency power feeding section 310b and propagating through the surface wave transmission line 301 are supplied to the first short-circuiting section 320a and the second short-circuiting section 320a. A first heating region 340a and a second heating region 340b are separated by 320b, and a plurality of feeding sections can be provided in one cylindrical surface wave transmission line, thereby partially controlling the heating state. At the same time, uniformity of heating can be improved.

なお、本実施の形態においては、1つの高周波電力発生部303を分配し、第1の高周波電力給電部310aおよび第2の高周波電力給電部310bに高周波電力を供給した例を示したが、複数の高周波電力発生部を備えて、複数の高周波電力給電部に、異なる高周波電力発生部からの高周波電力を供給してもよい。 In the present embodiment, an example is shown in which one high-frequency power generation unit 303 is distributed and high-frequency power is supplied to the first high-frequency power supply unit 310a and the second high-frequency power supply unit 310b. high-frequency power generators may be provided, and high-frequency powers from different high-frequency power generators may be supplied to a plurality of high-frequency power feeders.

以上、本発明に係る高周波加熱装置について、各実施の形態に基づき説明したが、本発明はこの実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を当該実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。 Although the high-frequency heating apparatus according to the present invention has been described above based on each embodiment, the present invention is not limited to these embodiments. As long as it does not deviate from the spirit of the present invention, any modification that a person skilled in the art can think of is applied to the embodiment, and a form constructed by combining the components of different embodiments is also included within the scope of the present invention. .

本発明は、表面波伝送線路に高周波電力を供給することにより被加熱物を加熱処理する高周波加熱装置において、被加熱物が丸い形状や高さ寸法が大きい形状であっても、表面を焦がすなどの充分な加熱処理を安定に施すことができるため、マイクロ波加熱機などの調理家電等として有用である。 The present invention is a high-frequency heating apparatus that heats an object to be heated by supplying high-frequency power to a surface wave transmission line. Since it is possible to stably perform sufficient heat treatment, it is useful as a cooking appliance such as a microwave heater.

100 高周波加熱装置
101,150 表面波伝送線路
102 被加熱物
103 高周波電力発生部
110 高周波電力給電部
111 同軸ケーブル線
112 同軸ケーブル芯線
113 アンテナ
114,116a,116b,116c,116d ボルト
115 固定具
117 同軸ケーブル線固定用突起部
120,121,122,123,124 高周波電力
125,126 高周波電力
130,131 電界強度分布
151,153,154 短絡部
160,161,162,163,164,165,166 高周波電力
200 高周波加熱装置
201 金属壁
221,222 高周波電力
223,224 高周波電力
230,231 電界強度分布
300 高周波加熱装置
301 表面波伝送線路
303 高周波電力発生部
310a,310b 高周波電力給電部
320a,320b 短絡部
330a,330b 高周波電力
331a,331b 高周波電力
332a,332b 高周波電力
333a,333b 高周波電力
334a,334b 高周波電力
335a,335b 高周波電力
336a,336b 高周波電力
340a,340b 加熱領域
REFERENCE SIGNS LIST 100 high-frequency heating device 101, 150 surface wave transmission line 102 object to be heated 103 high-frequency power generator 110 high-frequency power feeder 111 coaxial cable 112 coaxial cable core 113 antenna 114, 116a, 116b, 116c, 116d bolt 115 fixture 117 coaxial Cable wire fixing protrusions 120, 121, 122, 123, 124 High frequency power 125, 126 High frequency power 130, 131 Electric field strength distribution 151, 153, 154 Short circuit 160, 161, 162, 163, 164, 165, 166 High frequency power 200 high-frequency heating device 201 metal wall 221, 222 high-frequency power 223, 224 high-frequency power 230, 231 electric field intensity distribution 300 high-frequency heating device 301 surface wave transmission line 303 high-frequency power generation section 310a, 310b high-frequency power feeding section 320a, 320b short-circuit section 330a , 330b High-frequency power 331a, 331b High-frequency power 332a, 332b High-frequency power 333a, 333b High-frequency power 334a, 334b High-frequency power 335a, 335b High-frequency power 336a, 336b High-frequency power 340a, 340b Heating region

Claims (5)

少なくとも1つの表面波伝送線路と、
高周波電力を発生させる少なくとも1つの高周波電力発生部と、
前記表面波伝送線路に高周波電力を給電する少なくとも1つの高周波電力給電部と、を備え、
前記表面波伝送線路は筒状に構成され、前記高周波電力発生部で発生した高周波電力を前記高周波電力給電部を介して前記表面波伝送線路に直接給電し、
前記表面波伝送線路の外側に、前記表面波伝送線路に接触しないように筒状の金属壁を設置した、高周波加熱装置。
at least one surface wave transmission line;
at least one high frequency power generator that generates high frequency power;
at least one high-frequency power feeding unit that feeds high-frequency power to the surface wave transmission line;
The surface wave transmission line is configured in a cylindrical shape, and the high frequency power generated by the high frequency power generating section is directly fed to the surface wave transmission line through the high frequency power feeding section,
A high-frequency heating device , wherein a cylindrical metal wall is installed outside the surface wave transmission line so as not to come into contact with the surface wave transmission line .
前記表面波伝送線路は、板状に周期構造体を形成した、請求項1に記載の高周波加熱装置。 2. The high-frequency heating device according to claim 1, wherein said surface wave transmission line has a plate-like periodic structure. 前記高周波電力給電部は、電界結合型アンテナにより、前記表面波伝送線路に高周波電力を給電する、請求項2に記載の高周波加熱装置。 3. The high-frequency heating device according to claim 2, wherein said high-frequency power feeding section feeds high-frequency power to said surface wave transmission line by an electric field coupling type antenna. 前記表面波伝送線路は、短絡となる箇所が設けられている、請求項1~3のいずれか1項に記載の高周波加熱装置。 The high-frequency heating device according to any one of claims 1 to 3, wherein the surface wave transmission line is provided with a short-circuit portion. 複数の前記高周波電力給電部を備え、前記表面波伝送線路は、隣り合う前記高周波電力給電部の間に短絡となる箇所が設けられている、請求項1~のいずれか1項に記載の高周波加熱装置。 5. The surface acoustic wave transmission line according to any one of claims 1 to 4 , comprising a plurality of said high-frequency power feeders, wherein said surface wave transmission line is provided with a short-circuit portion between adjacent said high-frequency power feeders. High frequency heating device.
JP2019060084A 2019-03-27 2019-03-27 High frequency heating device Active JP7178556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019060084A JP7178556B2 (en) 2019-03-27 2019-03-27 High frequency heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019060084A JP7178556B2 (en) 2019-03-27 2019-03-27 High frequency heating device

Publications (2)

Publication Number Publication Date
JP2020161348A JP2020161348A (en) 2020-10-01
JP7178556B2 true JP7178556B2 (en) 2022-11-28

Family

ID=72639732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060084A Active JP7178556B2 (en) 2019-03-27 2019-03-27 High frequency heating device

Country Status (1)

Country Link
JP (1) JP7178556B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022162186A (en) * 2021-04-12 2022-10-24 パナソニックIpマネジメント株式会社 Radio frequency heating apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087666A1 (en) 2012-12-07 2014-06-12 パナソニック株式会社 Microwave processing device
JP2014116246A (en) 2012-12-12 2014-06-26 Panasonic Corp Microwave processor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50110137A (en) * 1974-02-08 1975-08-29

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087666A1 (en) 2012-12-07 2014-06-12 パナソニック株式会社 Microwave processing device
JP2014116246A (en) 2012-12-12 2014-06-26 Panasonic Corp Microwave processor

Also Published As

Publication number Publication date
JP2020161348A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP6288461B2 (en) Microwave processing equipment
KR19980017873A (en) Microwave Waveguide Structure
JP7178556B2 (en) High frequency heating device
JPS60193292A (en) Electronic range
WO2017022711A1 (en) Electromagnetic wave heating device
JP6956326B2 (en) High frequency heating device
JP6967707B2 (en) High frequency heating device
TW201922050A (en) A device for treating a product with microwaves
JP7230802B2 (en) Microwave processor
JPH0922775A (en) High-frequency heating device
JP6807522B2 (en) High frequency heating device
JP7249491B2 (en) High frequency heating device
KR101762163B1 (en) A cooking apparatus
WO2018003588A1 (en) High-frequency heating device
US10470258B2 (en) High frequency heating device
JPWO2018037696A1 (en) High frequency heating device
JP6807523B2 (en) High frequency heating device
JP2018006101A (en) High-frequency heating apparatus
JP7113209B2 (en) High frequency heating device
KR100284500B1 (en) Waveguide system for electronic range
CN115604879A (en) Microwave heating device
EP1415509A1 (en) Device for treating material with the aid of high-frequency electromagnetic radiation
KR101742987B1 (en) A cooking apparatus using microwave
KR0140140B1 (en) Microwave oven
JP2020167011A (en) High frequency heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R151 Written notification of patent or utility model registration

Ref document number: 7178556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151