JPH08171109A - Optical frequency arrangement method - Google Patents
Optical frequency arrangement methodInfo
- Publication number
- JPH08171109A JPH08171109A JP6315125A JP31512594A JPH08171109A JP H08171109 A JPH08171109 A JP H08171109A JP 6315125 A JP6315125 A JP 6315125A JP 31512594 A JP31512594 A JP 31512594A JP H08171109 A JPH08171109 A JP H08171109A
- Authority
- JP
- Japan
- Prior art keywords
- optical frequency
- optical
- light
- channels
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Communication System (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光周波数分割多重され
た光伝送装置において、四光波混合光の伝送速度や伝送
距離に対する影響を軽減する光周波数配置方法に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical frequency allocation method for reducing the influence of four-wave mixing light on the transmission speed and the transmission distance in an optical transmission apparatus in which optical frequency division multiplexing is performed.
【0002】[0002]
【従来の技術】光ファイバの低損失波長領域である1.
5μm帯光伝送では、光ファイバの波長分散による伝送
波形劣化を軽減するために分散シフトファイバが用いら
れる。また近年、伝送容量の拡大のために、多数の波長
/周波数の光信号を多重化して伝送する波長分割多重
(WDM)/光周波数分割多重(FDM)伝送方式の開
発が行われている。しかし、光ファイバの零分散波長の
近傍領域において複数の波長の光を同時に伝送した場合
には、光ファイバの非線形効果の一つである四光波混合
の位相整合条件が成立しやすい。そのため分散シフトフ
ァイバを用いた光周波数分割多重伝送では、光周波数チ
ャネル間でのクロストークが発生し伝送特性が劣化す
る。2. Description of the Related Art The low loss wavelength region of an optical fiber is 1.
In 5 μm band optical transmission, a dispersion shift fiber is used in order to reduce transmission waveform deterioration due to wavelength dispersion of the optical fiber. Further, in recent years, in order to expand the transmission capacity, a wavelength division multiplexing (WDM) / optical frequency division multiplexing (FDM) transmission system for multiplexing and transmitting optical signals of many wavelengths / frequencies has been developed. However, when light of a plurality of wavelengths is simultaneously transmitted in a region near the zero-dispersion wavelength of the optical fiber, the four-wave mixing phase matching condition, which is one of the nonlinear effects of the optical fiber, is likely to be established. Therefore, in the optical frequency division multiplex transmission using the dispersion shift fiber, crosstalk occurs between the optical frequency channels and the transmission characteristics deteriorate.
【0003】この四光波混合によるクロストークは、光
周波数配置が等間隔の時に最も大きくなる。そのため、
光周波数配置を不等間隔にして四光波混合によるクロス
トークを軽減する配置方式がF.Forghieriらによって提
案されている(IEEE Photonics Technology Letter
s,vol.6,No6,pp.754-756(1994))。以下にその方法を示
す。The crosstalk due to the four-wave mixing becomes the largest when the optical frequency arrangement is equidistant. for that reason,
An arrangement method has been proposed by F. Forghieri et al. (IEEE Photonics Technology Letter) in which optical frequencies are arranged at irregular intervals to reduce crosstalk due to four-wave mixing.
s, vol.6, No6, pp.754-756 (1994)). The method is shown below.
【0004】図4に示すように、光周波数のチャネル間
隔をm1,m2,‥‥mN-1とした時、1≦j<k≦Nな
る任意のj,kに関してAs shown in FIG. 4, when the channel spacing of the optical frequency is m 1 , m 2 , ..., M N-1 , for any j, k where 1 ≦ j <k ≦ N
【数1】 が互いに全て異なり、かつ[Equation 1] Are all different from each other, and
【数2】 が最小となるm1,m2,‥‥mN-1を計算により求め、
それを光周波数配置とする。この方法では、sjkはN
(N−1)/2通りあり、これらが全て異なる値をとる
ようなmiの組み合わせを求め、その中で上記の値Sが
最小となる配置を選択することになる。[Equation 2] M 1 , m 2 , ...
Let it be the optical frequency allocation. In this method, s jk is N
There are (N-1) / 2 types, and combinations of m i that have different values are obtained, and the arrangement that minimizes the above value S is selected.
【0005】[0005]
【発明が解決しようとする課題】上記従来例では、四光
波混合によるクロストーク光が信号光に完全に重ならな
いようにするために、任意のチャネル間のチャネル間隔
miが全て異なるように配置する。そのために、全ての
チャネルが占有する周波数帯域は、チャネルを等間隔配
置した場合に占有する周波数帯域よりも増加するが、そ
の増加量をあらかじめ正確に予測することは困難であ
る。すなわち、従来の光周波数配置方法においては、全
チャネルが占有する周波数帯域をあらかじめ設定するこ
とが困難であるという欠点があった。また、従来の光周
波数配置方法によって求められる光周波数間隔にはほと
んど周期性がないため、簡易な構成によって実現が可能
な周期的光周波数フィルタの適用が困難であるという欠
点があった。In the above-mentioned conventional example, in order to prevent the crosstalk light due to the four-wave mixing from completely overlapping the signal light, the channel intervals m i between arbitrary channels are all arranged differently. To do. Therefore, the frequency band occupied by all the channels is larger than the frequency band occupied when the channels are arranged at equal intervals, but it is difficult to accurately predict the amount of increase in advance. That is, the conventional optical frequency allocation method has a drawback that it is difficult to preset the frequency band occupied by all channels. Further, since the optical frequency interval obtained by the conventional optical frequency arrangement method has almost no periodicity, it is difficult to apply the periodic optical frequency filter that can be realized by a simple configuration.
【0006】さらに、四光波混合の発生効率は零分散波
長から離れるほど低下し、またチャネル間隔が大きくな
るほど低下するため、必ずしも全ての組み合わせに関し
て四光波混合光が信号光に完全に重ならないようにする
必要はない。しかし、上記従来例では、上記の四光波混
合の発生効率の特性が考慮されておらず、四光波混合光
の影響をさけるために占有する周波数帯域を過度に大き
く取りすぎてしまうという欠点があった。Further, since the generation efficiency of four-wave mixing decreases as the distance from the zero-dispersion wavelength increases and decreases as the channel spacing increases, the four-wave mixing light does not always completely overlap the signal light for all combinations. do not have to. However, in the above-mentioned conventional example, the characteristics of the generation efficiency of the four-wave mixing described above are not taken into consideration, and there is a drawback that the occupied frequency band is excessively large to avoid the influence of the four-wave mixing light. It was
【0007】この発明は、このような背景の下になされ
たもので、全チャネルが占有する周波数帯域があらかじ
め設定可能であり、また簡易な構成によって実現が可能
な周期的光周波数フィルタの適用が可能であり、かつ四
光波混合の発生効率の特性を考慮し、四光波混合による
クロストークの影響を軽減する光周波数配置方法を提供
することを目的とする。The present invention has been made under such a background, and it is possible to apply a periodic optical frequency filter in which the frequency band occupied by all channels can be set in advance and which can be realized by a simple structure. An object of the present invention is to provide an optical frequency allocating method which is possible and reduces the influence of crosstalk due to four-wave mixing in consideration of characteristics of generation efficiency of four-wave mixing.
【0008】[0008]
【課題を解決するための手段】請求項1記載の発明は、
N個のチャネルによる光周波数分割多重の基準光周波数
をf0とし、前記N個のチャネル間の周波数間隔をΔf
とし、各チャネルの光周波数偏移量をΔX(i)とした
場合に、光周波数がfi=f0+i・Δf+ΔX(i)で
表される光信号を、前記N個のチャネルの内の第i番目
のチャネルに入力する光周波数配置方法において、第1
番目から第N番目のチャネルの光周波数上で発生する四
光波混合光の内で、光強度が最大の四光波混合光の光強
度が最小となるように、四光波混合光の発生効率を基に
して各チャネルの光周波数偏移量ΔX(i)を定めるこ
とを特徴としている。請求項2記載の発明は、請求項1
記載の光周波数配置方法において、光周波数偏移量ΔX
(i)を周波数間隔Δfよりも小さな値とすることを特
徴としている。According to the first aspect of the present invention,
The reference optical frequency of the optical frequency division multiplexing by N channels is f 0, and the frequency interval between the N channels is Δf.
And an optical frequency shift amount of each channel is ΔX (i), an optical signal whose optical frequency is represented by f i = f 0 + i · Δf + ΔX (i) is In the optical frequency allocation method for inputting to the i-th channel,
Based on the generation efficiency of the four-wave mixed light, the four-wave mixed light having the maximum light intensity among the four-wave mixed light generated on the optical frequencies of the nth to Nth channels is minimized. It is characterized in that the optical frequency shift amount ΔX (i) of each channel is determined. The invention described in claim 2 is claim 1
In the optical frequency allocation method described, the optical frequency shift amount ΔX
The feature is that (i) is set to a value smaller than the frequency interval Δf.
【0009】[0009]
【作用】請求項1記載の発明によれば、Nチャネルの光
周波数の第i番目(i=1,2,‥‥‥,N)の光周波
数をfi=f0+i・Δf+ΔX(i)(ただし、f0は基
準光周波数、Δfはチャネル間の周波数間隔、ΔX
(i)は各チャネルの光周波数偏移量)とした時、第1
番目から第N番目の光周波数上で発生する四光波混合光
の内で光強度が最大の四光波混合光の光強度が最小とな
るように、四光波混合光の発生効率を基にして各チャネ
ルの周波数偏移量ΔX(i)を定める。これにより、全
チャネルが占有する周波数帯域をあらかじめ設定可能と
なる。また、実際に発生する四光波混合光の光強度を基
に計算を行うことにより、四光波混合の発生効率の特性
を考慮した光周波数配置を行うことができる。請求項2
記載の発明によれば、光周波数偏移量ΔX(i)を周波
数間隔Δfよりも小さな値としたので、光周波数fiを
ほぼ周期的に配置する事ができ、周期的光周波数フィル
タの適用が可能となる。According to the first aspect of the invention, the i-th (i = 1, 2, ..., N) optical frequency of the N-channel optical frequency is set to f i = f 0 + iΔf + ΔX (i) (However, f 0 is the reference optical frequency, Δf is the frequency interval between channels, ΔX
(I) is the optical frequency deviation of each channel)
Based on the generation efficiency of the four-wave mixed light, the four-wave mixed light having the maximum light intensity among the four-wave mixed lights generated on the Nth to Nth optical frequencies is minimized. The frequency shift amount ΔX (i) of the channel is determined. As a result, the frequency band occupied by all channels can be set in advance. Further, by performing the calculation based on the light intensity of the four-wave mixing light that is actually generated, it is possible to perform the optical frequency arrangement in consideration of the characteristics of the generation efficiency of the four-wave mixing. Claim 2
According to the described invention, since the optical frequency shift amount ΔX (i) is set to a value smaller than the frequency interval Δf, the optical frequencies f i can be arranged almost periodically, and the periodic optical frequency filter is applied. Is possible.
【0010】[0010]
【実施例】図1に示すようなNチャネルの光周波数の第
i番目(i=1,2,‥‥,N)のチャネルの光周波数
fiを、 fi=f0+i・Δf+ΔX(i) ・・・・・・・・・・・・・・・・(1) とする。ただし、ここでf0は基準光周波数、Δfはチ
ャネル間の周波数間隔、ΔX(i)は各チャネルの光周
波数偏移量である。EXAMPLE The optical frequency f i of the i-th (i = 1, 2, ..., N) channel of the N-channel optical frequencies as shown in FIG. 1 is expressed as f i = f 0 + iΔf + ΔX (i ) (1) Here, f 0 is the reference optical frequency, Δf is the frequency interval between channels, and ΔX (i) is the optical frequency shift amount of each channel.
【0011】四光波混合を発生する入力光をfi,fj,
fkとすると、四光波混合光の光周波数fijkは、 fijk=fi+fj−fk ・・・・・・・・・・・・・・・・・・・・(2) となる。ただし、i,j≠kであるとする。式(2)式
に式(1)を代入すると、 fijk={f0+i・Δf+ΔX(i)}+{f0+j・Δf+ΔX(j)} −{f0+k・Δf+ΔX(k)} ={f0+(i+j−k)・Δf} +{ΔX(i)+ΔX(j)−ΔX(k)} ・・・・・・・・(2)’ となる。The input light that generates four-wave mixing is f i , f j ,
If f k , the optical frequency f ijk of the four-wave mixed light is f ijk = f i + f j −f k ··· (2) Become. However, it is assumed that i, j ≠ k. Substituting equation (1) into equation (2), f ijk = {f 0 + i · Δf + ΔX (i)} + {f 0 + j · Δf + ΔX (j)} − {f 0 + k · Δf + ΔX (k)} = {F 0 + (i + j−k) · Δf} + {ΔX (i) + ΔX (j) −ΔX (k)} ... (2) ′.
【0012】また、(i+j−k)番目のチャネルの光
周波数fi+j-kは、式(1)より、 fi+j-k=f0+(i+j−k)・Δf+ΔX(i+j-k) ・・・・・・(3) となる。式(2)’と式(3)を比較すると、Δf>Δ
X(i)である場合、(i+j−k)番目のチャネルの
光周波数fi+j-kと四光波混合光の光周波数fijkとが重
ならない条件は、 ΔX(i+j-k)≠ΔX(i)+ΔX(j)−ΔX(k) ・・・・・・・(4) となる。したがって、式(4)の左辺と右辺が一致する
ようなi,j,kの組み合わせに関して四光波混合光の
光強度を以下に述べる計算式(5)〜(10)により算
出し、その各周波数チャネルごとの四光波混合光の光強
度の和の最大値が最小となる光周波数偏移量ΔX(i)
を決定すればよい。Further, the optical frequency f i + jk of the (i + j−k) th channel is calculated from the formula (1) as follows: f i + jk = f 0 + (i + j−k) · Δf + ΔX (i + jk)・ ・ ・ ・ (3) Comparing equation (2) ′ and equation (3), Δf> Δ
When X (i), the condition that the optical frequency f i + jk of the (i + j−k) th channel and the optical frequency f ijk of the four-wave mixing light do not overlap is ΔX (i + jk) ≠ ΔX (i ) + ΔX (j) -ΔX (k) ... (4) Therefore, for the combination of i, j, and k such that the left side and the right side of the equation (4) match, the light intensity of the four-wave mixed light is calculated by the following equations (5) to (10), and the respective frequencies are calculated. Optical frequency shift amount ΔX (i) that minimizes the maximum value of the sum of the optical intensities of the four-wave mixed light for each channel
Should be decided.
【0013】第iチャネルの分散シフトファイバ(長さ
L,減衰率α)への入力光強度と出力光強度をそれぞれ
Pi(0),Pi(L)とすると、 Pi(L)=Pi(0)e-aL ・・・・・・・・・・・・・・・・・・・(5) の関係が成り立つ。また、入力光fi,fj,fkによる
四光波混合光fijkのファイバ出力光強度をPFijk(L)
とすると、Letting P i (0) and P i (L) be the input light intensity and the output light intensity to the dispersion shift fiber (length L, attenuation factor α) of the i-th channel, respectively, P i (L) = The relationship of P i (0) e -aL ... (5) holds. In addition, the fiber output light intensity of the four-wave mixing light f ijk by the input lights f i , f j , and f k is P Fijk (L)
Then
【数3】 となる。ただし、ここでnはファイバの屈折率、λは波
長、cは光速度、Xは非線形定数、Aeffはファイバの
有効断面積、Dは縮退係数でi=j≠kの時D=3であ
り、i≠j≠kの時D=6である。(Equation 3) Becomes Here, n is the refractive index of the fiber, λ is the wavelength, c is the optical velocity, X is the nonlinear constant, A eff is the effective area of the fiber, D is the degeneracy coefficient, and when i = j ≠ k, D = 3. Yes, D = 6 when i ≠ j ≠ k.
【0014】また、式(6)において、η(i,j,k)は
四光波混合の発生効率であり、次に示す式(7)で与え
られる。In the equation (6), η (i, j, k) is the generation efficiency of four-wave mixing, and is given by the following equation (7).
【数4】 ここでΔβ(i,j,k)は位相不整合量であり、光周波数
がファイバの零分散波長と一致もしくは極めて近傍に存
在する場合には次に示す式(8)であたえられる。[Equation 4] Here, Δβ (i, j, k) is the amount of phase mismatch, and can be given by the following equation (8) when the optical frequency matches or is very close to the zero dispersion wavelength of the fiber.
【数5】 ただし、fzeroは零分散波長に対応する光周波数であ
り、Dcはファイバ分散である。(Equation 5) However, f zero is the optical frequency corresponding to the zero-dispersion wavelength, and D c is the fiber dispersion.
【0015】ここで、Pi(0)=Pj(0)=Pk(0)=
P0とおき、Here, P i (0) = P j (0) = P k (0) =
P 0 ,
【数6】 とすると、四光波混合光fijkのファイバ出力光強度
は、式(6)により、(Equation 6) Then, the fiber output light intensity of the four-wave mixing light f ijk is given by the equation (6).
【数7】 となる。ここで、r=i+j−k(r=1,2,‥‥,
N)とおくと、fr=fi+j-kに重なる四光波混合光の光
強度の和PFr(L)は式(4)と式(9)とにより、(Equation 7) Becomes Here, r = i + j−k (r = 1, 2, ...,
N), the sum P Fr (L) of the optical intensities of the four-wave mixed light that overlaps f r = f i + jk is given by the formula (4) and the formula (9).
【数8】 となる。式(10)を用いて、r=1,2,‥‥,Nに
おける上記PFr(L)の最大値が最小となるように光周
波数偏移量ΔX(i)を決定する。(Equation 8) Becomes Using the equation (10), the optical frequency shift amount ΔX (i) is determined so that the maximum value of P Fr (L) at r = 1, 2, ..., N is minimized.
【0016】次に、上記の式(10)を用いて光周波数
偏移量ΔX(i)を求める処理について図2に示すフロ
ーチャートを参照して説明する。処理を開始すると、ス
テップS1では、光周波数偏移量ΔX(t)(t=1,
2・・・,N:tはチャネル番号、Nは総チャネル数)
について、{ΔX(1),ΔX(2)・・・,ΔX
(N)}の組み合わせを一つ決定し、ステップS2に進
む。ステップS2では、1≦i,j,k≦Nであるi,
j,kについて、式(10)を用いて、四光波混合光の
光強度の和PFr(L)を計算し、ステップS3に進む。
ただし、ここでr=i+j−k(r=1,2,‥‥,
N)である。ステップS3では、得られたPF1(L),
PF2(L)・・・,PFN(L)の中の最大値をP
Fmax(L)とし、ステップS4に進む。Next, the process of obtaining the optical frequency shift amount ΔX (i) using the above equation (10) will be described with reference to the flowchart shown in FIG. When the process is started, in step S1, the optical frequency shift amount ΔX (t) (t = 1,
2 ..., N: t is the channel number, N is the total number of channels)
, {ΔX (1), ΔX (2) ..., ΔX
One combination of (N)} is determined, and the process proceeds to step S2. In step S2, i ≦ i, j, k ≦ N, i,
For j and k, the sum P Fr (L) of the light intensities of the four-wave mixed light is calculated using the equation (10), and the process proceeds to step S3.
However, here, r = i + j−k (r = 1, 2, ...,
N). In step S3, the obtained P F1 (L),
The maximum value in P F2 (L) ..., P FN (L) is P
Set Fmax (L), and proceed to step S4.
【0017】ステップS4では、{ΔX(1),ΔX
(2)・・・,ΔX(N)}の全ての組み合わせについ
てPFmax(L)を計算したか否かを判断する。この判断
結果が「NO」の場合にはステップS1に進む。一方、
ステップS4の判断結果が「YES」の場合にはステッ
プS5に進む。ステップS5では、{ΔX(1),ΔX
(2)・・・,ΔX(N)}の全ての組み合わせについ
て求めたPFmax(L)の中で、PFmax(L)が最小となる
組み合わせをΔX0(t)とし、ステップS6に進む。
ステップS6では、ΔX0(t)を処理結果として出力
し、一例の処理を終了する。In step S4, {ΔX (1), ΔX
(2) ..., It is determined whether or not P Fmax (L) has been calculated for all combinations of ΔX (N)}. If the result of this determination is "NO", the flow proceeds to step S1. on the other hand,
When the determination result of step S4 is "YES", the process proceeds to step S5. In step S5, {ΔX (1), ΔX
(2) ..., ΔX (N)} of all combinations of P Fmax (L), the combination having the smallest P Fmax (L) is set to ΔX0 (t), and the process proceeds to step S6.
In step S6, ΔX0 (t) is output as the processing result, and the example processing ends.
【0018】次に本実施例の光周波数配置方法によって
求められる光周波数偏移量ΔX(i)の具体例を示す。
光周波数偏移量ΔX(i)は、連続値または任意のn個
の離散値をとることが可能である。ここでは、離散値の
個数n=3として、光周波数偏移量ΔX(1),ΔX
(2),・・・,ΔX(N)のそれぞれが+δ,0,−δ
の3値の内のいずれかの値をとる場合を考える。以下
に、チャネル数NがN=3からN=16の場合に関し
て、最適な光周波数配置を求めた結果の一例を示す。た
だし、+δを1、−δを−1と表記する。Next, a specific example of the optical frequency shift amount ΔX (i) obtained by the optical frequency allocation method of this embodiment will be shown.
The optical frequency shift amount ΔX (i) can take continuous values or arbitrary n discrete values. Here, assuming that the number of discrete values n = 3, the optical frequency shift amounts ΔX (1), ΔX
(2), ..., ΔX (N) are + δ, 0, −δ
Consider the case of taking any one of the three values of. An example of the result of obtaining the optimum optical frequency arrangement for the case where the number of channels N is N = 3 to N = 16 is shown below. However, + δ is expressed as 1, and −δ is expressed as −1.
【0019】 N=3の時 0 1 0 N=4の時 0 1 0 0 N=5の時 0 ー1 1 ー1 0 N=6の時 0 ー1 1 1 ー1 0 N=7の時 ー1 ー1 1 0 1 ー1 1 N=8の時 ー1 ー1 1 0 1 ー1 1 1 N=9の時 ー1 ー1 1 1 ー1 0 ー1 0 1 N=10の時 -1 -1 1 1 -1 0 -1 0 1 1 N=11の時 -1 1 1 -1 -1 1 0 1 0 1 1 N=12の時 -1 1 1 -1 -1 1 0 1 0 1 1 0 N=13の時 1 -1 1 0 -1 -1 -1 1 -1 0 1 0 0 N=14の時 1 -1 1 0 -1 -1 -1 1 -1 0 1 0 0 1 N=15の時 1 1 -1 1 0 -1 -1 -1 1 -1 0 1 1 0 1 N=16の時 1 1 −1 1 0 −1 −1 −1 1 −
1 0 1 1 0 1 0When N = 3 0 1 0 When N = 4 0 1 0 0 When N = 5 0-1 1-1 0 When N = 6 0-1 1 1-1 0 When N = 7ー 1 ー 1 1 0 1 ー 1 1 When N = 8 ー 1 ー 1 1 1 0 1 ー 1 1 1 When N = 9 ー 1 ー 1 1 1 ー 1 0 ー 1 0 1 When N = 10- 1 -1 1 1 -1 0 -1 0 1 1 When N = 11 -1 1 1 -1 -1 1 0 1 0 1 1 When N = 12 -1 1 1 -1 -1 1 0 1 0 1 1 0 N = 13 1 -1 1 0 -1 -1 -1 1 -1 0 1 0 0 N = 14 1 -1 1 0 -1 -1 -1 1 -1 0 1 0 0 1 N = 15 1 1 -1 1 0 -1 -1 -1 1 -1 0 1 1 0 1 N = 16 1 1 -1 1 1 0 -1 -1 -1 1 1-
1 0 1 1 0 1 1 0
【0020】なお、計算に用いたパラメータを以下に示
す。 α:0.225dB/km L:40km P
0:−6dBm k:5.84×10-6m2W-2 dDc/dλ:0.
07ps/km-nm-nm Δf:80GHz δ:20GHz fzero=f0
+Δf(N−1)/2 上記具体例に基づいた光周波数の配置により発生する四
光波混合光の光強度と等間隔配置した場合に発生する四
光波混合光の光強度とを図3に示す。図3より明かであ
るように、本実施例による光周波数配置方法を用いれ
ば、四光波混合光の光強度を等間隔配置の場合の約10
分の1以下に抑えることが可能である。以上、この発明
の実施例を図面を参照して詳述してきたが、具体的な構
成はこの実施例に限られるものではなく、この発明の要
旨を逸脱しない範囲の設計の変更等があってもこの発明
に含まれる。The parameters used in the calculation are shown below. α: 0.225 dB / km L: 40 km P
0 : −6 dBm k: 5.84 × 10 −6 m 2 W −2 dDc / dλ: 0.
07ps / km-nm-nm Δf: 80 GHz δ: 20 GHz f zero = f 0
+ Δf (N−1) / 2 FIG. 3 shows the light intensity of the four-wave mixed light generated by the arrangement of the optical frequencies based on the above specific example and the light intensity of the four-wave mixed light generated when the light is arranged at equal intervals. . As is clear from FIG. 3, when the optical frequency allocating method according to the present embodiment is used, the optical intensities of the four-wave mixing light are approximately 10 when the optical intensity is arranged at equal intervals.
It is possible to reduce it to less than a fraction. Although the embodiment of the present invention has been described in detail above with reference to the drawings, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the scope of the invention. Also included in the present invention.
【0021】[0021]
【発明の効果】以上説明したように、請求項1記載の発
明によれば、あらかじめ割り当てられた占有光周波数帯
域を用いた見通しのよい光周波数配置の設計が可能とな
り、また四光波混合の発生効率の特性を考慮した光周波
数配置方法を提供することが可能となる。請求項2記載
の発明によれば、光周波数を定められた光周波数帯域
(±ΔX)内で周期的に配置することにより、簡易な構
成が可能な周期的光周波数フィルタの適用が可能とな
る。As described above, according to the first aspect of the present invention, it is possible to design an optical frequency arrangement with good visibility using a pre-allocated occupied optical frequency band, and to generate four-wave mixing. It is possible to provide an optical frequency allocation method in consideration of efficiency characteristics. According to the invention described in claim 2, by periodically arranging the optical frequency within the determined optical frequency band (± ΔX), it becomes possible to apply the periodic optical frequency filter which can be configured simply. .
【図1】この発明の一実施例による光周波数配置方式を
用いて求められた光周波数の周波数配置図である。FIG. 1 is a frequency allocation diagram of optical frequencies obtained by using an optical frequency allocation method according to an embodiment of the present invention.
【図2】四光波混合光の光強度が最小となるような光周
波数偏移量を求める処理の流れを示すフローチャートで
ある。FIG. 2 is a flowchart showing a flow of processing for obtaining an optical frequency shift amount that minimizes the light intensity of four-wave mixing light.
【図3】同実施例によって求められた光周波数配置によ
り発生する四光波混合光の光強度と等間隔配置した場合
に発生する四光波混合光の光強度と示すグラフである。FIG. 3 is a graph showing the light intensity of four-wave mixing light generated by the arrangement of optical frequencies and the light intensity of four-wave mixing light generated when the light intensity is arranged at equal intervals, which is obtained in the same example.
【図4】従来例による光周波数の周波数配置図である。FIG. 4 is a frequency allocation diagram of optical frequencies according to a conventional example.
Claims (2)
の基準光周波数をf0とし、前記N個のチャネル間の周
波数間隔をΔfとし、各チャネルの光周波数偏移量をΔ
X(i)とした場合に、光周波数がfi=f0+i・Δf
+ΔX(i)で表される光信号を、前記N個のチャネル
の内の第i番目のチャネルに入力する光周波数配置方法
において、 第1番目から第N番目のチャネルの光周波数上で発生す
る四光波混合光の内で、光強度が最大の四光波混合光の
光強度が最小となるように、四光波混合光の発生効率を
基にして各チャネルの光周波数偏移量ΔX(i)を定め
ることを特徴とする光周波数配置方法。1. A reference optical frequency of optical frequency division multiplexing by N channels is f 0 , a frequency interval between the N channels is Δf, and an optical frequency shift amount of each channel is Δ.
When X (i), the optical frequency is f i = f 0 + i · Δf
In the optical frequency allocation method of inputting the optical signal represented by + ΔX (i) to the i-th channel of the N channels, the optical signals are generated on the optical frequencies of the first to N-th channels. Based on the generation efficiency of the four-wave mixed light so that the light intensity of the four-wave mixed light having the maximum light intensity among the four-wave mixed light is minimized, the optical frequency shift amount ΔX (i) of each channel is calculated. An optical frequency allocation method, characterized in that.
て、 光周波数偏移量ΔX(i)を周波数間隔Δfよりも小さ
な値とすることを特徴とする光周波数配置方法。2. The optical frequency allocating method according to claim 1, wherein the optical frequency shift amount ΔX (i) is set to a value smaller than the frequency interval Δf.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6315125A JPH08171109A (en) | 1994-12-19 | 1994-12-19 | Optical frequency arrangement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6315125A JPH08171109A (en) | 1994-12-19 | 1994-12-19 | Optical frequency arrangement method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08171109A true JPH08171109A (en) | 1996-07-02 |
Family
ID=18061712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6315125A Pending JPH08171109A (en) | 1994-12-19 | 1994-12-19 | Optical frequency arrangement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08171109A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6545780B1 (en) | 1998-04-22 | 2003-04-08 | Nippon Telegraph And Telephone Corporation | Wavelength allocation method, a transmission equipment and receiving equipment using this method and a wavelength division multiplex transmission system |
US6819828B2 (en) * | 2001-05-24 | 2004-11-16 | Fujitsu Limited | Method and device for optical fiber transmission |
-
1994
- 1994-12-19 JP JP6315125A patent/JPH08171109A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6545780B1 (en) | 1998-04-22 | 2003-04-08 | Nippon Telegraph And Telephone Corporation | Wavelength allocation method, a transmission equipment and receiving equipment using this method and a wavelength division multiplex transmission system |
US6819828B2 (en) * | 2001-05-24 | 2004-11-16 | Fujitsu Limited | Method and device for optical fiber transmission |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1192264C (en) | Optical system | |
KR960011471A (en) | Optical device | |
JPH05313029A (en) | Light wave combining/splitting instrument | |
JPH08171109A (en) | Optical frequency arrangement method | |
JP3201560B2 (en) | Optical signal processing circuit | |
EP0782019A2 (en) | Bandwith-adjusted wavelength demultiplexer | |
Sugumaran et al. | Effect of four-wave mixing on WDM system and its suppression using optimum algorithms | |
JP2003185865A (en) | Optical multiplexer/demultiplexer and waveguide type optical coupler | |
JP2004310032A (en) | Wavelength division multiplexing and demultiplexing unit | |
JP4406203B2 (en) | Optical transmission system | |
US6545780B1 (en) | Wavelength allocation method, a transmission equipment and receiving equipment using this method and a wavelength division multiplex transmission system | |
US6594048B1 (en) | Technique to obtain channel plans for WDM systems with reduced four-wave mixing effect | |
JPH11154934A (en) | Method for setting periodically-unequal interval transmission channel in multi-channel optical transmission system | |
KR100589837B1 (en) | Wdm transmitter and receiver | |
Malhotra | Mathematical strategies for base unit allocation in unequally spaced DWDM systems | |
RU2663179C2 (en) | Method of measuring optical signal-to-noise ratio with four-wave mixing in fiber-optical transmission systems with frequency separation of signals | |
Vardanyan | A Technique for estimating the signal-to-noise ratio in fiber-optic transmission systems with frequency division multiplexing | |
Singh et al. | Four-Wave Mixing Estimation Method for an Optical Communication System | |
KR20050030421A (en) | Apparatus & Method for Optical Communication using Subcarrier Muliple Access | |
JP2004310046A (en) | Wavelength division multiplexer and demultiplexer using parabolic horn type waveguide | |
JP4082475B2 (en) | Components for optical fiber remote transmission equipment. | |
CN101170377B (en) | Transmission wave length selection method for color dispersion shift optical fiber dense wave division multiplexing system | |
JP2567680B2 (en) | Optical frequency multiplex transmission system | |
JP3381894B2 (en) | WDM transmission system | |
Kwong et al. | Locating FWM crosstalk in high-capacity WDM lightwave systems |