JPH08170880A - Baking method for sintered ore - Google Patents

Baking method for sintered ore

Info

Publication number
JPH08170880A
JPH08170880A JP31380794A JP31380794A JPH08170880A JP H08170880 A JPH08170880 A JP H08170880A JP 31380794 A JP31380794 A JP 31380794A JP 31380794 A JP31380794 A JP 31380794A JP H08170880 A JPH08170880 A JP H08170880A
Authority
JP
Japan
Prior art keywords
temperature
detected
pallet
raw material
bulkiness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31380794A
Other languages
Japanese (ja)
Inventor
Akihiro Murata
明宏 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP31380794A priority Critical patent/JPH08170880A/en
Publication of JPH08170880A publication Critical patent/JPH08170880A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: To provide a baking method for sintered ore by which the temperature of sintered ore is distributed on a required pattern, independent of the distribution of baking-temperature in a sintering process. CONSTITUTION: Above palletes 4 on the discharge side of ores, a plurality of temperature detectors 8, which are arranged being almost perpendicular to the carrying direction of the palletes 4 at regular intervals, are provided in two lines so as to mutually make a pair in the carrying direction thereof, and values of detected temperature are inputted to a computer 10. A detected temperature Te by the temperature detector 8 at the discharge side is compared with a detected temperature Ts by the temperature detector 8 at the supply side, by the computer 10. In the case of Ts<Te, a correlation between a detected temperature and a bulk height is determined to be negative. In the case of Ts>=Te, the correlation between them is determined to be positive. On the other hand, a control parameter Ki in the case where the correlation between them is positive or negative is respectively operated on the basis of a state vector in a sintering process, by the computer 10, and the control parameter Ki suitable therefor is selected on the basis of a result determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はドワイトロイド式焼結機
において焼結鉱を焼成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for firing sinter in a Dwightroid sinter.

【0002】[0002]

【従来の技術】製鉄所においては、高炉装入原料の予備
処理段階において発生する篩下粉、高炉ガス中に回収さ
れる粉塵、原料鉱として供給される粉鉱石等の粉体を塊
成化処理し、人工原料として再生することを目的として
焼結法が広く利用されており、特に、ドワイトロイド式
の焼結機による焼成法は、量産が可能であり、品質的に
も優れた焼結鉱が得られる方法として広く実施されてい
る。
2. Description of the Related Art In ironworks, powders such as undersize powder generated in the pretreatment stage of blast furnace charging raw material, dust collected in blast furnace gas, and powdered ore supplied as raw material ore are agglomerated. The sintering method is widely used for the purpose of treating and regenerating it as an artificial raw material. In particular, the sintering method using a Dwightroid-type sintering machine enables mass production and is excellent in quality. It is widely practiced as a method of obtaining ore.

【0003】ドワイトロイド式の焼結機は、エンドレス
に連結された複数のパレットを所定の搬送経路に沿って
移動自在に配し、該パレット上に搬送経路の一側におい
て原料を供給し、パレットの移動により搬送する一方、
この搬送経路の中途に構成された点火炉内にて前記原料
中に混在するコークスに点火して、パレット下側への連
続的な通気により燃焼を進行させて搬送中の原料を焼成
し、搬送経路の他側において焼結鉱として取り出す構成
となっている。取り出された焼結鉱は、冷却,粉砕,篩
分けの過程を経て適正な粒径に揃えられ、高炉装入原料
として用いられる。
The Dwightroid-type sintering machine arranges a plurality of endlessly connected pallets so as to be movable along a predetermined transfer path, supplies raw materials onto the pallet on one side of the transfer path, and pallets the pallet. While transporting by moving
The coke mixed in the raw material is ignited in an ignition furnace configured in the middle of this transport path, and combustion is progressed by continuous ventilation to the lower side of the pallet to burn the raw material being transported, which is then transported. On the other side of the route, it is taken out as sinter. The taken out sinter is cooled, crushed and sieved to obtain an appropriate particle size, and used as a blast furnace charging raw material.

【0004】このようなドワイトロイド式の焼結機の操
業にあっては、取り出し側での焼結鉱の焼成程度がパレ
ットの幅方向に異なる現象である、焼きむらが生じた場
合、焼成不良に伴う返鉱発生率の増加により歩留まりの
低下を招く問題があるため、パレットの幅方向の温度分
布を所要のパターンになすことが重要な課題となってい
る。
In the operation of such a Dwightroid-type sintering machine, when firing unevenness occurs, which is a phenomenon in which the firing degree of the sintered ore on the take-out side varies in the width direction of the pallet, firing failure occurs. Since there is a problem that the yield rate decreases due to the increase in the rate of occurrence of returned ore, it is an important issue to make the temperature distribution in the width direction of the pallet a required pattern.

【0005】この課題を解決するため、特開平 3−1777
87号公報に記載されている如き方法が提案されている。
これは、焼結鉱の取り出し側(排鉱側)におけるパレッ
ト幅方向の温度分布と、原料の供給側(給鉱側)におけ
るパレット幅方向の原料の嵩高の分布との間に負の相関
関係があるとの知見に基づいて、排鉱側におけるパレッ
ト幅方向の温度分布を所要のパターンにすべく次のよう
に嵩高を調整するものである。
In order to solve this problem, Japanese Patent Laid-Open No. 3-1777
A method as described in Japanese Patent No. 87 has been proposed.
This is a negative correlation between the temperature distribution in the pallet width direction on the sinter extraction side (exhaust ore side) and the bulk material distribution in the pallet width direction on the raw material supply side (feeding side). Based on the knowledge that there is such a problem, the bulkiness is adjusted as follows so that the temperature distribution in the pallet width direction on the mine ore side has a required pattern.

【0006】排鉱側におけるパレット幅方向の温度分布
を測定し、該温度の平均温度からの偏差ΔTiの分布を
求め、一方、給鉱側におけるパレット幅方向の原料の嵩
高の分布を測定し、該嵩高の平均値からの偏差ΔHiの
分布を求め、対応する幅方向位置のΔHiの変化量に対
するΔTiの変化幅を推定し、その推定値及び負の相関
関係にあるΔHiとΔTiとの回帰直線の傾きKiに基
づいて幅方向別の嵩高設定値Hisvを次の(6)式に
よって算出し、算出したHisvとなるように嵩高を調
整する。 Hisv=バーHi−ΔTi/Ki …(6)
The temperature distribution in the pallet width direction on the mine ore side is measured, and the distribution of the deviation ΔTi from the average temperature of the pallet width is obtained, while the distribution of the bulkiness of the raw material in the pallet width direction on the mine side is measured. The distribution of the deviation ΔHi from the average value of the bulkiness is obtained, the change width of ΔTi with respect to the change amount of ΔHi at the corresponding widthwise position is estimated, and the estimated value and a regression line of ΔHi and ΔTi having a negative correlation The height setting value Hisv for each width direction is calculated by the following equation (6) on the basis of the inclination Ki of, and the height is adjusted so as to be the calculated Hisv. Hisv = bar Hi-ΔTi / Ki (6)

【0007】[0007]

【発明が解決しようとする課題】本発明者は原料の嵩高
と排鉱側の温度との間に次のような相関関係があること
を知見した。図3は、ドワイトロイド式の焼結機におけ
る給鉱側から排鉱側までのパレット直下温度分布を示す
グラフである。原料の焼成が上部から下部に進むにつれ
て、図3の如く、原料温度は給鉱側から排鉱側へ徐々に
上昇し、最高温度点TT に達してから温度が低下して焼
結鉱が取り出される。このとき、給鉱側における原料の
嵩高を高くすると、それに伴って最高温度点TT は排鉱
側に移動する。
The present inventor has found that there is the following correlation between the bulkiness of the raw material and the temperature on the mine ore side. FIG. 3 is a graph showing a temperature distribution directly below the pallet from the ore supply side to the ore discharge side in the Dwightroid type sintering machine. As the firing of the raw material progresses from the upper part to the lower part, as shown in FIG. 3, the raw material temperature gradually rises from the feed ore side to the mine ore side, and after reaching the maximum temperature point T T , the temperature decreases and the sintered ore becomes Taken out. At this time, if the bulkiness of the raw material on the mine side is increased, the maximum temperature point T T moves to the mine side along with it.

【0008】そして、最高温度点TT を移動させ、排鉱
側におけるパレット幅方向の温度分布の変化と、給鉱側
におけるパレット幅方向の原料の嵩高の分布の変化との
間の相関を調べたところ、最高温度点TT が温度測定点
より給鉱側である場合は負の相関関係があり、一方、最
高温度点TT が前記温度測定点より排鉱側である場合は
正の相関関係がある。
Then, the maximum temperature point T T is moved to examine the correlation between the change in the temperature distribution in the pallet width direction on the discharge side and the change in the bulkiness distribution of the raw material in the pallet width direction on the supply side. However, there is a negative correlation when the maximum temperature point T T is on the feed side from the temperature measurement point, while a positive correlation is found when the maximum temperature point T T is on the discharge side from the temperature measurement point. I have a relationship.

【0009】従来の方法にあっては、排鉱側におけるパ
レット幅方向の温度分布と、給鉱側におけるパレット幅
方向の原料の嵩高の分布との間に負の相関関係があると
の知見に基づいて、制御パラメータであるKiを求めて
いるが、条件によっては上述の如く、正の相関関係が成
立することがあり、その場合、排鉱側の温度分布を所要
のパターンになし得ないという問題があった。
In the conventional method, it has been found that there is a negative correlation between the temperature distribution in the pallet width direction on the mine ore side and the distribution of the bulkiness of the raw material in the pallet width direction on the mine side. Based on the above, the control parameter Ki is determined, but depending on the conditions, a positive correlation may be established as described above, and in that case, the temperature distribution on the mine ore side cannot be formed into the required pattern. There was a problem.

【0010】本発明はかかる事情に鑑みてなされたもの
であって、その目的とするところはパレットの搬送方向
に複数列配置した温度検出器の検出温度に基づいて、適
切な制御パラメータを選択することによって、焼結プロ
セスにおける焼成温度分布の状態に拘らず排鉱側の焼結
鉱の温度分布を所要のパターンにし得る焼結鉱の焼成方
法を提供することにある。
The present invention has been made in view of the above circumstances, and its object is to select appropriate control parameters based on the temperatures detected by temperature detectors arranged in a plurality of rows in the pallet transport direction. Accordingly, it is an object of the present invention to provide a method for firing a sintered ore that can make the temperature distribution of the sintered ore on the effluent side into a required pattern regardless of the state of the firing temperature distribution in the sintering process.

【0011】[0011]

【課題を解決するための手段】第1発明に係る焼結鉱の
焼成方法は、連設された複数のパレットの周回域の一側
へ原料を供給し、これを焼成してなる焼結鉱を他側から
排出するドワイトロイド式焼結機における、排出側のパ
レットの搬送方向に交差する方向に配置した複数の温度
検出器の検出温度が所定のパターンになるように、パレ
ットの搬送方向に交差する方向に配置した複数の供給量
調節ゲートの開度の操作量を制御して、各供給量調節ゲ
ートに対応して配したレベル計にて検出される原料の嵩
高を調整し、焼結鉱を焼成する方法において、前記複数
の温度検出器を前記パレットの搬送方向に対をなすよう
に2列配置し、一方の列の各温度検出器の検出温度の変
化,各レベル計にて検出された嵩高の変化及び前記操作
量の変化に基づいて、前記操作量を制御するための制御
パラメータを、原料のパレットの搬送方向の最高温度が
前記一方の列の各温度検出器より上流側である場合及び
下流側である場合についてそれぞれ算出し、対をなす温
度検出器の検出温度を比較し、その比較結果に基づい
て、算出した制御パラメータの一方を選択することを特
徴とする。
A method of firing a sintered ore according to a first aspect of the present invention is a method of firing a sintered ore in which a raw material is supplied to one side of a circulation area of a plurality of pallets connected in series and the raw material is fired. In the Dwightroid-type sintering machine that discharges the pallets from the other side, the pallet is conveyed in the conveying direction so that the temperature detected by a plurality of temperature detectors arranged in the direction intersecting the conveying direction of the pallets on the discharging side becomes a predetermined pattern. By controlling the operation amount of the opening of multiple supply amount control gates arranged in the intersecting direction, the bulkiness of the raw material detected by the level meter arranged corresponding to each supply amount control gate is adjusted and sintered. In the method of firing ore, the plurality of temperature detectors are arranged in two rows so as to form a pair in the conveying direction of the pallet, and a change in the temperature detected by each temperature detector in one row and detection by each level meter Based on the change in bulkiness and the change in the manipulated variable The control parameters for controlling the manipulated variable are calculated for the case where the maximum temperature in the conveying direction of the pallet of the raw material is upstream and downstream of each temperature detector in the one row, respectively, and Is compared with each other, and one of the calculated control parameters is selected based on the comparison result.

【0012】第2発明に係る焼結鉱の焼成方法は、第1
発明において、前記制御パラメータは、原料のパレット
の搬送方向の最高温度が前記一方の列の各温度検出器よ
り上流側である場合及び下流側である場合で正負が異な
るパラメータを用い、両パラメータについて前記検出温
度と嵩高との関係が閉ループ安定となるように算出する
ことを特徴とする。
The firing method of the sintered ore according to the second invention is the first
In the invention, the control parameter is a parameter whose positive and negative values are different when the maximum temperature in the conveying direction of the raw material pallet is upstream and downstream of each temperature detector of the one row, and both parameters are used. It is characterized in that the relation between the detected temperature and the bulkiness is calculated so as to be stable in a closed loop.

【0013】[0013]

【作用】本発明の焼結鉱の焼成方法にあっては、パレッ
トの搬送方向に交差する方向に配置した複数の温度検出
器より、原料のパレットの搬送方向の最高温度が上流側
であれば、検出温度と嵩高との間に正の相関関係があ
り、下流側であれば負の相関関係があるため、供給量調
節ゲートの開度の操作量を制御するための制御パラメー
タを、前記各温度検出器の検出温度の変化,各レベル計
にて検出された嵩高の変化及び供給量調節ゲートの開度
の操作量の変化に基づいて、前記最高温度が上流側及び
下流側である場合で正負が異なるパラメータを用い、両
パラメータについて前記検出温度と嵩高との関係が閉ル
ープ安定となるようにそれぞれ算出する。
In the sinter ore calcination method of the present invention, if the maximum temperature of the raw material pallet in the conveying direction is upstream from the plurality of temperature detectors arranged in the direction intersecting the pallet conveying direction, Since the detected temperature and the bulkiness have a positive correlation and the downstream side has a negative correlation, the control parameters for controlling the operation amount of the opening of the supply amount adjusting gate are set to the above-mentioned Based on the change in the temperature detected by the temperature detector, the change in the bulkiness detected by each level meter, and the change in the operation amount of the opening of the supply amount adjusting gate, the maximum temperature is on the upstream side and the downstream side. Parameters having different positive and negative values are used, and the parameters are calculated so that the relationship between the detected temperature and the bulkiness is closed-loop stable for both parameters.

【0014】また、複数の温度検出器を前記パレットの
搬送方向に対をなすように2列配置し、排出側に配置さ
れた温度検出器の検出温度Te と供給側に配置された温
度検出器の検出温度Ts とを比較し、Ts <Te である
場合、前記最高温度が制御対象列の温度検出器より下流
にあり、検出温度及び嵩高の間には負の相関関係がある
と判断し、逆にTs ≧Te である場合は上流にあり、検
出温度及び嵩高の間には正の相関関係があると判断す
る。そして、この判断に基づいて前記制御パラメータの
うちから該当する制御パラメータを選択する。これによ
って、焼結プロセスの状態に拘らず、排鉱側の焼結鉱の
温度分布を所定のパターンにすることができる。
Further, a plurality of temperature detectors are arranged in two rows so as to form a pair in the conveying direction of the pallet, and a temperature T e detected by the temperature detector arranged on the discharge side and a temperature detection arranged on the supply side. When the temperature T s of the detector is compared with T s <T e , the highest temperature is downstream of the temperature detector of the controlled column, and there is a negative correlation between the detected temperature and the bulkiness. On the contrary, when T s ≧ T e , it is determined that there is a positive correlation between the detected temperature and the bulkiness. Then, based on this judgment, the corresponding control parameter is selected from the control parameters. As a result, the temperature distribution of the sinter ore on the discharge ore side can be made into a predetermined pattern regardless of the state of the sinter process.

【0015】[0015]

【実施例】以下本発明をその実施例を示す図面に基づい
て具体的に説明する。図1は本発明を適用するための焼
結機を示す模式的斜視図であり、図中1は給鉱ホッパ、
2は原料供給用のドラムフィーダ、3は生産量に応じて
開度を設定された主ゲート、4はストランド上にエンド
レスに並べられたパレットである。パレット4は矢符方
向に搬送されるようになっており、パレット4の搬送方
向に略直交する方向にドラムフィーダ2が配置してあ
る。ドラムフィーダ2の主ゲート3と対向する位置に
は、該主ゲート3からの給鉱量を調節する複数の調節ゲ
ート5,5,…がパレット4の搬送方向と略直交する方
向に設けられており、調節ゲート5,5,…はパワーシ
リンダ6,6,…によって各別に操作され、各調節ゲー
ト5,5,…の開度はコンピュータ10に与えられるよう
になっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments thereof. FIG. 1 is a schematic perspective view showing a sintering machine for applying the present invention, in which 1 is a feed hopper,
Reference numeral 2 is a drum feeder for supplying raw materials, 3 is a main gate whose opening is set according to the production amount, and 4 is a pallet endlessly arranged on the strand. The pallet 4 is conveyed in the arrow direction, and the drum feeder 2 is arranged in a direction substantially orthogonal to the conveying direction of the pallet 4. At a position facing the main gate 3 of the drum feeder 2, a plurality of adjusting gates 5, 5, ... For adjusting the amount of ore supplied from the main gate 3 are provided in a direction substantially orthogonal to the conveying direction of the pallet 4. , Are individually operated by power cylinders 6, 6, ..., The opening of each of the adjustment gates 5, 5, ... Is given to the computer 10.

【0016】ドラムフィーダ2の近傍にはパレット4上
に供給された原料Mの嵩高を検出する超音波レベル計
7,7,…が配置してあり、該超音波レベル計7,7,
…の検出値はコンピュータ10に与えられる。パレット4
上に供給された原料Mは、パレット4の移動と共に矢符
方向に搬送され、図示しない点火炉内にて原料M中に混
在するコークスに点火されて、パレット4下側への連続
的な通気により燃焼を進行させて搬送中の原料Mが焼成
され、焼結鉱Hとして排出される。この排鉱側のパレッ
ト4の下方には、パレット4の搬送方向に略直交する方
向に所定距離を隔てて配置した複数の温度検出器8,
8,…がパレット4の搬送方向に対をなすように設けて
あり、各温度検出器8,8,…の検出温度は前記コンピ
ュータ10に与えられる。
In the vicinity of the drum feeder 2, ultrasonic level meters 7, 7, ... Which detect the bulkiness of the raw material M supplied on the pallet 4 are arranged, and the ultrasonic level meters 7, 7,
The detected value of ... Is given to the computer 10. Pallet 4
The raw material M supplied above is conveyed in the direction of the arrow along with the movement of the pallet 4, is ignited by the coke mixed in the raw material M in an ignition furnace (not shown), and continuously ventilates the lower side of the pallet 4. The raw material M being conveyed is burned by the above, and is burned, and is discharged as a sintered ore H. Below the pallet 4 on the mine ore side, a plurality of temperature detectors 8 arranged at a predetermined distance in a direction substantially orthogonal to the conveying direction of the pallet 4,
Are provided so as to form a pair in the conveying direction of the pallet 4, and the temperatures detected by the temperature detectors 8, 8, ... Are given to the computer 10.

【0017】図2は図1に示した焼結機の制御系を示す
ブロック図である。コンピュータは操作量uとなるよう
に調節ゲートの開度を制御し、各調節ゲートから供給さ
れた原料の嵩高を焼結プロセスの入力行列11として取り
込む。供給された原料は点火・通風され、(zI−A)
-1にて表される焼結プロセス12に従ってパレット直下の
温度が変化する。ここで、zは遅延演算子であり、Iは
単位行列であり、Aは焼結プロセスのシステム行列であ
る。焼結プロセス12の変化は状態ベクトルxの変化とし
て現れ、該状態ベクトル下で焼成された焼結鉱のパレッ
ト直下の検出温度を焼結プロセスの出力行列13として取
り込む。
FIG. 2 is a block diagram showing a control system of the sintering machine shown in FIG. The computer controls the opening of the adjusting gate so that the manipulated variable u is obtained, and takes in the bulkiness of the raw material supplied from each adjusting gate as the input matrix 11 of the sintering process. The supplied raw material is ignited and ventilated, (zI-A)
The temperature immediately below the pallet changes according to the sintering process 12 represented by -1 . Where z is the delay operator, I is the identity matrix, and A is the system matrix of the sintering process. The change in the sintering process 12 appears as a change in the state vector x, and the detected temperature immediately below the pallet of the sintered ore sintered under the state vector is captured as the output matrix 13 of the sintering process.

【0018】また、状態ベクトルxは選択ロジック14に
与えられるようになっており、選択ロジック14は状態ベ
クトルxに基づいて、排鉱側に配置された温度検出器の
検出温度Te と供鉱側に配置された温度検出器の検出温
度Ts とを比較し、Ts <T e である場合、原料のパレ
ットの搬送方向の最高温度は温度検出器より排鉱側であ
り、検出温度及び嵩高は負の相関関係であると判断し、
逆にTs ≧Te である場合は、前記最高温度は温度検出
器より給鉱側であり、検出温度及び嵩高は正の相関関係
であると判断する。一方、状態ベクトルxに基づいて、
検出温度及び嵩高の間に正の相関関係がある場合並びに
負の相関関係がある場合の制御パラメータ15がそれぞれ
算出されており、選択ロジック14は前述した判断結果に
基づいて、適切な制御パラメータ15を選択する。そし
て、選択した制御パラメータ15及び予め定められた制御
則に従って操作量uを算出し、該操作量uとなるように
調節ゲートの開度を調整する。
Also, the state vector x is sent to the selection logic 14.
Selection logic 14, the selection logic 14
Based on the cutle x,
Detection temperature TeAnd the temperature detected by the temperature detectors located on the mining side
Degree TsCompare withs<T eIf the ingredients are
The maximum temperature in the transport direction of the tray is on the mine side from the temperature detector.
Therefore, it is judged that the detected temperature and the bulkiness have a negative correlation,
Conversely, Ts≧ TeIf the maximum temperature is
On the supply side of the vessel, the detected temperature and bulkiness have a positive correlation
It is determined that On the other hand, based on the state vector x,
When there is a positive correlation between the detected temperature and bulkiness, and
If there is a negative correlation, the control parameters 15
Has been calculated, and the selection logic 14
Based on that, the appropriate control parameter 15 is selected. Soshi
Selected control parameters 15 and predetermined controls
The operation amount u is calculated according to the rule, and the calculated operation amount u is obtained.
Adjust the opening of the adjustment gate.

【0019】前述した制御パラメータは次のように算出
する。各制御周期における、温度検出器の検出温度と前
回検出温度との差分をx1 、嵩高と前回の嵩高との差分
をx2 、調節ゲートの開度の操作量と前回の操作量との
差分をuとすると、x1 及びx2 はそれぞれ次の(1)
式及び(2)式で表される。 x1 (n+1)=a1 1 (n)−a2 2 (n) …(1) x2 (n+1)=a3 2 (n)+bu(n) …(2) 但し、a1 :0<a1 <1なる実数 a2 :条件により正負が異なる実数 a3 :0<a3 <1なる実数 b :実数 n :制御周期
The control parameters described above are calculated as follows. In each control cycle, the difference between the temperature detected by the temperature detector and the previously detected temperature is x 1 , the difference between the bulkiness and the previous bulkiness is x 2 , the difference between the operation amount of the adjustment gate opening and the previous operation amount. Is u, x 1 and x 2 are
It is represented by the formula and the formula (2). x 1 (n + 1) = a 1 x 1 (n) −a 2 x 2 (n) (1) x 2 (n + 1) = a 3 x 2 (n) + bu (n) (2) where a 1 : Real number 0 <a 1 <1 a 2 : Real number whose positive and negative values are different depending on conditions a 3 : 0 <a 3 <1 real number b: Real number n: Control cycle

【0020】ここで、(1)式及び(2)式の積分要素
を含む拡大系を考えると、両式は次の(3)式で表され
る。 x(n+1)=Ax(n)+Bu(n) … (3) A:焼結プロセスのシステム行列 B:焼結プロセスの入力行列 x:焼結プロセスの状態ベクトル そして、(3)式にu(n)=−Kix(n)を代入す
ると次の(4)式になり、該(4)式が閉ループ安定と
なる制御パラメータKiを算出する。 x(n+1)=(A−BKi)x(n) …(4)
Here, considering an expansion system including the integral elements of the equations (1) and (2), both equations are expressed by the following equation (3). x (n + 1) = Ax (n) + Bu (n) (3) A: System matrix of the sintering process B: Input matrix of the sintering process x: State vector of the sintering process Then, in the formula (3), u ( Substituting (n) = − Kix (n) results in the following expression (4), and the control parameter Ki that makes the expression (4) stable in the closed loop is calculated. x (n + 1) = (A-BKi) x (n) (4)

【0021】このようにして算出した制御パラメータK
iで調節ゲートの開度を調整して嵩高を制御すると、例
えば、Kiがa2 >0で算出されたものであるとき、焼
結プロセスの状態がa2 >0である間は、(A−BK
i)の固有値の絶対値は全て1より小さく選ばれてお
り、閉ループ安定となるが、焼結プロセスの状態がa2
<0になると、(A−BKi)の固有値の絶対値が1よ
り大きくなる場合があり、閉ループ安定にはならない。
そこで、焼結プロセスの状態がa2 <0になったとき、
2 >0で算出された制御パラメータKiを選択するこ
とによって、閉ループ安定にすることができる。
The control parameter K calculated in this way
Controlling the bulky by adjusting the opening degree of the adjusting gate at i, for example, when the Ki are those calculated by a 2> 0, while the state of the sintering process is a 2> 0 is, (A -BK
The absolute values of the eigenvalues of i) are all selected to be smaller than 1, and the closed loop is stable, but the state of the sintering process is a 2
When <0, the absolute value of the eigenvalue of (A-BKi) may be greater than 1, and closed-loop stability is not achieved.
Therefore, when the state of the sintering process becomes a 2 <0,
Closed loop stability can be achieved by selecting the control parameter Ki calculated with a 2 > 0.

【0022】制御パラメータKiは、例えば、検出温度
T1,xT2,xT3,xT4,xT5 及びその偏差xT6,x
T7,xT8,xT9,xT10 並びに制御パラメータKiに基
づいて、5つの調節ゲートの操作量U1 ,U2 ,U3
4 ,U5 を算出する、次の(5)式による制御則を用
いた場合、25 =32種類を用意しておく。
The control parameters Ki are, for example, the detected temperatures x T1 , x T2 , x T3 , x T4 , x T5 and their deviations x T6 , x.
T7, x T8, x T9, x T10 and on the basis of the control parameter Ki, the operation amount of five regulatory gate U 1, U 2, U 3 ,
When the control law according to the following equation (5) for calculating U 4 and U 5 is used, 2 5 = 32 types are prepared.

【0023】[0023]

【数1】 [Equation 1]

【0024】次に比較試験を行った結果について説明す
る。図4及び図5は焼結鉱の正断面の温度分布を示すグ
ラフであり、図4は本発明に係る方法を適用した場合
を、また図5は従来方法を適用した場合をそれぞれ示し
ている。比較試験は、5つの調節ゲートを備える焼結機
を用い、焼結鉱の幅方向の温度パターンを、両端の温度
が最も低く、そのとなりの温度が最も高く、中央の温度
がそれらの中間となるように行った。
Next, the result of the comparison test will be described. 4 and 5 are graphs showing the temperature distribution of the front cross section of the sinter, FIG. 4 shows the case where the method according to the present invention is applied, and FIG. 5 shows the case where the conventional method is applied. . In the comparative test, a sintering machine equipped with five control gates was used, and the temperature pattern in the width direction of the sinter was found to have the lowest temperature at both ends, the highest temperature next to it, and the middle temperature between them. I went to

【0025】その結果、従来方法では、図5の如く、焼
結鉱の中央の温度が最も低く、一端の温度が最も高くな
っていた。一方、本発明に係る方法を適用した場合、図
4の如く、所要の温度パターンが得られた。
As a result, in the conventional method, as shown in FIG. 5, the temperature at the center of the sintered ore was the lowest and the temperature at one end was the highest. On the other hand, when the method according to the present invention was applied, the required temperature pattern was obtained as shown in FIG.

【0026】[0026]

【発明の効果】以上詳述した如く、本発明に係る焼結鉱
の焼成方法にあっては、焼結プロセスの状態に拘らず、
焼結鉱の幅方向の温度を所要のパターンにすることがで
き、返鉱の発生率が低減し、歩留まりが向上する等、本
発明は優れた効果を奏する。
As described in detail above, in the method of firing a sintered ore according to the present invention, regardless of the state of the sintering process,
The present invention has excellent effects such that the temperature in the width direction of the sinter ore can be made into a desired pattern, the occurrence rate of return ore is reduced, and the yield is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用するための焼結機を示す模式的斜
視図である。
FIG. 1 is a schematic perspective view showing a sintering machine to which the present invention is applied.

【図2】図1に示した焼結機の制御系を示すブロック図
である。
FIG. 2 is a block diagram showing a control system of the sintering machine shown in FIG.

【図3】ドワイトロイド式の焼結機における給鉱側から
排鉱側までのパレット直下温度分布を示すグラフであ
る。
FIG. 3 is a graph showing a temperature distribution directly below a pallet from a mine supply side to a mine discharge side in a Dwightroid type sintering machine.

【図4】焼結鉱の正断面の温度分布を示すグラフであ
る。
FIG. 4 is a graph showing a temperature distribution of a front cross section of a sinter.

【図5】焼結鉱の正断面の温度分布を示すグラフであ
る。
FIG. 5 is a graph showing a temperature distribution of a front cross section of a sinter.

【符号の説明】[Explanation of symbols]

1 給鉱ホッパ 2 ドラムフィーダ 3 主ゲート 4 パレット 5 調節ゲート 8 温度検出器 10 コンピュータ 1 Mining hopper 2 Drum feeder 3 Main gate 4 Pallet 5 Control gate 8 Temperature detector 10 Computer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 連設された複数のパレットの周回域の一
側へ原料を供給し、これを焼成してなる焼結鉱を他側か
ら排出するドワイトロイド式焼結機における、排出側の
パレットの搬送方向に交差する方向に配置した複数の温
度検出器の検出温度が所定のパターンになるように、パ
レットの搬送方向に交差する方向に配置した複数の供給
量調節ゲートの開度の操作量を制御して、各供給量調節
ゲートに対応して配したレベル計にて検出される原料の
嵩高を調整し、焼結鉱を焼成する方法において、 前記複数の温度検出器を前記パレットの搬送方向に対を
なすように2列配置し、一方の列の各温度検出器の検出
温度の変化,各レベル計にて検出された嵩高の変化及び
前記操作量の変化に基づいて、前記操作量を制御するた
めの制御パラメータを、原料のパレットの搬送方向の最
高温度が前記一方の列の各温度検出器より上流側である
場合及び下流側である場合についてそれぞれ算出し、対
をなす温度検出器の検出温度を比較し、その比較結果に
基づいて、算出した制御パラメータの一方を選択するこ
とを特徴とする焼結鉱の焼成方法。
1. A discharge side of a Dwightroid-type sintering machine in which a raw material is supplied to one side of a circulation area of a plurality of pallets connected in series and the sintered ore obtained by firing the pallet is discharged from the other side. Manipulation of the opening of multiple supply amount adjustment gates arranged in the direction intersecting the pallet conveying direction so that the temperature detected by the temperature detectors arranged in the direction intersecting the pallet conveying direction has a predetermined pattern. In the method of controlling the amount, adjusting the bulkiness of the raw material detected by the level meter arranged corresponding to each supply amount control gate, and firing the sinter, the temperature detectors of the plurality of temperature detectors Two rows are arranged so as to form a pair in the transport direction, and the operation is performed based on a change in the temperature detected by each temperature detector in one row, a change in the bulkiness detected by each level meter, and a change in the operation amount. Control parameters to control the quantity, The maximum temperature in the conveying direction of the pallets of materials is calculated respectively for the case of being upstream and the case of downstream of the temperature detectors in the one row, and the detected temperatures of the paired temperature detectors are compared. A method for firing a sintered ore, comprising selecting one of the calculated control parameters based on a comparison result.
【請求項2】 前記制御パラメータは、原料のパレット
の搬送方向の最高温度が前記一方の列の各温度検出器よ
り上流側である場合及び下流側である場合で正負が異な
るパラメータを用い、両パラメータについて前記検出温
度と嵩高との関係が閉ループ安定となるように算出する
請求項1記載の焼結鉱の焼成方法。
2. The control parameter is a parameter whose positive and negative values are different when the maximum temperature of the raw material pallet in the conveying direction is upstream and downstream of each temperature detector of the one row, and both are used. The method for calcination of sinter according to claim 1, wherein the parameter is calculated so that the relationship between the detected temperature and the bulkiness is closed loop stable.
JP31380794A 1994-12-16 1994-12-16 Baking method for sintered ore Pending JPH08170880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31380794A JPH08170880A (en) 1994-12-16 1994-12-16 Baking method for sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31380794A JPH08170880A (en) 1994-12-16 1994-12-16 Baking method for sintered ore

Publications (1)

Publication Number Publication Date
JPH08170880A true JPH08170880A (en) 1996-07-02

Family

ID=18045758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31380794A Pending JPH08170880A (en) 1994-12-16 1994-12-16 Baking method for sintered ore

Country Status (1)

Country Link
JP (1) JPH08170880A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100456020C (en) * 2004-12-28 2009-01-28 宝山钢铁股份有限公司 Online method for testing burn through index
JP2013122341A (en) * 2011-12-12 2013-06-20 Nippon Steel & Sumitomo Metal Corp Data measuring device of pallet of sintering machine and data measuring method
WO2019124790A1 (en) * 2017-12-22 2019-06-27 주식회사 포스코 Apparatus and method for producing sintered ore

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100456020C (en) * 2004-12-28 2009-01-28 宝山钢铁股份有限公司 Online method for testing burn through index
JP2013122341A (en) * 2011-12-12 2013-06-20 Nippon Steel & Sumitomo Metal Corp Data measuring device of pallet of sintering machine and data measuring method
WO2019124790A1 (en) * 2017-12-22 2019-06-27 주식회사 포스코 Apparatus and method for producing sintered ore
KR20190076675A (en) * 2017-12-22 2019-07-02 주식회사 포스코 Apparatus and mehtod for manufacutring sintered ore

Similar Documents

Publication Publication Date Title
US4606529A (en) Furnace controls
US3351687A (en) Method and apparatus for firing ceramic bodies
CN113218197B (en) Sintering end point consistency control system and method
US4410355A (en) Process for controlling a pelletizing plant for fine-grained ores
JPH08170880A (en) Baking method for sintered ore
KR101559687B1 (en) Method and regulator for adjusting the burn-through point in a sintering machine
JP2002121621A (en) Method for producing sintered ore and dl type sintering machine
JPH055589A (en) Operating method for sintering machine
JPH0774397B2 (en) Method for controlling air permeability of sintering raw material layer
JPH03215630A (en) Operating method for sintering machine
JPH08127823A (en) Method for controlling burning of sintering ore
WO2022230858A1 (en) Method for manufacturing sintered ore and device for manufacturing sintered ore
JPH08127822A (en) Operation of sintering
JPH05272872A (en) Control device for feed amount of sintering material
JP2000320978A (en) Control method of charging sintered material
JPH06330194A (en) Operation of sintering machine
JPH0814007B2 (en) Agglomerated ore manufacturing method
JPH07180972A (en) Method for operating sintering machine
JPH02294437A (en) Method for operating sintering machine
GB2129165A (en) Controlling kilns
JPH06299259A (en) Method for burning sintering ore
JPH03177787A (en) Reduction of sintering nonuniformity of sintered ore
RU2229074C1 (en) Method for controlling pellets roasting process on conveying machine
JPH01247528A (en) Method for operating continuous heating furnace
JPS5938289B2 (en) Method for producing sintered ore