JPH08170176A - Vapor-phase chemical reactor - Google Patents

Vapor-phase chemical reactor

Info

Publication number
JPH08170176A
JPH08170176A JP31446694A JP31446694A JPH08170176A JP H08170176 A JPH08170176 A JP H08170176A JP 31446694 A JP31446694 A JP 31446694A JP 31446694 A JP31446694 A JP 31446694A JP H08170176 A JPH08170176 A JP H08170176A
Authority
JP
Japan
Prior art keywords
gas
wafer
shower head
orifice plate
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31446694A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Tsutsumi
芳紹 堤
Tomoji Watanabe
智司 渡辺
Masato Ikegawa
正人 池川
Masahiro Fujita
昌洋 藤田
Kazuhiko Matsuoka
一彦 松岡
Akira Yoshida
明 吉田
Takeshi Ogura
武 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi High Tech Corp
Original Assignee
Hitachi Ltd
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP31446694A priority Critical patent/JPH08170176A/en
Publication of JPH08170176A publication Critical patent/JPH08170176A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Abstract

PURPOSE: To maintain the uniformity in thickness distribution of a formed film by providing a mechanism to monitor the heat radiation rate of the face of a shower head opposed to a wafer and cleaning the head face at an opportune moment in consideration of the change in the heat radiation rate. CONSTITUTION: A sensor 101 for monitoring the heat radiation rate of a shower head 2 is provided at the several points on both side faces of the orifice plate 22 of the head 2 opposed to a wafer 4 to monitor the change in heat radiation rate of the orifice plate 22 and the optical change of the surface. A composite element of the integrated light emitting and receiving elements is used as the sensor 101. Consequently, when the face of the orifice plate 22 opposed to the wafer 4 is clean, the emitted light is radiated into a space, and only the least light returns to the light receiving elements. Meanwhile, when the face is contaminated, a large quantity of light emitted in proportion to the amt. of contaminant stuck to the sensor 101 face is returned and received by the element, and a change in the state of the face of the orifice plate 22 opposed to the wafer 4 is recognized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体の製造において
特に気相成長を用いて成膜する際の膜厚分布の均一性に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to uniformity of film thickness distribution in semiconductor manufacturing, particularly when a film is formed by using vapor deposition.

【0002】[0002]

【従来の技術】気相化学反応装置例えば、半導体製造に
用いられる薄膜製造装置では、成膜対象物であるウェハ
における成膜後のウェハ面内での(1)膜厚の均一性及
び(2)膜の組成の均一性が重要でありこの均一性を得
るためには原料ガスの供給,ウェハの温度その他の成膜
条件の安定な制御は非常に重要である。
2. Description of the Related Art A vapor phase chemical reaction apparatus, for example, in a thin film manufacturing apparatus used for manufacturing a semiconductor, (1) uniformity of film thickness and (2) ) Uniformity of the composition of the film is important, and in order to obtain this uniformity, stable control of the supply of the source gas, the temperature of the wafer and other film forming conditions is very important.

【0003】気相化学反応装置の例として、ここでは従
来技術として実開平3−109329 号公報に開示された化学
気相成長装置を例に取り上げて説明する。図5はその装
置の断面図である。
As an example of a vapor phase chemical reaction apparatus, a chemical vapor deposition apparatus disclosed in Japanese Utility Model Laid-Open No. 3-109329 will be taken up as an example and described below. FIG. 5 is a sectional view of the device.

【0004】成膜を行う際の操作について説明する。ウ
ェハ4を真空容器5内のサセプタ3上に導入後、真空容
器5内のガスを真空排気口51を経由して真空排気す
る。次に不活性ガスを第一ガス供給配管71,シャワー
ヘッド2を通して真空容器5に導入する。真空容器5内
がある所定の圧力になったらガスの供給をやめ、再度、
真空容器5内のガスを真空排気口51を経由して真空排
気する。この過程を数回繰り返し真空容器5内のガスの
置換を行った後に真空容器5内のガスを真空排気口51
を経由して真空排気する。次に反応ガスを第一ガス供給
配管71を通してシャワーヘッドに供給する。原料ガス
はオリフィス板22を通り真空容器5内のサセプタ3上
に配置されヒータ31で加熱されたウェハ4に供給され
る。気相成長で消費されなかったガスや反応で発生した
ガスは真空排気配管51を経由して真空排気される。
An operation for forming a film will be described. After introducing the wafer 4 onto the susceptor 3 in the vacuum container 5, the gas in the vacuum container 5 is evacuated through the vacuum exhaust port 51. Next, an inert gas is introduced into the vacuum container 5 through the first gas supply pipe 71 and the shower head 2. When the vacuum container 5 reaches a certain pressure, stop the gas supply, and
The gas in the vacuum container 5 is evacuated through the vacuum exhaust port 51. After repeating this process several times to replace the gas in the vacuum container 5, the gas in the vacuum container 5 is evacuated to a vacuum exhaust port 51.
Evacuate via. Next, the reaction gas is supplied to the shower head through the first gas supply pipe 71. The raw material gas passes through the orifice plate 22 and is supplied to the wafer 4 which is placed on the susceptor 3 in the vacuum container 5 and heated by the heater 31. The gas not consumed in the vapor phase growth and the gas generated by the reaction are evacuated via the evacuation pipe 51.

【0005】この後、反応ガスの供給を停止して真空容
器5内のガスを真空排気配口51を経由して真空排気す
る。次に不活性ガスを第一ガス供給配管71からシャワ
ーヘッド2を通して真空容器5に導入する。真空容器5
がある所定の圧力になったらガスの供給をやめ、再度、
真空容器5内のガスを真空排気配口51を経由して真空
排気する。この過程を数回繰り返し真空容器5内のガス
の置換を行う。第一ガス供給管71から不活性ガスを真
空容器5に導入して圧力を大気圧とした後、サセプタ3
上のウェハ4を気相化学反応装置1外へ搬出する。
After that, the supply of the reaction gas is stopped and the gas in the vacuum container 5 is evacuated through the evacuation port 51. Next, the inert gas is introduced into the vacuum container 5 from the first gas supply pipe 71 through the shower head 2. Vacuum container 5
When the pressure reaches a certain level, stop the gas supply and
The gas in the vacuum container 5 is evacuated via the evacuation port 51. This process is repeated several times to replace the gas in the vacuum container 5. After introducing an inert gas into the vacuum container 5 from the first gas supply pipe 71 to adjust the pressure to atmospheric pressure, the susceptor 3
The upper wafer 4 is carried out of the vapor phase chemical reaction device 1.

【0006】シャワーヘッド2が加熱されたウェハ4と
比較的近い距離で対向させられている場合の従来技術問
題点は、ウェハ4上に成膜されなかった原料ガスがシャ
ワーヘッド2のオリフィス板22のウェハ4と対向する
面で成膜しその表面の熱輻射率が変化することである。
これによりウェハ4からのオリフィス板22に吸収され
る熱流束が変化し、熱の供給側であるウェハ4の温度分
布が所定の値から外れ成膜される膜厚の変動をもたら
す。公知例ではシャワーヘッド2内に冷却水を導入して
シャワーヘッド2を強制的に冷却し未反応の原料ガスに
よるオリフィス板22への成膜を抑制することで、この
問題を解決しようとしている。しかしオリフィス板22
の温度を低くして膜の付着を抑制するだけでは不十分で
あり、膜は生成速度は遅くなるものの付着が完全に無く
なるわけでは無いのでオリフィス板22の熱輻射率を恒
常的に一定にすることは難しい。そのため何らかの形で
オリフィス板22の表面の洗浄が必要となるが従来技術
ではこの時期を適切に判定する手段がないため膜厚の均
一性を維持することが難しいという問題点がある。
A problem with the prior art when the shower head 2 is opposed to the heated wafer 4 at a relatively short distance is that the raw material gas not deposited on the wafer 4 is the orifice plate 22 of the shower head 2. That is, the film is formed on the surface facing the wafer 4 and the thermal emissivity of the surface changes.
As a result, the heat flux absorbed from the wafer 4 to the orifice plate 22 changes, and the temperature distribution of the wafer 4 on the heat supply side deviates from a predetermined value, resulting in fluctuations in the film thickness of the film formed. In the known example, cooling water is introduced into the shower head 2 to forcibly cool the shower head 2 to suppress the film formation on the orifice plate 22 by the unreacted source gas, thereby attempting to solve this problem. However, the orifice plate 22
It is not enough to suppress the adhesion of the film by lowering the temperature of the film. Since the film formation speed is slowed but the adhesion is not completely eliminated, the thermal emissivity of the orifice plate 22 is made constant constantly. It's difficult. Therefore, the surface of the orifice plate 22 needs to be cleaned in some way, but there is a problem that it is difficult to maintain the uniformity of the film thickness because there is no means for appropriately determining this time in the conventional technology.

【0007】[0007]

【発明が解決しようとする課題】従来技術のにはシャワ
ーヘッド2のオリフィス板22の洗浄時期を適切に判定
する手段が無いため膜厚の均一性を維持することが難し
いという問題がある。
The prior art has a problem that it is difficult to maintain the uniformity of the film thickness because there is no means for appropriately determining the cleaning time of the orifice plate 22 of the shower head 2.

【0008】[0008]

【課題を解決するための手段】上記目的である均一な成
膜性能を維持するためにはシャワーヘッド2のオリフィ
ス板22の洗浄時期を適切に判定する手段をオリフィス
板22部分に設け、オリフィス板22の熱輻射率の変化
を監視しこれによりオリフィス板22の洗浄時期を決定
することにより達成される。その手段はオリフィス板2
2のウェハ4と対向する面の熱輻射率を測定するための
シャワーヘッド熱輻射率監視用センサ101をオリフィ
ス板22に設けこの信号の変化を常時監視しオリフィス
板22の洗浄時期を決定する。これにより適切な時期に
オリフィス板22を洗浄できるので膜厚の均一性を長期
間にわたって維持できる。
Means for Solving the Problems In order to maintain the uniform film forming performance which is the above-mentioned object, means for appropriately determining the cleaning time of the orifice plate 22 of the shower head 2 is provided in the orifice plate 22 portion. This is accomplished by monitoring changes in the emissivity of 22 and thereby determining when to clean the orifice plate 22. The means is the orifice plate 2
The shower head thermal emissivity sensor 101 for measuring the thermal emissivity of the surface of the second wafer 4 facing the wafer 4 is provided on the orifice plate 22, and the change of this signal is constantly monitored to determine the cleaning time of the orifice plate 22. As a result, the orifice plate 22 can be cleaned at an appropriate time, so that the uniformity of the film thickness can be maintained for a long period of time.

【0009】[0009]

【作用】オリフィス板22のウェハ4と対向する面の熱
輻射率の変化をシャワーヘッド熱輻射率監視用センサ1
01で常時監視しオリフィス板22の洗浄時期を決定す
ることができ、適切な時期にオリフィス板22を洗浄で
きるので膜厚の均一性を長期間にわたって維持できる。
The sensor 1 for monitoring the emissivity of the shower head detects changes in the heat emissivity of the surface of the orifice plate 22 facing the wafer 4.
Since the orifice plate 22 can be cleaned at a proper time by constantly monitoring with 01, the orifice plate 22 can be cleaned at an appropriate time, so that the uniformity of the film thickness can be maintained for a long period of time.

【0010】[0010]

【実施例】以下、本発明の一実施例を図1を参照して説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIG.

【0011】図1は、本発明の一実施例に係る構成図で
ある。
FIG. 1 is a block diagram showing an embodiment of the present invention.

【0012】図1では、1は気相反応装置、2はシャワ
ーヘッド、3はサセプタ、4はウェハ、5は真空容器、
6は真空排気部、7はガス供給部、8はガス処理部、9
は予備室、10は真空計、21はガス混合室、22はオ
リフィス板、31はヒータ、51は真空排気口、61は
真空排気配管、62は真空排気バルブ、63はシャワー
ヘッド排気配管、64はシャワーヘッド排気バルブ、7
1は第一ガス供給配管、72は第二ガス供給配管、81
はガス処理配管、82は排気配管、91は予備室第一ゲ
ートバルブ、92は予備室第二ゲートバルブ、93はウ
ェハハンドラ、100はシャワーヘッド熱輻射率監視コ
ントロ−ラ、101はシャワーヘッド熱輻射率監視セン
サ、102はセンサケ−ブル、200は冷却ユニット、
201は真空容器底面冷却水供給管、202は真空容器
底面冷却水回収管、203は真空容器側面冷却水供給
管、204は真空容器側面冷却水回収管、205はシャ
ワーヘッド冷却水供給管、206はシャワーヘッド冷却
水回収管、207はシャワーヘッド冷却ダクト、208
は真空容器側面冷却ダクト、209は真空容器底面冷却
ダクトを示す。
In FIG. 1, 1 is a gas phase reactor, 2 is a shower head, 3 is a susceptor, 4 is a wafer, 5 is a vacuum container,
6 is a vacuum exhaust unit, 7 is a gas supply unit, 8 is a gas processing unit, and 9 is a gas processing unit.
Is a spare chamber, 10 is a vacuum gauge, 21 is a gas mixing chamber, 22 is an orifice plate, 31 is a heater, 51 is a vacuum exhaust port, 61 is a vacuum exhaust pipe, 62 is a vacuum exhaust valve, 63 is a showerhead exhaust pipe, and 64 is Shower head exhaust valve, 7
1 is a first gas supply pipe, 72 is a second gas supply pipe, 81
Is a gas processing pipe, 82 is an exhaust pipe, 91 is a preliminary chamber first gate valve, 92 is a preliminary chamber second gate valve, 93 is a wafer handler, 100 is a shower head heat radiation rate monitoring controller, and 101 is a shower head heat. Emissivity monitoring sensor, 102 sensor cable, 200 cooling unit,
Reference numeral 201 denotes a vacuum container bottom cooling water supply pipe, 202 denotes a vacuum container bottom cooling water recovery pipe, 203 denotes a vacuum container side cooling water supply pipe, 204 denotes a vacuum container side cooling water recovery pipe, 205 denotes a shower head cooling water supply pipe, 206 Is a showerhead cooling water recovery pipe, 207 is a showerhead cooling duct, and 208
Is a cooling container side cooling duct, and 209 is a vacuum container bottom cooling duct.

【0013】以下、本発明の作用を説明する。なお本実
施例では原料ガス供給配管が2本の場合について述べ
る。その成膜時の手順は以下の通りである。
The operation of the present invention will be described below. In the present embodiment, the case where there are two source gas supply pipes will be described. The procedure for forming the film is as follows.

【0014】ウェハ4を真空容器5内のサセプタ3上に
導入後、真空容器5内のガスを真空排気部6を用いて真
空排気配管61を経由して真空排気する。次に不活性ガ
スをガス供給部7より第一ガス供給配管71,第二ガス
供給配管72からシャワーヘッド2を通して真空容器5
に導入する。真空容器5がある所定の圧力になったらガ
スの供給をやめ、再度真空容器5内のガスを真空排気部
6を用いて真空排気配管61を経由して真空排気する。
この過程を数回繰り返し真空容器5内のガスの置換を行
った後に真空容器5内のガスを真空排気部6にて真空排
気配管61を経由して真空排気する。
After the wafer 4 is introduced onto the susceptor 3 in the vacuum container 5, the gas in the vacuum container 5 is evacuated using the vacuum exhaust unit 6 via the vacuum exhaust pipe 61. Next, an inert gas is supplied from the gas supply unit 7 through the first gas supply pipe 71 and the second gas supply pipe 72 through the shower head 2 to the vacuum container 5
To be introduced. When the vacuum container 5 reaches a predetermined pressure, the gas supply is stopped, and the gas in the vacuum container 5 is evacuated again using the vacuum evacuation unit 6 via the vacuum evacuation pipe 61.
This process is repeated several times to replace the gas in the vacuum container 5, and then the gas in the vacuum container 5 is vacuum-exhausted in the vacuum exhaust unit 6 via the vacuum exhaust pipe 61.

【0015】次に反応ガスをガス供給部7から第一ガス
供給配管71と第二ガス供給配管72を通してガス混合
室21に供給する。ガス混合室21で第一ガス供給配管
71と第二ガス供給配管72から供給された原料ガス
は、混合室21内で混合された後オリフィス板22を通
り真空容器5内のサセプタ3上に配置されたウェハ4に
供給され成膜が行われる。
Next, the reaction gas is supplied from the gas supply section 7 to the gas mixing chamber 21 through the first gas supply pipe 71 and the second gas supply pipe 72. The raw material gases supplied from the first gas supply pipe 71 and the second gas supply pipe 72 in the gas mixing chamber 21 are mixed in the mixing chamber 21, pass through the orifice plate 22, and are arranged on the susceptor 3 in the vacuum container 5. The wafer 4 thus formed is supplied and film formation is performed.

【0016】この後、真空容器5内のガスを真空排気部
6を用いて真空排気配管61を経由して真空排気する。
次に不活性ガスをガス供給部7より第一ガス供給配管7
1,第二ガス供給配管72からシャワーヘッド2を通し
て真空容器5に導入する。真空容器5がある所定の圧力
になったらガスの供給をやめ、再度真空容器5内のガス
を真空排気部6を用いて真空排気配管61を経由して真
空排気する。この過程を数回繰り返し真空容器5内のガ
スの置換を行う。サセプタ3上のウェハ4を予備室9中
に置かれた新しいウェハ4と交換する。これが気相化学
反応装置のサイクルである。
After that, the gas in the vacuum container 5 is evacuated using the evacuation unit 6 through the evacuation pipe 61.
Next, an inert gas is supplied from the gas supply unit 7 to the first gas supply pipe 7
1, the gas is introduced into the vacuum container 5 from the second gas supply pipe 72 through the shower head 2. When the vacuum container 5 reaches a predetermined pressure, the gas supply is stopped, and the gas in the vacuum container 5 is evacuated again using the vacuum evacuation unit 6 via the vacuum evacuation pipe 61. This process is repeated several times to replace the gas in the vacuum container 5. The wafer 4 on the susceptor 3 is replaced with a new wafer 4 placed in the spare chamber 9. This is the cycle of a gas phase chemical reactor.

【0017】この間、シャワーヘッド2のオリフィス板
22のウェハ4と対向する面側に数ヶ所設けられたシャ
ワーヘッド熱輻射率監視センサ101によりオリフィス
板22の熱輻射率の変化すなわち表面の光学的状態の変
化が監視されている。この場合熱輻射率監視センサ10
1は発光素子と受光素子の一体となった複合素子から構
成されており、オリフィス板22のウェハ4に対向する
表面が非常に清浄であれば熱輻射率監視センサ101か
ら発光された光は空間に放射されて受光素子には極わず
かの光しか戻ってこない。しかしオリフィス板22のウ
ェハ4に対向する表面が何らかの原因で汚染されるとシ
ャワーヘッド熱輻射率監視センサ101の表面も汚染され
るので、発光した光は熱輻射率監視センサ101表面に
付着した汚染物のために反射され多くの部分が自分自身
に戻ってくることになる。戻ってくる光の量はオリフィ
ス板22のウェハ4に対向する表面の汚染の量に比例す
るので、熱輻射率監視センサ101に受光される光の量
を常時監視すればオリフィス板22のウェハ4に対向す
る表面の状態の変化を知ることができる。つまり、オリ
フィス板22のウェハ4に対向する表面の熱輻射率を常
時監視することができる。
During this time, a change in the thermal emissivity of the orifice plate 22, that is, the optical state of the surface is changed by the shower head thermal emissivity monitoring sensor 101 provided at several places on the surface of the orifice plate 22 of the shower head 2 facing the wafer 4. Are being monitored for changes. In this case, the thermal emissivity monitoring sensor 10
1 is composed of a composite element in which a light emitting element and a light receiving element are integrated, and if the surface of the orifice plate 22 facing the wafer 4 is very clean, the light emitted from the thermal emissivity monitoring sensor 101 is a space. Is emitted to the light receiving element and only a very small amount of light returns to the light receiving element. However, if the surface of the orifice plate 22 facing the wafer 4 is contaminated for some reason, the surface of the showerhead thermal emissivity monitoring sensor 101 is also contaminated, so the emitted light is contaminated on the surface of the thermal emissivity monitoring sensor 101. Many things will be reflected back for themselves because of the reflection of things. Since the amount of returned light is proportional to the amount of contamination on the surface of the orifice plate 22 facing the wafer 4, if the amount of light received by the thermal emissivity monitoring sensor 101 is constantly monitored, the wafer 4 of the orifice plate 22 will be affected. The change in the state of the surface facing the can be known. That is, the thermal emissivity of the surface of the orifice plate 22 facing the wafer 4 can be constantly monitored.

【0018】以上によりオリフィス板22のウェハ4と
対向する面の熱輻射率の変化をシャワーヘッド熱輻射率
監視用センサ101で常時監視しオリフィス板22の洗
浄時期を決定することができ、適切な時期にオリフィス
板22を洗浄することを決定できるので膜厚の均一性を
長期間にわたって維持できる。
As described above, the shower head thermal emissivity monitoring sensor 101 can constantly monitor the change in the thermal emissivity of the surface of the orifice plate 22 facing the wafer 4 to determine the cleaning time of the orifice plate 22. Since it is possible to decide to wash the orifice plate 22 at a certain time, the uniformity of the film thickness can be maintained for a long period of time.

【0019】図2は、本発明の他の実施例のブロック図
である。本実施例ではシャワーヘッド2のオリフィス板
22のウェハと対向する面の熱輻射率の変化、すなわ
ち、表面の光学的状態の変化を監視するためにオリフィ
ス板22に埋設した熱電対103を用いる。
FIG. 2 is a block diagram of another embodiment of the present invention. In this embodiment, the thermocouple 103 embedded in the orifice plate 22 is used to monitor the change in the thermal emissivity of the surface of the orifice plate 22 of the shower head 2 facing the wafer, that is, the change in the optical state of the surface.

【0020】オリフィス板22のウェハ4に対向する表
面が非常に清浄であればオリフィス板22の熱輻射率が
小さいので、ウェハ4から輻射される熱の内オリフィス
板22へ流入する熱はわずかである。そのため大部分が
オリフィス板22で、再度、反射されてウェハ側へ戻
る。しかし、オリフィス板22のウェハ4に対向する表
面が何らかの原因で汚染されると熱電対103の埋設さ
れた表面も汚染されるので、熱輻射率は大きくなる。そ
のため、清浄な状態に比べてウェハ4から輻射される熱
はオリフィス板22により多く流入する。そのためオリ
フス板22で、再度、反射されウェハ4に戻る熱の量は
減少する。オリフィス板22へ流入する熱の増加分によ
りオリフィス板22の温度は上昇することになる。オリ
フィス板22の温度の上昇量は熱電対103の埋設され
た表面に付着した汚染の量相関関係があるので、熱電対
103での温度上昇量を、常時、監視すればオリフィス
板22のウェハ4に対向する表面の状態の変化を知るこ
とができる。つまりオリフィス板22のウェハ4に対向
する表面の熱輻射率を常時監視することができることに
なる。
If the surface of the orifice plate 22 facing the wafer 4 is very clean, the thermal emissivity of the orifice plate 22 is small, so the amount of heat radiated from the wafer 4 that flows into the orifice plate 22 is small. is there. Therefore, most of it is reflected by the orifice plate 22 again and returns to the wafer side. However, if the surface of the orifice plate 22 facing the wafer 4 is contaminated for some reason, the embedded surface of the thermocouple 103 is also contaminated, so that the thermal emissivity becomes large. Therefore, more heat radiated from the wafer 4 flows into the orifice plate 22 than in a clean state. Therefore, the amount of heat reflected back to the wafer 4 by the orifice plate 22 is reduced. The temperature of the orifice plate 22 rises due to the increased amount of heat flowing into the orifice plate 22. The temperature rise of the orifice plate 22 has a correlation with the amount of contamination attached to the embedded surface of the thermocouple 103. Therefore, if the temperature rise of the thermocouple 103 is constantly monitored, the wafer 4 of the orifice plate 22 is The change in the state of the surface facing the can be known. That is, the thermal emissivity of the surface of the orifice plate 22 facing the wafer 4 can be constantly monitored.

【0021】以上によりオリフィス板22のウェハ4と
対向する面の熱輻射率の変化を熱電対103で常時監視
しオリフィス板22の洗浄時期を決定することができ、
適切な時期にオリフィス板22を洗浄することを決定で
きるので膜厚の均一性を長期間にわたって維持できる。
As described above, it is possible to determine the cleaning time of the orifice plate 22 by constantly monitoring the change in the thermal emissivity of the surface of the orifice plate 22 facing the wafer 4 with the thermocouple 103.
Since it is possible to decide to wash the orifice plate 22 at an appropriate time, the uniformity of the film thickness can be maintained for a long period of time.

【0022】図3は、本発明の他の実施例のブロック図
である。本実施例ではシャワーヘッド2のオリフィス板
22のウェハと対向する面の熱輻射率の変化、すなわ
ち、表面の光学的状態の変化を監視するためにオリフィ
ス板22に埋設したシャワーヘッド熱輻射率監視用セン
サ101を用いているが図2に示した熱電対103でも
良い。本実施例では監視結果に基づいてシャワーヘッド
2のオリフィス板22のウェハ4に対向する面の熱輻射
率を一定値に維持するための洗浄機構として高周波プラ
ズマを用いている。高周波プラズマの発生機構は本実施
例では高周波電源部300,高周波給電線301と電極
としてのオリフィス板22とサセプタ3で構成されてい
る。
FIG. 3 is a block diagram of another embodiment of the present invention. In the present embodiment, the showerhead thermal emissivity monitoring embedded in the orifice plate 22 for monitoring the change of the thermal emissivity of the surface of the orifice plate 22 of the showerhead 2 facing the wafer, that is, the change of the optical state of the surface. Although the sensor 101 for use is used, the thermocouple 103 shown in FIG. 2 may be used. In this embodiment, high-frequency plasma is used as a cleaning mechanism for maintaining the thermal emissivity of the surface of the orifice plate 22 of the shower head 2 facing the wafer 4 at a constant value based on the monitoring result. In this embodiment, the high-frequency plasma generating mechanism is composed of a high-frequency power supply unit 300, a high-frequency power supply line 301, an orifice plate 22 as an electrode and a susceptor 3.

【0023】この洗浄機構はシャワーヘッド熱輻射率監
視用センサ101で監視されているオリフィス板22の
ウェハと対向する面の熱輻射率が清浄な状態に比べて著
しく劣化したと判断された場合には、オリフィス板22
とサセプタ3のウェハ4がのる面側で囲まれた空間にプ
ラズマを発生させてオリフィス板22のウェハと対向す
る面をプラズマにより洗浄する。
This cleaning mechanism is used when it is determined that the heat emissivity of the surface of the orifice plate 22 facing the wafer, which is monitored by the shower head heat emissivity monitoring sensor 101, is significantly deteriorated as compared with a clean state. Is the orifice plate 22
Then, plasma is generated in the space surrounded by the surface of the susceptor 3 on which the wafer 4 is mounted, and the surface of the orifice plate 22 facing the wafer is cleaned by the plasma.

【0024】ここではサセプタ3上にはウェハ4が無い
場合について説明する。真空容器5内のガスを真空排気
部6を用いて真空排気配管61を経由して真空排気す
る。次に不活性ガスをガス供給部7より第一ガス供給配
管71,第二ガス供給配管72からシャワーヘッド2を
通して真空容器5に導入する。真空容器5がある所定の
圧力になったらガスの供給をやめ、再度、真空容器5内
のガスを真空排気部6を用いて真空排気配管61を経由
して真空排気する。この過程を数回繰り返し真空容器5
内のガスの置換を行った後に真空容器5内のガスを真空
排気部6で真空排気配管61を経由して真空排気する。
Here, a case where the wafer 4 is not placed on the susceptor 3 will be described. The gas in the vacuum container 5 is evacuated using the evacuation unit 6 via the evacuation pipe 61. Next, an inert gas is introduced into the vacuum container 5 from the gas supply unit 7 through the first gas supply pipe 71 and the second gas supply pipe 72 through the shower head 2. When the vacuum container 5 reaches a certain predetermined pressure, the supply of gas is stopped, and the gas in the vacuum container 5 is again evacuated using the vacuum evacuation unit 6 via the vacuum evacuation pipe 61. This process is repeated several times and the vacuum container 5
After the gas inside is replaced, the gas inside the vacuum container 5 is evacuated by the evacuation unit 6 via the evacuation pipe 61.

【0025】次にプラズマで洗浄を行うための反応ガス
をガス供給部7から第一ガス供給配管71と第二ガス供
給配管72を通してガス混合室21に供給する。ガス混
合室21で第一ガス供給配管71と第二ガス供給配管7
2から供給された原料ガスは、混合室21内で混合され
た後、オリフィス板22を通り真空容器5内に供給され
る。真空容器5内の圧力がプラズマを発生させるための
所定の圧力になったら高周波電源300で発生された高
周波が給電線301を経て電極であるオリフィス板22
とサセプタ3に供給されプラズマが発生させられる。所
定の時間プラズマによる洗浄を行った後に高周波の供給
を停止する。シャワーヘッド熱輻射率監視用センサ10
1で監視されているオリフィス板22のウェハと対向す
る面の熱輻射率を測定し充分に洗浄がなされたことを確
認する。不十分な場合には再度プラズマによる洗浄を行
いオリフィス板22のウェハと対向する面が充分に洗浄
されるまで洗浄を繰り返す。
Next, a reaction gas for cleaning with plasma is supplied from the gas supply unit 7 to the gas mixing chamber 21 through the first gas supply pipe 71 and the second gas supply pipe 72. In the gas mixing chamber 21, the first gas supply pipe 71 and the second gas supply pipe 7
The raw material gas supplied from No. 2 is mixed in the mixing chamber 21 and then supplied into the vacuum container 5 through the orifice plate 22. When the pressure in the vacuum container 5 reaches a predetermined pressure for generating plasma, the high frequency power generated by the high frequency power supply 300 passes through the power supply line 301 and is the electrode of the orifice plate 22.
Is supplied to the susceptor 3 and plasma is generated. After cleaning with plasma for a predetermined time, the supply of high frequency is stopped. Shower head Emissivity sensor 10
The heat emissivity of the surface of the orifice plate 22 facing the wafer monitored in 1 is measured to confirm that the cleaning is sufficiently performed. If insufficient, plasma cleaning is performed again, and the cleaning is repeated until the surface of the orifice plate 22 facing the wafer is sufficiently cleaned.

【0026】その後、真空容器5内のガスを真空排気部
6を用いて真空排気配管61を経由して真空排気する。
次に不活性ガスをガス供給部7より第一ガス供給配管7
1,第二ガス供給配管72からシャワーヘッド2を通し
て真空容器5に導入する。真空容器5がある所定の圧力
になったらガスの供給をやめ、再度、真空容器5内のガ
スを真空排気部6を用いて真空排気配管61を経由して
真空排気する。この過程を数回繰り返し真空容器5内の
ガスの置換を行った後に真空容器5内のガスを真空排気
部6にて真空排気配管61を経由して真空排気する。こ
の後、ウェハ4を真空容器5に導入して成膜を行う。
After that, the gas in the vacuum container 5 is evacuated using the vacuum exhaust unit 6 through the vacuum exhaust pipe 61.
Next, an inert gas is supplied from the gas supply unit 7 to the first gas supply pipe 7
1, the gas is introduced into the vacuum container 5 from the second gas supply pipe 72 through the shower head 2. When the vacuum container 5 reaches a certain predetermined pressure, the supply of gas is stopped, and the gas in the vacuum container 5 is again evacuated using the vacuum evacuation unit 6 via the vacuum evacuation pipe 61. This process is repeated several times to replace the gas in the vacuum container 5, and then the gas in the vacuum container 5 is vacuum-exhausted in the vacuum exhaust unit 6 via the vacuum exhaust pipe 61. After that, the wafer 4 is introduced into the vacuum container 5 to form a film.

【0027】以上によりオリフィス板22のウェハ4と
対向する面の熱輻射率の変化を熱電対103で常時監視
しオリフィス板22の洗浄時期を決定し洗浄する。その
ためオリフィス板22のウェハ4と対向する面の熱輻射
率を一定に維持できる。
As described above, the thermocouple 103 constantly monitors the change of the thermal emissivity of the surface of the orifice plate 22 facing the wafer 4, and the cleaning time of the orifice plate 22 is determined. Therefore, the thermal emissivity of the surface of the orifice plate 22 facing the wafer 4 can be maintained constant.

【0028】図4は、本発明の他の実施例のブロック図
である。本実施例ではシャワーヘッド2のオリフィス板
22のウェハと対向する面の熱輻射率の変化、すなわ
ち、表面の光学的状態の変化を監視するためにオリフィ
ス板22に埋設したシャワーヘッド熱輻射率監視用セン
サ101を用いているが図2に示した熱電対103でも
良い。本実施例では監視結果に基づいてサセプタ3の温
度を補正するためのヒータ制御補助信号出力線105が
シャワーヘッド熱輻射率監視コントロ−ラ100からヒ
ータコントローラ32に結合されている。
FIG. 4 is a block diagram of another embodiment of the present invention. In the present embodiment, the showerhead thermal emissivity monitoring embedded in the orifice plate 22 for monitoring the change of the thermal emissivity of the surface of the orifice plate 22 of the showerhead 2 facing the wafer, that is, the change of the optical state of the surface. Although the sensor 101 for use is used, the thermocouple 103 shown in FIG. 2 may be used. In this embodiment, a heater control auxiliary signal output line 105 for correcting the temperature of the susceptor 3 based on the monitoring result is connected to the heater controller 32 from the shower head thermal emissivity monitoring controller 100.

【0029】オリフィス板22のウェハ4に対向する面
の熱輻射率が何らかの原因で著しく大きくなるとサセプ
タ3の上に置かれたウェハ4の温度の均一性が劣化する
ので、数ヶ所に設けられたシャワーヘッド熱輻射率監視
センサ101の監視結果から予想されるウェハ4の均一
な温度分布からの差を補正するような信号がシャワーヘ
ッド熱輻射率監視コントローラ100からヒータ制御補
助信号出力線105を経由してヒータコントローラ32
へと出力される。この信号によりヒータコントローラ3
2は補正がなされた温度制御のための電力をヒータ給電
線33を経由してヒータ31へと送る。これによりウェ
ハ4の温度の均一性が補償される。
If the thermal emissivity of the surface of the orifice plate 22 facing the wafer 4 becomes extremely large for some reason, the temperature uniformity of the wafer 4 placed on the susceptor 3 deteriorates. A signal for correcting the difference from the uniform temperature distribution of the wafer 4 expected from the monitoring result of the shower head thermal emissivity monitoring sensor 101 is sent from the shower head thermal emissivity monitoring controller 100 through the heater control auxiliary signal output line 105. And heater controller 32
Is output to. By this signal, the heater controller 3
2 sends the corrected electric power for temperature control to the heater 31 via the heater power supply line 33. This compensates for the temperature uniformity of the wafer 4.

【0030】以上によりシャワーヘッドの熱輻射率を監
視し、この監視結果に基づいてサセプタの温度を補正で
きる。
As described above, the thermal emissivity of the shower head can be monitored, and the temperature of the susceptor can be corrected based on the monitoring result.

【0031】[0031]

【発明の効果】本発明によれば、ウェハの温度の均一性
に大きな影響を与えるシャワーヘッドのウェハと対向す
る面の熱輻射率の変化を常時監視することができ、適切
な時期にシャワーヘッドのウェハと対向する面の洗浄す
る時期を決定できるので膜厚の均一性を長期間にわたっ
て維持できる。
According to the present invention, it is possible to constantly monitor the change in the thermal emissivity of the surface of the shower head facing the wafer, which greatly affects the uniformity of the temperature of the wafer, and the shower head can be monitored at an appropriate time. Since it is possible to determine the cleaning time of the surface facing the wafer, the uniformity of the film thickness can be maintained for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のブロック図。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】本発明の第二の実施例のブロック図。FIG. 2 is a block diagram of a second embodiment of the present invention.

【図3】本発明の第三の実施例のブロック図。FIG. 3 is a block diagram of a third embodiment of the present invention.

【図4】本発明の第四の実施例のブロック図。FIG. 4 is a block diagram of a fourth embodiment of the present invention.

【図5】従来の装置の断面図。FIG. 5 is a cross-sectional view of a conventional device.

【符号の説明】[Explanation of symbols]

1…気相反応装置、2…シャワーヘッド、3…サセプ
タ、4…ウェハ、5…真空容器、22…オリフィス板、
31…ヒータ、51…真空排気口、71…第一ガス供給
配管、205…シャワーヘッド冷却水供給管、206…
シャワーヘッド冷却水回収管、207…シャワーヘッド
冷却ダクト。
DESCRIPTION OF SYMBOLS 1 ... Gas phase reaction apparatus, 2 ... Shower head, 3 ... Susceptor, 4 ... Wafer, 5 ... Vacuum container, 22 ... Orifice plate,
31 ... Heater, 51 ... Vacuum exhaust port, 71 ... First gas supply pipe, 205 ... Shower head cooling water supply pipe, 206 ...
Shower head cooling water recovery pipe, 207 ... Shower head cooling duct.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池川 正人 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 藤田 昌洋 群馬県高崎市西横手町111番地 株式会社 日立製作所半導体事業部内 (72)発明者 松岡 一彦 群馬県高崎市西横手町111番地 株式会社 日立製作所半導体事業部内 (72)発明者 吉田 明 東京都渋谷区東3丁目16番3号 日立電子 エンジニアリング株式会社内 (72)発明者 小倉 武 東京都渋谷区東3丁目16番3号 日立電子 エンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masato Ikegawa, 502 Jinritsucho, Tsuchiura-shi, Ibaraki, Institute of Mechanical Engineering, Hitate Manufacturing Co., Ltd. Semiconductor Division (72) Inventor Kazuhiko Matsuoka 111 Nishikote-cho, Takasaki-shi, Gunma Hitachi, Ltd. Semiconductor Division (72) Inventor Akira Yoshida 3-16-3 Higashi, Shibuya-ku, Tokyo Inside Hitachi Electronics Engineering Co., Ltd. (72) Inventor Takeshi Ogura, Hitachi Electronics Engineering Co., Ltd., 3-16-3 Higashi, Shibuya-ku, Tokyo

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】真空容器と、前記真空容器内に配置された
サセプタと、前記サセプタ上に配置されたウェハと、前
記サセプタの上に置かれた前記ウェハを加熱あるいは冷
却するためのウェハ温度制御装置、前記サセプタと対向
し前記ウェハに化学反応を発生させるための反応ガスを
供給するためのシャワーヘッドと、前記シャワーヘッド
に反応ガスを供給するためのガス供給部と、前記ガス供
給部と前記シャワーヘッドを連結するためのガス供給配
管と、前記シャワーヘッドから噴出する原料ガスの組成
を均一にするためのガス混合室と、前記真空容器内のガ
スを排気するための真空排気部と、前記真空容器と前記
真空排気部とを連結する真空排気配管と、前記真空容器
の圧力を調整するための圧力調整バルブと、前記ウェハ
を前記サセプタ上に搬出あるいは搬入するための搬送装
置、前記ウェハを真空装置に搬入あるいは搬出するため
の予備室、前記真空容器で消費されなかった反応ガスを
処理するためのガス処理部と、前記ガス処理部と前記真
空排気部を連結するガス処理配管と、前記シャワーヘッ
ドを冷却するシャワーヘッド冷却機構と、前記真空容器
の壁面を冷却する真空容器壁面冷却機構とからなる気相
化学反応装置において、前記シャワ−ヘッドの熱輻射率
を監視する機構を備えたことを特徴とする気相化学反応
装置。
1. A vacuum container, a susceptor arranged in the vacuum container, a wafer arranged on the susceptor, and a wafer temperature control for heating or cooling the wafer arranged on the susceptor. An apparatus, a shower head that faces the susceptor and supplies a reaction gas for causing a chemical reaction to the wafer; a gas supply unit that supplies the reaction gas to the shower head; the gas supply unit; A gas supply pipe for connecting the shower head, a gas mixing chamber for making the composition of the raw material gas ejected from the shower head uniform, a vacuum exhaust unit for exhausting the gas in the vacuum container, and A vacuum exhaust pipe that connects a vacuum container and the vacuum exhaust unit, a pressure adjusting valve for adjusting the pressure of the vacuum container, and the wafer on the susceptor. A transfer device for carrying out or carrying in, a preliminary chamber for carrying in or carrying out the wafer to a vacuum device, a gas processing unit for processing a reaction gas not consumed in the vacuum container, the gas processing unit and the above A gas phase chemical reaction device comprising a gas processing pipe connecting an evacuation unit, a shower head cooling mechanism for cooling the shower head, and a vacuum vessel wall surface cooling mechanism for cooling the wall surface of the vacuum vessel, wherein the shower head is provided. A vapor phase chemical reaction device comprising a mechanism for monitoring the thermal emissivity of
【請求項2】請求項1において、前記シャワ−ヘッドの
熱輻射率を監視し、監視結果に基づいて前記シャワ−ヘ
ッドの熱輻射率を一定値に維持する半導体製造装置。
2. The semiconductor manufacturing apparatus according to claim 1, wherein the thermal emissivity of the shower head is monitored, and the thermal emissivity of the shower head is maintained at a constant value based on the monitoring result.
JP31446694A 1994-12-19 1994-12-19 Vapor-phase chemical reactor Pending JPH08170176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31446694A JPH08170176A (en) 1994-12-19 1994-12-19 Vapor-phase chemical reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31446694A JPH08170176A (en) 1994-12-19 1994-12-19 Vapor-phase chemical reactor

Publications (1)

Publication Number Publication Date
JPH08170176A true JPH08170176A (en) 1996-07-02

Family

ID=18053679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31446694A Pending JPH08170176A (en) 1994-12-19 1994-12-19 Vapor-phase chemical reactor

Country Status (1)

Country Link
JP (1) JPH08170176A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004531906A (en) * 2001-06-29 2004-10-14 東京エレクトロン株式会社 Directed gas injection equipment for semiconductor processing
WO2005080632A1 (en) * 2004-02-18 2005-09-01 Aixtron Ag Cvd reactor comprising a photodiode array
KR100712595B1 (en) * 2001-07-03 2007-05-02 삼성전자주식회사 Apparatus of chemical vapor deposition for processing semiconductor
JP2010056565A (en) * 2009-11-27 2010-03-11 Ulvac Japan Ltd Apparatus for forming thin film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004531906A (en) * 2001-06-29 2004-10-14 東京エレクトロン株式会社 Directed gas injection equipment for semiconductor processing
KR100712595B1 (en) * 2001-07-03 2007-05-02 삼성전자주식회사 Apparatus of chemical vapor deposition for processing semiconductor
WO2005080632A1 (en) * 2004-02-18 2005-09-01 Aixtron Ag Cvd reactor comprising a photodiode array
US8052796B2 (en) 2004-02-18 2011-11-08 Aixtron Ag CVD reactor comprising a photodiode array
JP2010056565A (en) * 2009-11-27 2010-03-11 Ulvac Japan Ltd Apparatus for forming thin film

Similar Documents

Publication Publication Date Title
US6241822B1 (en) Vertical heat treatment apparatus
US6192898B1 (en) Method and apparatus for cleaning a chamber
JPH0429559Y2 (en)
US5030476A (en) Process and apparatus for the formation of a functional deposited film on a cylindrical substrate by means of microwave plasma chemical vapor deposition
US6079426A (en) Method and apparatus for determining the endpoint in a plasma cleaning process
US5728629A (en) Process for preventing deposition on inner surfaces of CVD reactor
KR100715054B1 (en) Vacuum processing apparatus
JPS5827656B2 (en) Plasma CVD equipment
WO2004021415A1 (en) Treating apparatus and method of treating
JPH06177056A (en) Gas treatment device
JP3551609B2 (en) Heat treatment equipment
JPH08170176A (en) Vapor-phase chemical reactor
JP2002518841A (en) Cleaning process end point detection method using throttle valve position
JP4058364B2 (en) Semiconductor manufacturing equipment
JPS59111997A (en) Device for epitaxial growth
JP2000323467A (en) Semiconductor processing device equipped with remote plasma discharge chamber
JP3286951B2 (en) Plasma CVD film forming method and apparatus
US20010029895A1 (en) Ceramic heater device and film forming device using the same
JP3611780B2 (en) Semiconductor manufacturing equipment
JPH062147A (en) Gaseous phase chemical reactor
JPH0430514A (en) Thermal cvd apparatus
JPH0382017A (en) Manufacture apparatus for semiconductor device
JPH10163116A (en) Semiconductor device
JPH0518452B2 (en)
JP3317940B2 (en) Cleaning equipment for plasma CVD equipment