JPH08170134A - Thixocasting and alloy material for thixocasting - Google Patents

Thixocasting and alloy material for thixocasting

Info

Publication number
JPH08170134A
JPH08170134A JP6334148A JP33414894A JPH08170134A JP H08170134 A JPH08170134 A JP H08170134A JP 6334148 A JP6334148 A JP 6334148A JP 33414894 A JP33414894 A JP 33414894A JP H08170134 A JPH08170134 A JP H08170134A
Authority
JP
Japan
Prior art keywords
chevron
alloy material
area
endotherm
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6334148A
Other languages
Japanese (ja)
Other versions
JP2841029B2 (en
Inventor
Nobuhiro Saito
信広 斉藤
Takeyoshi Nakamura
武義 中村
Kazuo Kikawa
和男 木皮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP6334148A priority Critical patent/JP2841029B2/en
Priority to US08/543,196 priority patent/US5787961A/en
Priority to DE19538242A priority patent/DE19538242C2/en
Priority to GB9807371A priority patent/GB2320505B/en
Priority to GB9521164A priority patent/GB2294000B/en
Priority to GB9807368A priority patent/GB2320504B/en
Publication of JPH08170134A publication Critical patent/JPH08170134A/en
Priority to US08/956,188 priority patent/US6053997A/en
Application granted granted Critical
Publication of JP2841029B2 publication Critical patent/JP2841029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a thixocasting method by which a high-toughness casting is obtainable. CONSTITUTION: The following material is used as an alloy material: A first peak type endothermic part (e) by eutectic melting and a second peak type endothermic part (f) by melting of the component of the m.p. higher than the eutectic point exist in a differential thermal analysis curve (d), and an area ratio S1 /S is 0.09<=S1 /S<=0.57 when the area of a two-peak type plane part (j) enclosed by the first peak type endothermic part (e), the second peak type endothermic part (f) and a base line (i) is defined as S and the area of the one peak type plane part (k) as S1 . The alloy material described above is subjected to a heat treatment to prepare a half molten alloy material. A casting operation is then carried out by using this half molten alloy material. In such a case, the casting temp. (t) of the half molten alloy material is set at t1 <=t<=t2 when the temp. at the falling end point (m) of the first peak type endothermic party Q is defined as t1 and the peak temp. of the second peak type endothermic part (f) as t2 . As a result, the casting free from the generation of hole parts is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チクソキャスティング
法およびその方法の実施に用いられる合金材料に関す
る。
FIELD OF THE INVENTION The present invention relates to a thixocasting method and an alloy material used for carrying out the method.

【0002】[0002]

【従来の技術】従来、高靱性合金材料、例えばAl合金
材料としては、AA規格6000系合金が知られてい
る。
2. Description of the Related Art Conventionally, as a high toughness alloy material, for example, an Al alloy material, an AA standard 6000 series alloy has been known.

【0003】[0003]

【発明が解決しようとする課題】チクソキャスティング
法の実施に当っては、合金材料に加熱処理を施して固相
(略固体となっている相、以下同じ)と液相とが共存す
る半溶融合金材料を調製し、次いでその半溶融合金材料
を加圧下で鋳型のキャビティに充填し、その後前記加圧
下で半溶融合金材料を凝固させる、といった方法が採用
される。
In carrying out the thixocasting method, the alloy material is subjected to heat treatment so that the solid phase (substantially solid phase, the same applies below) and the liquid phase coexist. A method is used in which an alloy material is prepared, and then the semi-molten alloy material is filled in a cavity of a mold under pressure, and then the semi-molten alloy material is solidified under the pressure.

【0004】しかしながら前記チクソキャスティング法
の実施において、従来の6000系合金材料を用いた場
合には、鋳物の粒界にミクロンオーダの空孔部等の欠陥
が発生し易く、その疲れ強さが低い、という問題があっ
た。このような欠陥は、半溶融状態の6000系合金材
料においては共晶溶解による液相が殆ど存在しないた
め、固相の凝固収縮に応じてその固相周りに液相の供給
が行われないことに起因する。
However, when the conventional 6000 series alloy material is used in the implementation of the thixocasting method, defects such as micron-order holes are easily generated in the grain boundaries of the casting, and its fatigue strength is low. , There was a problem. In the semi-molten state 6000 series alloy material, such a defect has almost no liquid phase due to eutectic melting, and therefore, the liquid phase is not supplied around the solid phase in accordance with solidification shrinkage of the solid phase. caused by.

【0005】本発明は前記に鑑み、固相周りへの液相の
供給性および固相と液相との相溶性を共に良好にし、こ
れにより、欠陥の発生が無く健全で、高い疲れ強さ、靱
性および強度を有する鋳物を得ることが可能な前記チク
ソキャスティング法およびその方法の実施に用いられる
合金材料を提供することを目的とする。
In view of the above, the present invention improves both the supply of the liquid phase around the solid phase and the compatibility between the solid phase and the liquid phase, which results in sound generation without defects and high fatigue strength. It is an object of the present invention to provide the above thixocasting method capable of obtaining a casting having toughness and strength and an alloy material used for carrying out the method.

【0006】[0006]

【課題を解決するための手段】本発明に係るチクソキャ
スティング法は、示差熱分析曲線において、共晶溶解に
よる第1山形吸熱部と、その第1山形吸熱部に連なり、
且つ共晶点よりも高融点の成分の溶解による第2山形吸
熱部とが存在し、前記第1山形吸熱部と、第2山形吸熱
部と、前記第1山形吸熱部の上昇開始点および前記第2
山形吸熱部の下降終了点間を結ぶ基線とにより囲まれる
二山形平面部の面積をSとし、また前記第1山形吸熱部
の下降終了点および加熱温度軸上のその下降終了点の温
度目盛間を結ぶ温度直線により前記二山形平面部の面積
Sを二分したときの前記第1山形吸熱部による一山形平
面部の面積をS1 としたとき、前記二山形平面部の面積
Sに対する前記一山形平面部の面積S1 の比S1 /Sが
0.09≦S1 /S≦0.57である合金材料を用意
し、その合金材料に加熱処理を施して半溶融合金材料を
調製し、次いでその半溶融合金材料を用いて鋳造作業を
行うに当り、前記第1山形吸熱部の下降終了点の温度を
1 とし、また前記第2山形吸熱部のピーク温度をt2
としたとき、前記半溶融合金材料の鋳造温度tをt1
t≦t2 に設定することを特徴とする。
The thixocasting method according to the present invention is characterized in that in a differential thermal analysis curve, the first chevron endothermic part by eutectic melting and the first chevron endothermic part are connected,
And a second chevron endotherm due to the dissolution of a component having a melting point higher than the eutectic point, the first chevron endotherm, the second chevron endotherm, and the rising start point of the first chevron endotherm and the Second
Let S be the area of the two chevron planes surrounded by the baseline connecting the descent end points of the chevron endotherm, and the temperature scale between the descent end point of the first chevron endotherm and its descent end point on the heating temperature axis. the area of one chevron flat portion by said first angled endothermic section when the bisecting the area S of the bifurcated flat portion when the S 1 by temperature straight line connecting, the one chevron to an area S of the bifurcated flat portion An alloy material having a ratio S 1 / S of the flat surface area S 1 of 0.09 ≦ S 1 /S≦0.57 is prepared, and the alloy material is subjected to heat treatment to prepare a semi-molten alloy material, Next, when performing a casting operation using the semi-molten alloy material, the temperature at the end point of the lowering of the first chevron endotherm is set to t 1, and the peak temperature of the second chevron endotherm is set to t 2.
And the casting temperature t of the semi-molten alloy material is t 1
It is characterized by setting t ≦ t 2 .

【0007】本発明に係るチクソキャスティング用合金
材料は、その示差熱分析曲線において、共晶溶解による
第1山形吸熱部と、その第1山形吸熱部に連なり、且つ
共晶点よりも高融点の成分の溶解による第2山形吸熱部
とが存在し、前記第1山形吸熱部と、第2山形吸熱部
と、前記第1山形吸熱部の上昇開始点および前記第2山
形吸熱部の下降終了点間を結ぶ基線とにより囲まれる二
山形平面部の面積をSとし、また前記第1山形吸熱部の
下降終了点および加熱温度軸上のその下降終了点の温度
目盛間を結ぶ温度直線により前記二山形平面部の面積S
を二分したときの前記第1山形吸熱部による一山形平面
部の面積をS1 としたとき、前記二山形平面部の面積S
に対する前記一山形平面部の面積S1 の比S1 /Sが
0.09≦S1 /S≦0.57であることを特徴とす
る。
In the differential thermal analysis curve of the alloy material for thixocasting according to the present invention, the first chevron endothermic part due to eutectic melting and the first chevron endothermic part are connected and have a melting point higher than the eutectic point. There is a second chevron endotherm due to the dissolution of components, the first chevron endotherm, the second chevron endotherm, the rising start point of the first chevron endotherm and the descent end point of the second chevron endotherm. Let S be the area of the two chevron plane portion surrounded by the base line connecting the two, and the temperature straight line connecting between the temperature scales at the end point of the first endothermic heat sink and its end point on the heating temperature axis. Area S of the Yamagata plane
When the area of the one chevron plane portion by the first chevron heat absorbing portion when S is divided into two is S 1 , the area S of the two chevron plane portion is
The ratio S 1 / S of the area S 1 of the flat surface of the mountain is 0.09 ≦ S 1 /S≦0.57.

【0008】[0008]

【作用】前記合金材料に加熱処理を施すことによって、
液相と固相とが共存する半溶融合金材料が調製される。
この半溶融合金材料においては、面積比S1 /Sが前記
のようにS1 /S≧0.09に特定されていることに起
因して液相は大きな潜熱を持つ。その結果、半溶融合金
材料の凝固過程では固相の凝固収縮に応じてその固相周
りに液相が十分に供給され、その後液相が凝固する。ま
た半溶融合金材料の鋳造温度(鋳造時におけるその材料
の温度)tが前記のようにt1 ≦t≦t2に特定されて
いることに起因して固相の外周部はゲル化している。そ
の結果、固相のゲル化外周部と液相との相溶性が良好と
なる。これにより、鋳物におけるミクロンオーダの空孔
部の発生を防止して、その強度および疲れ強さを向上さ
せることができる。
[Operation] By subjecting the alloy material to heat treatment,
A semi-molten alloy material in which a liquid phase and a solid phase coexist is prepared.
In this semi-molten alloy material, the liquid phase has a large latent heat due to the area ratio S 1 / S being specified as S 1 /S≧0.09 as described above. As a result, in the solidification process of the semi-molten alloy material, the liquid phase is sufficiently supplied around the solid phase according to the solidification shrinkage of the solid phase, and then the liquid phase is solidified. Further, since the casting temperature t of the semi-molten alloy material (temperature of the material at the time of casting) t is specified as t 1 ≤t ≤t 2 as described above, the outer peripheral portion of the solid phase is gelled. . As a result, the compatibility between the gelled peripheral portion of the solid phase and the liquid phase becomes good. As a result, it is possible to prevent the generation of micron-order voids in the casting and improve its strength and fatigue strength.

【0009】さらに面積比S1 /SをS1 /S≦0.5
7に設定すると、鋳物において、硬くて脆い共晶成分の
晶出量を抑制することができ、これによりその鋳物の靱
性を向上させることができる。
Further, the area ratio S 1 / S is S 1 /S≦0.5
When set to 7, the crystallization amount of the hard and brittle eutectic component in the casting can be suppressed, and thereby the toughness of the casting can be improved.

【0010】ただし、面積比S1 /SがS1 /S<0.
09では液相の潜熱が小さくなるため、固相の凝固収縮
時にその固相周りへの液相の供給が不十分となり、その
結果、鋳物にミクロンオーダの空孔部が生じ易くなる。
一方、S1 /S>0.57では、共晶成分の晶出量が過
多となるため、前記空孔部の発生は回避されるが、その
反面、鋳物の靱性が低下する。また鋳造温度tがt<t
1 では固相の外周部をゲル化することができず、その結
果、鋳物に前記空孔部が生じ易くなる。一方、t>t2
では、半溶融合金材料が低粘度化するため、その搬送作
業性が悪化し、またその材料を鋳型のキャビティに層状
逐次充填することができないことから、空気の巻込みに
起因して鋳物に気孔が発生し易くなる。
However, the area ratio S 1 / S is S 1 / S <0.
In 09, since the latent heat of the liquid phase becomes small, the supply of the liquid phase around the solid phase becomes insufficient at the time of solidification contraction of the solid phase, and as a result, micron-order voids are likely to occur in the casting.
On the other hand, when S 1 /S>0.57, the crystallization amount of the eutectic component becomes excessive, so that the generation of the voids can be avoided, but on the other hand, the toughness of the casting decreases. Further, the casting temperature t is t <t
In the case of 1 , the outer peripheral portion of the solid phase cannot be gelled, and as a result, the voids are likely to occur in the casting. On the other hand, t> t 2
However, since the semi-molten alloy material has a low viscosity, the workability of the material deteriorates, and it is not possible to fill the material into the cavity of the mold layer by layer. Is likely to occur.

【0011】なお、面積比S1 /SをS1 /S<0.5
に設定すると、半溶融合金材料の保形性が良好となり、
またその材料の温度管理も容易となる。
The area ratio S 1 / S is S 1 /S<0.5
When set to, the shape retention of the semi-molten alloy material becomes good,
Also, the temperature control of the material becomes easy.

【0012】[0012]

【実施例】図1に示す加圧鋳造機1はAl合金材料(合
金材料)を用いてチクソキャスティング法の適用下でA
l合金鋳物を鋳造するために用いられる。その加圧鋳造
機1は、鉛直な合せ面2a,3aを有する固定金型2お
よび可動金型3を備え、両合せ面2a,3a間に鋳物成
形用キャビティ4が形成される。固定金型2に半溶融A
l合金材料5を設置するチャンバ6が形成され、そのチ
ャンバ6はゲート7を介してキャビティ4に連通する。
また固定金型2に、チャンバ6に連通するスリーブ8が
水平に付設され、そのスリーブ8にチャンバ6に挿脱さ
れる加圧プランジャ9が摺動自在に嵌合される。スリー
ブ8は、その周壁上部に材料用挿入口10を有する。
EXAMPLE A pressure casting machine 1 shown in FIG. 1 uses an Al alloy material (alloy material) under the application of the thixocasting method.
l Used for casting alloy castings. The pressure casting machine 1 includes a fixed mold 2 and a movable mold 3 having vertical mating surfaces 2a and 3a, and a casting molding cavity 4 is formed between the mating surfaces 2a and 3a. Semi-molten in fixed mold 2
A chamber 6 in which the 1-alloy material 5 is installed is formed, and the chamber 6 communicates with the cavity 4 via a gate 7.
Further, a sleeve 8 communicating with the chamber 6 is horizontally attached to the fixed mold 2, and a pressure plunger 9 inserted into and removed from the chamber 6 is slidably fitted to the sleeve 8. The sleeve 8 has a material insertion port 10 in the upper portion of the peripheral wall thereof.

【0013】表1は、Al合金材料の実施例A〜Cおよ
び比較例a〜cの組成を示す。これら実施例A等は、連
続鋳造法の適用下で鋳造された高品質な長尺連続鋳造材
より切出されたものであって、その鋳造に当っては初晶
α−Alの球状化処理が行われている。実施例A等の寸
法は直径50mm、長さ65mmである。
Table 1 shows the compositions of Examples A to C and Comparative Examples a to c of the Al alloy material. These Examples A and the like were cut from a high-quality long continuous casting material cast under the application of the continuous casting method, and in the casting, the spheroidizing treatment of the primary crystal α-Al was performed. Is being done. The dimensions of Example A and the like are 50 mm in diameter and 65 mm in length.

【0014】[0014]

【表1】 実施例Aについて、示差走査熱量測定(DSC)を行っ
たところ、図2の結果を得た。図2の示差熱分析曲線d
には、共晶溶解による第1山形吸熱部eと、その第1山
形吸熱部eに連なり、且つ共晶点よりも高融点の成分の
溶解による第2山形吸熱部fとが存在する。この場合、
第1山形吸熱部eと、第2山形吸熱部fと、第1山形吸
熱部eの上昇開始点gおよび第2山形吸熱部fの下降終
了点h間を結ぶ基線iとにより囲まれる二山形平面部
(図2、斜線部分)jの面積SはS=1500mm2 であ
る。また第1山形吸熱部eの下降終了点mおよび加熱温
度軸n上のその下降終了点mの温度目盛間を結ぶ温度直
線pにより二山形平面部jの面積Sを二分したときの第
1山形吸熱部eによる一山形平面部(図2、点を付した
部分)kの面積S1 はS1 =135mm2 である。したが
って、二山形平面部jの面積Sに対する一山形平面部k
の面積S1 の比S1 /SはS1 /S=0.09である。
[Table 1] When the differential scanning calorimetry (DSC) was performed on Example A, the results shown in FIG. 2 were obtained. Differential thermal analysis curve d in FIG.
Has a first chevron-shaped endothermic portion e formed by eutectic melting, and a second chevron-shaped endothermic portion f connected to the first chevron-shaped endothermic portion e and having a melting point higher than the eutectic point. in this case,
A double chevron surrounded by a first chevron endothermic section e, a second chevron endothermic section f, and a base line i connecting the rising start point g of the first chevron endothermic section e and the descending end point h of the second chevron endothermic section f. The area S of the flat surface portion (hatched portion in FIG. 2) j is S = 1500 mm 2 . Also, the first chevron shape obtained when the area S of the two chevron plane portion j is bisected by the temperature straight line p connecting the temperature scales of the descent end point m of the first chevron endothermic portion e and the descent end point m on the heating temperature axis n. The area S 1 of the flat mountain portion (dotted portion in FIG. 2) k formed by the heat absorbing portion e is S 1 = 135 mm 2 . Therefore, the monotonous plane portion k with respect to the area S of the dihedral plane portion j
The ratio S 1 / S of the area S 1 of S 1 is S 1 /S=0.09.

【0015】次に、実施例Aを誘導加熱装置の加熱コイ
ル内に設置し、次いで周波数 1kHz、最大出力 3
0kWの条件で加熱して、固相と液相とが共存する半溶
融状態の実施例Aを調製した。この場合、固相率は40
%以上、60%以下に設定される。
Next, Example A was installed in the heating coil of the induction heating apparatus, and then the frequency was 1 kHz and the maximum output was 3
It was heated under the condition of 0 kW to prepare Example A in a semi-molten state in which a solid phase and a liquid phase coexist. In this case, the solid fraction is 40
% Or more and 60% or less.

【0016】その後、図1に示すように、半溶融状態の
実施例A(符号5)をチャンバ6に設置し、その実施例
Aの鋳造温度t=630℃、加圧プランジャ9の移動速
度0.20m/sec 、金型温度 250℃の条件で実施
例Aを加圧しつつゲート7を通過させてキャビティ4内
に充填した。そして、加圧プランジャ9をストローク終
端に保持することによってキャビティ4内に充填された
実施例Aに加圧力を付与し、その加圧下で実施例Aを凝
固させてAl合金鋳物Aを得た。
Thereafter, as shown in FIG. 1, the semi-molten embodiment A (reference numeral 5) is installed in the chamber 6, the casting temperature t of the embodiment A is 630 ° C., and the moving speed of the pressure plunger 9 is 0. The pressure was applied to Example A under the conditions of 20 m / sec and a mold temperature of 250 ° C., while passing through the gate 7 to fill the cavity 4. Then, by holding the pressure plunger 9 at the end of the stroke, a pressure is applied to the example A filled in the cavity 4, and the example A is solidified under the pressure to obtain an Al alloy casting A.

【0017】この場合、図2において第1山形吸熱部e
の下降終了点mの温度t1 はt1 =598℃であり、ま
た第2山形吸熱部fのピーク温度t2 はt2 =645℃
である。したがって半溶融状態の実施例Aの鋳造温度t
は、t=630℃であるからt1 ≦t≦t2 に設定され
ている。
In this case, in FIG. 2, the first chevron-shaped heat absorbing portion e
The temperature t 1 at the end point m of d is t 1 = 598 ° C., and the peak temperature t 2 of the second chevron endothermic part f is t 2 = 645 ° C.
Is. Therefore, the casting temperature t of Example A in the semi-molten state is
Since t = 630 ° C., t 1 ≦ t ≦ t 2 is set.

【0018】また実施例B,Cおよび比較例a〜cにつ
いてDSCを行い、さらにこれら実施例B等を用い、前
記同様の鋳造作業を行って5種のAl合金鋳物B,C,
a〜cを得た。図3〜7は実施例B,Cおよび比較例a
〜cに関する示差熱分析曲線dを示す。
Further, DSC was carried out for Examples B and C and Comparative Examples a to c, and using these Examples B and the like, the same casting operation as above was carried out to obtain five kinds of Al alloy castings B, C, and C.
ac was obtained. 3 to 7 show Examples B and C and Comparative Example a.
3 shows the differential thermal analysis curve d for c.

【0019】表2は、Al合金鋳物A〜Cおよびa〜c
に関する示差熱分析曲線dから得られた諸情報、機械的
特性等を示す。
Table 2 shows Al alloy castings A to C and a to c.
Various information, mechanical properties, and the like obtained from the differential thermal analysis curve d regarding are shown.

【0020】[0020]

【表2】 図8〜13はAl合金鋳物の金属組織を示す顕微鏡写真
である。図8はAl合金鋳物Aに、図9はAl合金鋳物
Bに、図10はAl合金鋳物Cにそれぞれ該当する。ま
た図11はAl合金鋳物aに、図12はAl合金鋳物b
に、図13はAl合金鋳物cにそれぞれ該当する。
[Table 2] 8 to 13 are micrographs showing the metal structure of the Al alloy casting. 8 corresponds to the Al alloy casting A, FIG. 9 corresponds to the Al alloy casting B, and FIG. 10 corresponds to the Al alloy casting C. FIG. 11 shows an Al alloy casting a, and FIG. 12 shows an Al alloy casting b.
13 corresponds to the Al alloy casting c, respectively.

【0021】図2〜4、表2および図8〜10から明ら
かなように、Al合金鋳物A〜Cは、欠陥の発生が無い
ことから高い疲れ強さを有し、またシャルピー衝撃値が
高いことから高靱性であり、さらに高強度である。
As is clear from FIGS. 2 to 4, Table 2 and FIGS. 8 to 10, the Al alloy castings A to C have high fatigue strength because they do not generate defects, and have a high Charpy impact value. Therefore, it has high toughness and further high strength.

【0022】これは次のような理由による。即ち、半溶
融状態の実施例A〜Cにおいては、面積比S1 /Sが前
記のようにS1 /S≧0.09に特定されていることに
起因して液相が大きな潜熱を持つ。その結果、半溶融状
態の実施例A〜Cの凝固過程では固相の凝固収縮に応じ
てその固相周りに液相が十分に供給され、その後液相が
凝固する。また半溶融状態の実施例A〜Cの鋳造温度t
が前記のようにt1 ≦t≦t2 に特定されていることに
起因して、図14に示すように固相11の外周部12は
ゲル化している。その結果、固相11のゲル化外周部1
2と液相13との相溶性が良好となる。これにより、A
l合金鋳物A〜Cにおけるミクロンオーダの空孔部の発
生を防止して、その強度および疲れ強さを向上させるこ
とができる。
This is for the following reason. That is, in Examples A to C in the semi-molten state, the liquid phase has a large latent heat due to the area ratio S 1 / S being specified as S 1 /S≧0.09 as described above. . As a result, in the solidification process of Examples A to C in the semi-molten state, the liquid phase is sufficiently supplied around the solid phase according to the solidification shrinkage of the solid phase, and then the liquid phase is solidified. Also, the casting temperature t of Examples A to C in the semi-molten state
Due to the fact that is specified as t 1 ≦ t ≦ t 2 as described above, the outer peripheral portion 12 of the solid phase 11 is gelled as shown in FIG. As a result, the gelled outer peripheral portion 1 of the solid phase 11
The compatibility between 2 and the liquid phase 13 becomes good. This gives A
It is possible to prevent generation of micron-order voids in the 1-alloy castings A to C and improve the strength and fatigue strength thereof.

【0023】さらに面積比S1 /SをS1 /S≦0.5
7に設定すると、Al合金鋳物A〜Cにおいて、硬くて
脆い共晶成分の晶出量を抑制することができ、これによ
りそのAl合金鋳物A〜Cの靱性を向上させることがで
きる。
Further, the area ratio S 1 / S is S 1 /S≦0.5
When set to 7, the crystallization amount of the hard and brittle eutectic component can be suppressed in the Al alloy castings A to C, and thus the toughness of the Al alloy castings A to C can be improved.

【0024】図11のAl合金鋳物aは、図5から明ら
かなように比較例aが共晶成分を殆ど持たないことに起
因して粒界にミクロンオーダの空孔部(黒色の島状部
分)が発生しているので疲れ強さが低く、また低強度で
ある。
As is clear from FIG. 5, the Al alloy casting a of FIG. 11 has a micron-order void portion (black island-like portion) at the grain boundary due to the fact that Comparative Example a has almost no eutectic component. ) Is generated, the fatigue strength is low and the strength is low.

【0025】図12,13のAl合金鋳物b,cの場
合、面積比S1 /SがS1 /S>0.57であり、且つ
鋳造温度tがt<t1 であることに起因して、共晶成分
の晶出量が比較的多く、また固相の外周部がゲル化して
おらず、その上Al合金鋳物cの場合α−Alの粒径が
大きいこともあって、低靱性、且つ低強度である。
In the case of the Al alloy castings b and c of FIGS. 12 and 13, this is because the area ratio S 1 / S is S 1 /S>0.57 and the casting temperature t is t <t 1. In addition, the amount of eutectic component crystallized is relatively large, the outer peripheral portion of the solid phase is not gelled, and in the case of the Al alloy casting c, the α-Al grain size is large, which results in low toughness. And low strength.

【0026】なお、本発明における合金材料はAl合金
材料に限定されない。
The alloy material in the present invention is not limited to the Al alloy material.

【0027】[0027]

【発明の効果】請求項1記載の発明によれば、前記のよ
うに特定された合金材料を用い、またその鋳造温度tを
前記のように特定することによって高い疲れ強さ、靱性
および強度を有する鋳物を得ることができる。
According to the invention of claim 1, high fatigue strength, toughness and strength can be obtained by using the alloy material specified as described above and by specifying the casting temperature t as described above. It is possible to obtain a casting that has.

【0028】請求項2記載の発明によれば、チクソキャ
スティング法の実施下で前記特性を有する鋳物を得るこ
とが可能な合金材料を提供することができる。
According to the second aspect of the present invention, it is possible to provide an alloy material capable of obtaining a casting having the above characteristics under the thixocasting method.

【図面の簡単な説明】[Brief description of drawings]

【図1】加圧鋳造機の縦断面図である。FIG. 1 is a vertical sectional view of a pressure casting machine.

【図2】実施例Aの示差熱分析曲線である。2 is a differential thermal analysis curve for Example A. FIG.

【図3】実施例Bの示差熱分析曲線である。FIG. 3 is a differential thermal analysis curve for Example B.

【図4】実施例Cの示差熱分析曲線である。FIG. 4 is a differential thermal analysis curve of Example C.

【図5】比較例aの示差熱分析曲線である。FIG. 5 is a differential thermal analysis curve of Comparative Example a.

【図6】比較例bの示差熱分析曲線である。FIG. 6 is a differential thermal analysis curve for Comparative Example b.

【図7】比較例cの示差熱分析曲線である。FIG. 7 is a differential thermal analysis curve of Comparative Example c.

【図8】Al合金鋳物Aの金属組織を示す顕微鏡写真で
ある。
FIG. 8 is a micrograph showing a metal structure of an Al alloy casting A.

【図9】Al合金鋳物Bの金属組織を示す顕微鏡写真で
ある。
9 is a micrograph showing a metal structure of an Al alloy casting B. FIG.

【図10】Al合金鋳物Cの金属組織を示す顕微鏡写真
である。
FIG. 10 is a micrograph showing a metal structure of an Al alloy casting C.

【図11】Al合金鋳物aの金属組織を示す顕微鏡写真
である。
FIG. 11 is a micrograph showing a metal structure of an Al alloy casting a.

【図12】Al合金鋳物bの金属組織を示す顕微鏡写真
である。
FIG. 12 is a micrograph showing a metal structure of an Al alloy casting b.

【図13】Al合金鋳物cの金属組織を示す顕微鏡写真
である。
FIG. 13 is a micrograph showing a metal structure of an Al alloy casting c.

【図14】実施例A〜Cの半溶融状態を示す説明図であ
る。
FIG. 14 is an explanatory diagram showing semi-molten states of Examples A to C.

【符号の説明】[Explanation of symbols]

5 半溶融合金材料 d 示差熱分析曲線 e,f 第1,第2山形吸熱部 g 上昇開始点 h,m 下降終了点 i 基線 j 二山形平面部 k 一山形平面部 n 加熱温度軸 p 温度直線 5 Semi-molten alloy material d Differential thermal analysis curve e, f 1st and 2nd chevron endothermic part g Rise start point h, m Descent end point i Base line j Diagonal plane part k One chevron plane part n Heating temperature axis p Temperature straight line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 示差熱分析曲線(d)において、共晶溶
解による第1山形吸熱部(e)と、その第1山形吸熱部
(e)に連なり、且つ共晶点よりも高融点の成分の溶解
による第2山形吸熱部(f)とが存在し、前記第1山形
吸熱部(e)と、第2山形吸熱部(f)と、前記第1山
形吸熱部(e)の上昇開始点(g)および前記第2山形
吸熱部(f)の下降終了点(h)間を結ぶ基線(i)と
により囲まれる二山形平面部(j)の面積をSとし、ま
た前記第1山形吸熱部(e)の下降終了点(m)および
加熱温度軸(n)上のその下降終了点(m)の温度目盛
間を結ぶ温度直線(p)により前記二山形平面部(j)
の面積Sを二分したときの前記第1山形吸熱部(e)に
よる一山形平面部(k)の面積をS1 としたとき、前記
二山形平面部(j)の面積Sに対する前記一山形平面部
(k)の面積S1の比S1 /Sが0.09≦S1 /S≦
0.57である合金材料を用意し、その合金材料に加熱
処理を施して半溶融合金材料を調製し、次いでその半溶
融合金材料を用いて鋳造作業を行うに当り、前記第1山
形吸熱部(e)の下降終了点(m)の温度をt1 とし、
また前記第2山形吸熱部(f)のピーク温度をt2 とし
たとき、前記半溶融合金材料の鋳造温度tをt1 ≦t≦
2 に設定することを特徴とするチクソキャスティング
法。
1. In the differential thermal analysis curve (d), a first chevron endotherm (e) due to eutectic melting, and a component which is continuous with the first chevron endotherm (e) and has a melting point higher than the eutectic point. A second chevron endotherm (f) due to melting of the first chevron endotherm (e), the second chevron endotherm (f) and the first chevron endotherm (e) (G) and the base line (i) connecting between the descending end points (h) of the second chevron endothermic part (f) is defined as S, and the area of the two chevron plane part (j) is S, and the first chevron endotherm The dihedral plane portion (j) is defined by the temperature straight line (p) connecting the temperature scales of the descending end point (m) of the part (e) and the descending end point (m) on the heating temperature axis (n).
When the area S of the first chevron endothermic portion (e) when the area S is divided into two is S 1 , the single chevron plane with respect to the area S of the two chevron flat portion (j). The ratio S 1 / S of the area S 1 of the part (k) is 0.09 ≦ S 1 / S ≦
When an alloy material of 0.57 is prepared, the alloy material is heat-treated to prepare a semi-molten alloy material, and then the semi-molten alloy material is used for casting work, the first chevron-shaped endothermic portion is used. Assuming that the temperature at the end point (m) of (e) is t 1 ,
When the peak temperature of the second chevron endothermic part (f) is t 2 , the casting temperature t of the semi-molten alloy material is t 1 ≦ t ≦
A thixocasting method characterized by setting to t 2 .
【請求項2】 示差熱分析曲線(d)において、共晶溶
解による第1山形吸熱部(e)と、その第1山形吸熱部
(e)に連なり、且つ共晶点よりも高融点の成分の溶解
による第2山形吸熱部(f)とが存在し、前記第1山形
吸熱部(e)と、第2山形吸熱部(f)と、前記第1山
形吸熱部(e)の上昇開始点(g)および前記第2山形
吸熱部(f)の下降終了点(h)間を結ぶ基線(i)と
により囲まれる二山形平面部(j)の面積をSとし、ま
た前記第1山形吸熱部(e)の下降終了点(m)および
加熱温度軸(n)上のその下降終了点(m)の温度目盛
間を結ぶ温度直線(p)により前記二山形平面部(j)
の面積Sを二分したときの前記第1山形吸熱部(e)に
よる一山形平面部(k)の面積をS1 としたとき、前記
二山形平面部(j)の面積Sに対する前記一山形平面部
(k)の面積S1の比S1 /Sが0.09≦S1 /S≦
0.57であることを特徴とするチクソキャスティング
用合金材料。
2. In the differential thermal analysis curve (d), a first chevron endotherm (e) due to eutectic melting and a component which is continuous with the first chevron endotherm (e) and has a melting point higher than the eutectic point. A second chevron endotherm (f) due to melting of the first chevron endotherm (e), the second chevron endotherm (f) and the first chevron endotherm (e) (G) and the base line (i) connecting between the descending end points (h) of the second chevron endothermic part (f) is defined as S, and the area of the two chevron plane part (j) is S, and the first chevron endotherm The dihedral plane portion (j) is defined by the temperature straight line (p) connecting the temperature scales of the descending end point (m) of the part (e) and the descending end point (m) on the heating temperature axis (n).
When the area S of the first chevron endothermic portion (e) when the area S is divided into two is S 1 , the single chevron plane with respect to the area S of the two chevron flat portion (j). The ratio S 1 / S of the area S 1 of the part (k) is 0.09 ≦ S 1 / S ≦
An alloy material for thixocasting, which is 0.57.
JP6334148A 1994-10-14 1994-12-16 Thixocasting method Expired - Fee Related JP2841029B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP6334148A JP2841029B2 (en) 1994-12-16 1994-12-16 Thixocasting method
DE19538242A DE19538242C2 (en) 1994-10-14 1995-10-13 Thixo casting process and use of a thixo casting alloy material
US08/543,196 US5787961A (en) 1994-10-14 1995-10-13 Thixocasting process, for a thixocasting alloy material
GB9521164A GB2294000B (en) 1994-10-14 1995-10-16 Thixocasting process and thixocasting alloy material
GB9807371A GB2320505B (en) 1994-10-14 1995-10-16 Thixocasting process and thixocasting alloy material
GB9807368A GB2320504B (en) 1994-10-14 1995-10-16 Thixocasting process and thixocasting alloy material
US08/956,188 US6053997A (en) 1994-10-14 1997-10-22 Thixocasting process of an alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6334148A JP2841029B2 (en) 1994-12-16 1994-12-16 Thixocasting method

Publications (2)

Publication Number Publication Date
JPH08170134A true JPH08170134A (en) 1996-07-02
JP2841029B2 JP2841029B2 (en) 1998-12-24

Family

ID=18274073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6334148A Expired - Fee Related JP2841029B2 (en) 1994-10-14 1994-12-16 Thixocasting method

Country Status (1)

Country Link
JP (1) JP2841029B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08192257A (en) * 1995-01-12 1996-07-30 Honda Motor Co Ltd Thixocasting method
JPH08209276A (en) * 1995-01-31 1996-08-13 Honda Motor Co Ltd Alloy material for thixocasting
JP2003504509A (en) * 1999-07-06 2003-02-04 チキソマット インコーポレーテッド Activation feed

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316709A (en) * 1994-05-17 1995-12-05 Honda Motor Co Ltd Eutectic alloy material for thixocasting
JPH08109430A (en) * 1994-10-12 1996-04-30 Honda Motor Co Ltd Alloy material for thixocasting
JPH08157997A (en) * 1994-10-14 1996-06-18 Honda Motor Co Ltd Aluminum-copper-silicon alloy material for thixocasting
JPH08157994A (en) * 1994-10-26 1996-06-18 Honda Motor Co Ltd Semimolten casting material for thixocasting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316709A (en) * 1994-05-17 1995-12-05 Honda Motor Co Ltd Eutectic alloy material for thixocasting
JPH08109430A (en) * 1994-10-12 1996-04-30 Honda Motor Co Ltd Alloy material for thixocasting
JPH08157997A (en) * 1994-10-14 1996-06-18 Honda Motor Co Ltd Aluminum-copper-silicon alloy material for thixocasting
JPH08157994A (en) * 1994-10-26 1996-06-18 Honda Motor Co Ltd Semimolten casting material for thixocasting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08192257A (en) * 1995-01-12 1996-07-30 Honda Motor Co Ltd Thixocasting method
JPH08209276A (en) * 1995-01-31 1996-08-13 Honda Motor Co Ltd Alloy material for thixocasting
JP2003504509A (en) * 1999-07-06 2003-02-04 チキソマット インコーポレーテッド Activation feed

Also Published As

Publication number Publication date
JP2841029B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
JP4836244B2 (en) Casting method
BRPI0716660B1 (en) a metal casting formed into a mold comprising an aggregate by means of a rapid cooling process and exhibiting a cast microstructure
US6880613B2 (en) Semi-solid metal casting process of hypoeutectic aluminum alloys
JP2772765B2 (en) Method of heating casting material for thixocasting
US5787961A (en) Thixocasting process, for a thixocasting alloy material
JPH08170134A (en) Thixocasting and alloy material for thixocasting
JPH07316709A (en) Eutectic alloy material for thixocasting
JP2003136223A (en) Method for molding semi-solidified metal molding and metal mold
JP2794539B2 (en) Thixocasting method
JP3167854B2 (en) Pressure casting method and pressure casting apparatus for aluminum alloy
JP2794540B2 (en) Al-Cu-Si alloy material for thixocasting
JP2794542B2 (en) Semi-solid casting material for thixocasting
JP2003126950A (en) Molding method of semi-molten metal
JP2008540129A (en) How to form a sea cucumber and a sea cucumber
JP3536559B2 (en) Method for forming semi-solid metal
JPH08144001A (en) Alloy material for thixocasting
JP2832691B2 (en) Thixocasting method
JP2876392B2 (en) Thixocasting method
JP3216685B2 (en) Forming method of semi-molten metal
JP3339333B2 (en) Method for forming molten metal
JP2869889B2 (en) Thixocasting method
JPH08120383A (en) Metallic material for thixo-casting
JP3044519B2 (en) Cast body and casting method
JP2981977B2 (en) Thixocasting method
JP3216684B2 (en) Forming method of semi-molten metal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071023

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101023

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101023

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111023

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111023

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees