JPH08168391A - Production of 5-aminolevulinic acid - Google Patents

Production of 5-aminolevulinic acid

Info

Publication number
JPH08168391A
JPH08168391A JP31625194A JP31625194A JPH08168391A JP H08168391 A JPH08168391 A JP H08168391A JP 31625194 A JP31625194 A JP 31625194A JP 31625194 A JP31625194 A JP 31625194A JP H08168391 A JPH08168391 A JP H08168391A
Authority
JP
Japan
Prior art keywords
aminolevulinic acid
hours
culture
respiration rate
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31625194A
Other languages
Japanese (ja)
Other versions
JP3124692B2 (en
Inventor
Keitaro Watanabe
圭太郎 渡辺
Seiji Nishikawa
誠司 西川
Toru Tanaka
徹 田中
Yasushi Hotta
康司 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Original Assignee
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP31625194A priority Critical patent/JP3124692B2/en
Application filed by COSMO SOGO KENKYUSHO KK, Cosmo Oil Co Ltd filed Critical COSMO SOGO KENKYUSHO KK
Priority to EP95120061A priority patent/EP0718405B1/en
Priority to DE69529930T priority patent/DE69529930T2/en
Priority to DE69528440T priority patent/DE69528440T2/en
Priority to EP00114144A priority patent/EP1041154B1/en
Priority to US08/575,818 priority patent/US5733770A/en
Publication of JPH08168391A publication Critical patent/JPH08168391A/en
Priority to US08/813,088 priority patent/US5763235A/en
Application granted granted Critical
Publication of JP3124692B2 publication Critical patent/JP3124692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE: To provide a method for producing a large amount of 5-aminolevulinic acid without irradiation with light rays. CONSTITUTION: This method for producing 5-aminolevulinic acid comprises culturing a photosynthetic bacterium capable of producing 5-aminolevulinic acid under at least one of the following conditions (a), (b) and (c). (a) The concentration of dissolved oxygen in a culture solution is <1ppm, (b) the oxidation- reduction potential in the culture solution is -180 to 50mV and (c) a bacterium respiration rate is 5×10<-9> to KrM-2×10<-8> [mol of O2 /ml.min.cell]. (KrM shows the maximum of the bacterium respiration rate when oxygen is excessively supplied).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光合成細菌を光を照射
しなくとも培養でき、酸素供給量を調節することで5−
アミノレブリン酸を高収量で製造し得る方法に関する。
INDUSTRIAL APPLICABILITY The present invention is capable of culturing photosynthetic bacteria without irradiating light, and by controlling oxygen supply
It relates to a method capable of producing aminolevulinic acid in high yield.

【0002】[0002]

【従来の技術】5−アミノレブリン酸は、テトラピロー
ル化合物(ビタミンB12、ヘム、クロロフィルなど)を
生合成する色素生合成経路の代謝中間体として広く生物
圈に存在し、生体内で重要な役割を果たしている化合物
である。すなわち、5−アミノレブリン酸は生体系中
で、グリシンとスクシニルCoAから5−アミノレブリ
ン酸合成酵素によって、もしくはグルタミン酸によって
生合成され、5−アミノレブリン酸デヒドラターゼによ
り代謝されていくものである。
BACKGROUND OF THE INVENTION 5-Aminolevulinic acid is widely present in biological systems as a metabolic intermediate in the pigment biosynthetic pathway that biosynthesizes tetrapyrrole compounds (vitamin B 12 , heme, chlorophyll, etc.), and plays an important role in the body. It is a compound that plays. That is, 5-aminolevulinic acid is biosynthesized from glycine and succinyl CoA by 5-aminolevulinic acid synthase or by glutamic acid in a living system and metabolized by 5-aminolevulinic acid dehydratase.

【0003】また、5−アミノレブリン酸は、除草剤、
殺虫剤、植物成長調節剤、植物の光合成増強剤として優
れた効果を示し、しかも人畜に対して毒性を示さず、分
解性が高いため環境への残留性もない、など優れた効果
を示す天然化合物である(特開昭61−502814
号、特開平2−138201号公報)。
Further, 5-aminolevulinic acid is a herbicide,
It has excellent effects as an insecticide, plant growth regulator, photosynthesis enhancer for plants, and is not toxic to humans and animals. It is highly degradable and has no residual in the environment. A compound (Japanese Patent Application Laid-Open No. 61-502814)
No. 2-138201).

【0004】しかし、5−アミノレブリン酸は、生産コ
ストが高く、除草剤や植物成長調節剤、植物の光合成増
強剤として使用するには実用性に欠ける(CHEMIC
ALWEEK/October,29,1984)。こ
のような現状において、多くの化学合成法が検討されて
いる(例えば特開平2−76841号、同2−2613
89号公報)が、未だ十分満足できる方法が開発されて
いない。
However, 5-aminolevulinic acid has a high production cost and is not practical for use as a herbicide, a plant growth regulator, or a plant photosynthesis enhancer (CHEMIC).
ALWEEK / October, 29, 1984). Under such circumstances, many chemical synthesis methods have been studied (for example, JP-A-2-76841 and JP-A-2-2613).
No. 89) has not yet been developed as a sufficiently satisfactory method.

【0005】一方、微生物を用いた5−アミノレブリン
酸の製造方法も検討されている。例えばプロピオニバク
テリウム(Propionibacterium)属、
メタノバクテリウム(Methanobacteriu
m)属又はメタノサルチナ(Methanosarci
na)属等を用いる方法(特開平5−184376号公
報等)が提案されているが、生産量が非常に少なく、工
業的には満足できるものではなかった。
On the other hand, a method for producing 5-aminolevulinic acid using a microorganism has also been investigated. For example, the genus Propionibacterium,
Methanobacterium
m) genus or methanosarcina
Although a method using na) or the like (Japanese Patent Laid-Open No. 5-184376, etc.) has been proposed, the production amount is very small, and it is not industrially satisfactory.

【0006】また、ロドバクター(Rhodobact
er)属を用いる方法(特開平6−141875号公
報)は、上記の微生物を用いる方法に比べ生産量が多い
が、ロドバクター属を含む光合成細菌の著量な色素合成
には光照射が必要であり、色素の前駆体である5−アミ
ノレブリン酸の生産においても十分な光を照射しなけれ
ばならず、コストがかかる等実用化にはなお多くの課題
を残していた。
[0006] In addition, Rhodobacter
The method using the genus er) (JP-A-6-141875) has a higher production amount than the method using the above-mentioned microorganism, but light irradiation is required for synthesizing a considerable amount of photosynthetic bacteria including Rhodobacter. However, even in the production of 5-aminolevulinic acid, which is a precursor of the dye, sufficient light must be irradiated, and many problems remain for practical use such as high cost.

【0007】この問題を解決するため、ロドバクター属
細菌を変異し、変異株を作製し、光照射を必要としない
従属栄養条件下で5−アミノレブリン酸を製造する方法
も提案されているが(特開平4−333521号)、そ
の生産量は光照射を用いる方法に比べ少ないものであっ
た。
[0007] In order to solve this problem, a method has been proposed in which a bacterium of the genus Rhodobacter is mutated to prepare a mutant strain and 5-aminolevulinic acid is produced under heterotrophic conditions that do not require light irradiation. (Kaihei 4-333521), the production amount was smaller than the method using light irradiation.

【0008】一方、光照射を必要としない従属栄養条件
下での微生物培養において、酸素はエネルギー産生のた
め必要不可欠なものである。
On the other hand, oxygen is indispensable for energy production in culturing microorganisms under heterotrophic conditions that do not require light irradiation.

【0009】しかしながら、酸素は光合成細菌、特に紅
色非硫黄細菌の色素合成を阻害し、更に5−アミノレブ
リン酸合成酵素も酸素によって不活性化されるといわれ
ている〔蛋白質、核酸、酵素、Vol.15,No.
3、195(1970)〕。
However, it is said that oxygen inhibits pigment synthesis of photosynthetic bacteria, especially purple non-sulfur bacteria, and 5-aminolevulinic acid synthase is also inactivated by oxygen [protein, nucleic acid, enzyme, Vol. 15, No.
3, 195 (1970)].

【0010】[0010]

【発明が解決しようとする課題】従って本発明の目的
は、好気条件下で、菌の培養を行うことができ、かつ光
の照射、非照射にかかわらず、5−アミノレブリン酸を
高収率で産生することができる方法を提供することにあ
る。
Therefore, the object of the present invention is to culture bacteria under aerobic conditions, and to obtain 5-aminolevulinic acid in high yield regardless of whether light is irradiated or not. It is to provide a method that can be produced in.

【0011】[0011]

【課題を解決するための手段】斯かる実情に鑑み本発明
者らは鋭意研究を行った結果、5−アミノレブリン酸を
生産する光合成細菌を用い下記の条件で酸素供給を制限
すれば、菌体のエネルギー生成に必要な酸素量を損なう
ことなく、多量の5−アミノレブリン酸を生産できるこ
とを見出し本発明を完成した。
[Means for Solving the Problems] In view of the above situation, the present inventors have conducted diligent research, and as a result, if photosynthetic bacteria producing 5-aminolevulinic acid were used and oxygen supply was limited under the following conditions, bacterial cells were The present invention has been completed by finding that a large amount of 5-aminolevulinic acid can be produced without impairing the amount of oxygen required for the energy generation of.

【0012】すなわち本発明は、5−アミノレブリン酸
を生産する光合成細菌を、次の(a)、(b)及び
(c) (a)培養液中の溶存酸素濃度が1ppm 未満 (b)培養液中の酸化還元電位が−180〜50mV (c)菌呼吸速度が5×10-9からKrM−2×10-8
〔mol of O2/ml・min・cell〕 (ここで、KrMは酸素を過剰供給したときの菌呼吸速
度の最大値を示す)のうち少なくとも一つの条件下で培
養することを特徴とする5−アミノレブリン酸の製造方
法を提供するものである。
That is, the present invention provides a photosynthetic bacterium which produces 5-aminolevulinic acid, wherein the dissolved oxygen concentration in the following culture medium (a), (b) and (c) (a) is less than 1 ppm (b) Redox potential of -180 to 50 mV (c) Bacterial respiration rate of 5 x 10 -9 to KrM-2 x 10 -8
[Mol of O 2 / ml · min · cell] (where KrM represents the maximum value of the bacterial respiration rate when oxygen is excessively supplied) is cultivated under at least one condition 5 -A method for producing aminolevulinic acid is provided.

【0013】本発明において用いられる微生物は、5−
アミノレブリン酸生産能を有する光合成細菌、特に紅色
非硫黄細菌が好ましい。具体的には、ロドバクター(R
hodobacter)属、ロドスピリルム(Rhod
ospirillum)属、ロドピラ(Rhodopi
la)属、ロドシュードモナス(Rhodopseud
omonas)属、ロドミクロビウム(Rhodomi
crobium)属、ロドサイクルス(Rhodocy
clus)属等に属する微生物又はこれらの変異株が例
示される。これら微生物は、例えば、バージイズ マニ
ュアル オブデター ミネイティブ バクテリオロジー
〔Bergey’s Manualof Determ
inatire Bacteriology,Vol.
3,(1989)〕の1658頁に記載されている。本
発明においては、好気条件において又は天然成分を添加
した複合培地中においても、できるだけ5−アミノレブ
リン酸の生産能の高い菌株を用いることが好ましく、そ
のような菌株としては、工業技術院生命工学工業技術研
究所にFERM P−14672として寄託されている
Rhodobacter sphaeroides C
R−520株を例示することができる。
The microorganism used in the present invention is 5-
Photosynthetic bacteria capable of producing aminolevulinic acid, particularly purple non-sulfur bacteria, are preferred. Specifically, Rhodobacter (R
Rhodospirillum (Rhod)
genus ospirillum, Rhodopi
la), Rhodopseud
homonas genus, Rhodomicrobium (Rhodomi)
genus crobium, Rhodocy
and microorganisms belonging to the genus clas) or mutants thereof. These microorganisms are commercially available, for example, from the Vergise's Manual of Detergent Bacteriology [Bergey's Manual of Determin
inatiate Bacteriology, Vol.
3, (1989)], page 1658. In the present invention, it is preferable to use a strain having a high production ability of 5-aminolevulinic acid as much as possible even under aerobic conditions or in a complex medium to which natural components are added. Rhodobacter sphaeroides C deposited as FERM P-14672 at the National Institute of Advanced Industrial Science and Technology
The R-520 strain can be exemplified.

【0014】5−アミノレブリン酸を生産する光合成細
菌を培養するための培地としては、該微生物が十分に増
殖し得るものであればいずれをも用いることができる
が、該培地中には資化し得る炭素源及び窒素源を適当含
有せしめておくことが好ましい。炭素源としては、グル
コース等の糖類、酢酸、リンゴ酸、乳酸、コハク酸等の
酸類などを用いることができる。また、窒素源として
は、硫安、塩安等のアンモニア態窒素化合物、硝酸ナト
リウム等の硝酸態窒素化合物等の無機窒素源、尿素、ポ
リペプトン、酵母エキス等の有機窒素化合物などを用い
ることができる。
As the medium for culturing the photosynthetic bacterium producing 5-aminolevulinic acid, any medium can be used as long as the microorganism can grow sufficiently, but it can be assimilated in the medium. It is preferable to appropriately contain a carbon source and a nitrogen source. As the carbon source, sugars such as glucose, acids such as acetic acid, malic acid, lactic acid, and succinic acid can be used. As the nitrogen source, ammonium nitrogen compounds such as ammonium sulfate and ammonium chloride, inorganic nitrogen sources such as nitrate nitrogen compounds such as sodium nitrate, organic nitrogen compounds such as urea, polypeptone and yeast extract can be used.

【0015】更に、無機塩類等の微量成分、アラニン、
バリン、ロイシン、イソロイシン、プロリン、フェニル
アラニン、トリプトファン、メチオニン、グリシン、セ
リン、トレオニン、システイン、グルタミン、アスパラ
ギン、チロシン、リシン、アルギニン、ヒスチジン、ア
スパラギン酸、グルタミン酸等のアミノ酸;酵母エキ
ス、乾燥酵母、ペプトン、肉エキス、麦芽エキス、コー
ンスティープリカー、カザミノ酸等の天然成分等を適宜
添加することができる。また5−アミノレブリン酸を生
産する場合、培地にグリシン及びレブリン酸を添加する
ことが好ましい。グリシンの添加量は5〜100mM、
特に10〜60mMとすることが好ましく、レブリン酸
の添加量は1〜60mM、特に5〜30mMが好まし
い。このグリシン、レブリン酸の添加は、菌株の増殖速
度を低下させる場合があるので、そのときはある程度増
殖した時点で添加するとよい。
Furthermore, trace components such as inorganic salts, alanine,
Amino acids such as valine, leucine, isoleucine, proline, phenylalanine, tryptophan, methionine, glycine, serine, threonine, cysteine, glutamine, asparagine, tyrosine, lysine, arginine, histidine, aspartic acid, glutamic acid; yeast extract, dry yeast, peptone, Natural ingredients such as meat extract, malt extract, corn steep liquor, casamino acid and the like can be appropriately added. Further, when producing 5-aminolevulinic acid, it is preferable to add glycine and levulinic acid to the medium. The amount of glycine added is 5 to 100 mM,
In particular, the amount is preferably 10 to 60 mM, and the amount of levulinic acid added is preferably 1 to 60 mM, particularly preferably 5 to 30 mM. Since the addition of glycine and levulinic acid may reduce the growth rate of the strain, it is advisable to add them at the time when they have grown to some extent.

【0016】培養にあたっての培養温度、pHは上記菌株
等が生育する条件でよく、例えば、温度20〜40℃、
pH6〜8とすることが好ましい。なお5−アミノレブリ
ン酸の生産時にpHが変化する場合には、水酸化ナトリウ
ム、アンモニア、水酸化カリウム等のアルカリ溶液や塩
酸、硫酸、燐酸等の酸を用いてpHを調整することが好ま
しい。また、培養にあたっては、特に光照射をする必要
はない。
The culturing temperature and pH for culturing may be the conditions under which the above-mentioned strains grow, for example, a temperature of 20 to 40 ° C.,
It is preferable to adjust the pH to 6-8. When the pH changes during the production of 5-aminolevulinic acid, it is preferable to adjust the pH using an alkaline solution such as sodium hydroxide, ammonia, potassium hydroxide or the like, or an acid such as hydrochloric acid, sulfuric acid, phosphoric acid or the like. In addition, it is not necessary to specifically irradiate with light upon culturing.

【0017】本発明においては、5−アミノレブリン酸
を効率よく生産するために、上記の如く酸素供給の制限
を行うが、具体的には、次のうち一つ以上の条件下で培
養を行う。
In the present invention, the oxygen supply is limited as described above in order to efficiently produce 5-aminolevulinic acid. Specifically, the culture is performed under one or more of the following conditions.

【0018】(a)培養液中の溶存酸素濃度は1ppm 未
満であるが、特に0.5ppm 未満、更に0.1ppm 未満
(現段階での測定機器における検出限界以下)とするこ
とが好ましい。この濃度の測定は溶存酸素計を用いて行
えばよい。 (b)培養液中の酸化還元電位は−180〜50mVで
あるが、特に−100〜20mV、更に−50〜0mV
とすることが好ましい。酸化還元電位の測定は、酸化還
元電位計を用いて行えばよい。
(A) The dissolved oxygen concentration in the culture broth is less than 1 ppm, preferably less than 0.5 ppm, more preferably less than 0.1 ppm (below the detection limit of the measuring instrument at this stage). This concentration may be measured using a dissolved oxygen meter. (B) The redox potential in the culture medium is −180 to 50 mV, but especially −100 to 20 mV, and further −50 to 0 mV.
It is preferable that The redox potential may be measured using a redox potential meter.

【0019】(c)菌呼吸速度は5×10-9〜KrM−
2×10-8〔mol of O2/ml・min・cell〕であるが、特
に1×10-8〜KrM−4×10-8〔mol of O2/ml・mi
n・cell〕とすることが好ましい。 ここで、KrMとは、酸素を過剰供給した際の菌呼吸速
度の最大値を示すが、これは菌によって異なり、例えば
ロドバクターセファロイデス(Rhodobacter
Sphaeroides)又はロドバクター カプシ
ュレイタス(Rhodobacter capsula
tus)の場合は約8×10-8 mol ofO2/ml・min・cel
lである。従ってこの菌を用いた場合の菌呼吸速度は5
×10-9〜6×10-8〔mol of O2/ml・min・cell〕好
ましくは1×10-8〜4×10-8〔mol of O2/ml・min
・cell〕となる。
(C) Bacterial respiration rate is 5 × 10 -9 to KrM-
2 × 10 −8 [mol of O 2 / ml · min · cell], but especially 1 × 10 −8 to KrM-4 × 10 −8 [mol of O 2 / ml · mi]
[n.cell] is preferable. Here, KrM refers to the maximum value of the respiration rate of the bacterium when oxygen is excessively supplied, but this varies depending on the bacterium, for example, Rhodobacter cephaloides (Rhodobacter).
Sphaeroides) or Rhodobacter capsulatus (Rhodobacter capsula)
in the case of tus), about 8 × 10 -8 mol ofO 2 / ml ・ min ・ cel
is l. Therefore, the bacterial respiration rate when using this bacterium is 5
× 10 -9 to 6 × 10 -8 [mol of O 2 / ml · min · cell] 1 × 10 −8 to 4 × 10 −8 [mol of O 2 / ml · min]
・ Cell].

【0020】菌呼吸速度の測定には、排酸素・炭酸ガス
分析計を用いればよい。
An exhaust oxygen / carbon dioxide analyzer may be used to measure the bacterial respiration rate.

【0021】菌呼吸速度の算定方法は、一般的な計算法
としてのHiroseらの計算式(Agric.Blo
l Chem,29,931,1965)から、更に単
位体積あたりの菌体量のばらつきを補正するために、菌
体量で割り込んで求める方法を採った。すなわち次式に
示す通りである。
The bacillus respiration rate is calculated by the general formula of Hirose et al. (Agric. Blo).
1 Chem., 29, 931, 1965), in order to further correct the variation in the amount of bacterial cells per unit volume, a method of determining by interrupting with the amount of bacterial cells was adopted. That is, it is as shown in the following equation.

【0022】[0022]

【数1】 [Equation 1]

【0023】Rab/a:菌呼吸速度(mol of O2/ml・
min・cell) Q:通気量(ml/min) V:張込液量(ml) T:培養温度(℃) x0, x1:空気出口及び入口の酸素濃度(%) y0, y1:空気出口及び入口の炭酸ガス濃度(%) a:菌体量、dry cell weight/L(c
ell)
Rab / a: Bacterial respiration rate (mol of O 2 / ml.
min · cell) Q: Aeration rate (ml / min) V: Infused solution volume (ml) T: Culture temperature (° C) x 0 , x 1 : Oxygen concentration (%) y 0 , y 1 at the air outlet and inlet : Carbon dioxide concentration (%) at air outlet and inlet a: Amount of cells, dry cell weight / L (c
ell)

【0024】菌呼吸速度は培養槽内における菌体の酸素
吸収速度をあらわし、値が大きいほど活発な酸素利用を
示す。
The bacterial respiration rate represents the oxygen absorption rate of the bacterial cells in the culture tank, and the larger the value, the more active the oxygen utilization.

【0025】これら(a)〜(c)の指標は、いずれも
同様な傾向を示すことが多いので、少なくとも一つを用
いればよいが、二つ以上の値を分析することが好まし
い。
Since all of the indices (a) to (c) often show the same tendency, at least one may be used, but it is preferable to analyze two or more values.

【0026】これらの条件を満足させる方法としては、
種々の手段を採用しうる。例えば発酵槽への通気量、攪
拌速度、培地張込量の増減、通気ガス中の酸素分圧の調
節、還元物質の添加、培地供給量の調節などがある。ま
た本発明は酸素供給量を制限するため、菌の増殖速度を
低下させる場合があるので、その場合は、菌体生育には
十分な酸素供給を行い、ある程度菌体が増殖した時点で
制御を開始すればよい。
As a method for satisfying these conditions,
Various means may be employed. For example, the amount of aeration to the fermenter, the stirring rate, the increase / decrease in the amount of culture medium fed, the adjustment of the oxygen partial pressure in the aeration gas, the addition of a reducing substance, the adjustment of the medium supply amount, etc. Further, since the present invention limits the oxygen supply amount, it may decrease the growth rate of the bacterium, so in that case, sufficient oxygen supply is performed for the growth of the microbial cells, and control is performed when the microbial cells have grown to some extent. Just start.

【0027】なお以上のようにして得られる培養液中の
5−アミノレブリン酸は、常法により精製することがで
きる。例えば、5−アミノレブリン酸は菌体外に分泌さ
れるので、培養液からイオン交換樹脂を用いる等の手段
により分離すればよい。
The 5-aminolevulinic acid in the culture broth obtained as described above can be purified by a conventional method. For example, 5-aminolevulinic acid is secreted outside the cells, so it may be separated from the culture solution by a means such as using an ion exchange resin.

【0028】[0028]

【発明の効果】本発明方法によれば、光照射を行わなく
とも、生産菌から5−アミノレブリン酸を多量に製造す
ることができる。
EFFECTS OF THE INVENTION According to the method of the present invention, a large amount of 5-aminolevulinic acid can be produced from a producing bacterium without light irradiation.

【0029】[0029]

【実施例】以下、実施例を挙げて本発明を更に詳細に説
明するが、本発明はこれらの実施例に限定されるもので
はない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0030】実施例1 表1に示した組成の培地(培地1)1Lを、2Lの発酵
槽に入れ、121℃で15分間滅菌し、室温に冷却し
た。
Example 1 1 L of a medium (medium 1) having the composition shown in Table 1 was placed in a 2 L fermentor, sterilized at 121 ° C. for 15 minutes, and cooled to room temperature.

【0031】[0031]

【表1】 [Table 1]

【0032】上記の発酵槽に、あらかじめ培地1を20
0ml入れた1L容の坂口フラスコで好気条件下で振とう
培養して増殖させたCR−520株(FERM P−1
4672)(KrM=8.2×10-8)を植菌し、30
℃、通気量0.1v/v/m、攪拌数200rpm で通気
攪拌培養を行った。培養はすべて非光照射条件で行っ
た。培養開始48時間後には、培養液中の菌体濃度は培
養液1Lあたり0.64gとなった。次にグリシン、レ
ブリン酸、グルコース、酵母エキスがそれぞれ60m
M、5mM、50mM、1%になるように加え、またpH
が6.5から7.0になるように1N水酸化ナトリウム
及び1N硫酸での調整を開始した。通気量を空気0.0
14v/v/m、に減少させ、N2 ガスを0.086v
/v/mにて供給した。攪拌数は200rpm とした。こ
の条件で培養を84時間後まで行った。この培養の最高
5−アミノレブリン酸蓄積量、48時間後からの培養液
中の溶存酸素濃度、48時間後から84時間後までの平
均酸化還元電位及び平均菌呼吸速度を表2に示す。な
お、溶存酸素濃度はエイブル社製溶存酸素指示計M−1
032及び発酵用酸素膜電極を、酸化還元電位は三ツワ
バイオシステム社製デジタルORPコントローラー及び
インゴールド社製ORP電極を、菌呼吸速度はウエスト
ロン社製排ガス分析装置WSMR−1400LBを用い
て測定した。
20% of the medium 1 was previously added to the above fermenter.
The CR-520 strain (FERM P-1) was grown by shaking culture under aerobic conditions in a 1 L Sakaguchi flask containing 0 ml.
4672) (KrM = 8.2 × 10 −8 ) and inoculated with 30
The culture was carried out with aeration and agitation at ℃, aeration rate of 0.1 v / v / m and agitation rate of 200 rpm. All cultures were performed under non-light irradiation conditions. 48 hours after the start of the culture, the bacterial cell concentration in the culture medium was 0.64 g per 1 L of the culture medium. Next, glycine, levulinic acid, glucose, and yeast extract are each 60 m
M, 5mM, 50mM, 1% added, pH
The adjustment with 1N sodium hydroxide and 1N sulfuric acid was started so that the value became 6.5 to 7.0. Air volume 0.0
14 v / v / m, N 2 gas 0.086 v
/ V / m. The stirring number was 200 rpm. Culture was performed under these conditions until after 84 hours. Table 2 shows the maximum amount of 5-aminolevulinic acid accumulated in this culture, the dissolved oxygen concentration in the culture medium after 48 hours, the average redox potential from 48 hours to 84 hours, and the average bacterial respiration rate. The dissolved oxygen concentration is the dissolved oxygen indicator M-1 manufactured by Able
032 and the oxygen membrane electrode for fermentation, the redox potential was measured using a digital ORP controller manufactured by Mitsuwa Biosystems and the ORP electrode manufactured by Ingold, and the bacterial respiration rate was measured using an exhaust gas analyzer WSMR-1400LB manufactured by Westlon. .

【0033】実施例2 48時間以降の攪拌数を300rpm とする以外は実施例
1と同様の処理を行った。この培養の最高5−アミノレ
ブリン酸蓄積量、48時間後からの培養液中の溶存酸素
濃度、48時間後から84時間後までの平均酸化還元電
位及び平均菌呼吸速度を表2に示す。
Example 2 The same treatment as in Example 1 was carried out except that the stirring number after 48 hours was 300 rpm. Table 2 shows the maximum amount of 5-aminolevulinic acid accumulated in this culture, the dissolved oxygen concentration in the culture medium after 48 hours, the average redox potential from 48 hours to 84 hours, and the average bacterial respiration rate.

【0034】実施例3 48時間以降の攪拌数を400rpm とする以外は実施例
1と同様の処理を行った。この培養の最高5−アミノレ
ブリン酸蓄積量、48時間後からの培養液中の溶存酸素
濃度、48時間後から84時間後までの平均酸化還元電
位及び平均菌呼吸速度を表2に示す。
Example 3 The same treatment as in Example 1 was carried out except that the stirring number after 48 hours was 400 rpm. Table 2 shows the maximum amount of 5-aminolevulinic acid accumulated in this culture, the dissolved oxygen concentration in the culture medium after 48 hours, the average redox potential from 48 hours to 84 hours, and the average bacterial respiration rate.

【0035】実施例4 48時間以降の攪拌数を500rpm とする以外は実施例
1と同様の処理を行った。この培養の最高5−アミノレ
ブリン酸蓄積量、48時間後からの培養液中の溶存酸素
濃度、48時間後から84時間後までの平均酸化還元電
位及び平均菌呼吸速度を表2に示す。
Example 4 The same treatment as in Example 1 was carried out except that the stirring number after 48 hours was 500 rpm. Table 2 shows the maximum amount of 5-aminolevulinic acid accumulated in this culture, the dissolved oxygen concentration in the culture medium after 48 hours, the average redox potential from 48 hours to 84 hours, and the average bacterial respiration rate.

【0036】実施例5 48時間以降の攪拌数を600rpm とする以外は実施例
1と同様の処理を行った。この培養の最高5−アミノレ
ブリン酸蓄積量、48時間後からの培養液中の溶存酸素
濃度、48時間後から84時間後までの平均酸化還元電
位及び平均菌呼吸速度を表2に示す。
Example 5 The same treatment as in Example 1 was carried out except that the stirring number after 48 hours was 600 rpm. Table 2 shows the maximum amount of 5-aminolevulinic acid accumulated in this culture, the dissolved oxygen concentration in the culture medium after 48 hours, the average redox potential from 48 hours to 84 hours, and the average bacterial respiration rate.

【0037】比較例1 48時間以降の攪拌数を400rpm 、通気量を空気0.
5v/v/mとする以外は実施例1と同様の処理を行っ
た。この培養の最高5−アミノレブリン酸蓄積量、48
時間後からの培養液中の溶存酸素濃度、48時間後から
84時間後までの平均酸化還元電位及び48時間後から
84時間後までの平均菌呼吸速度を表2に示す。
Comparative Example 1 After 48 hours, the stirring number was 400 rpm and the aeration rate was air 0.
The same process as in Example 1 was performed except that the amount was 5 v / v / m. Maximum 5-aminolevulinic acid accumulation in this culture, 48
Table 2 shows the dissolved oxygen concentration in the culture solution after the lapse of time, the average redox potential from 48 hours to 84 hours, and the average bacterial respiration rate from 48 hours to 84 hours.

【0038】[0038]

【表2】 [Table 2]

【0039】実施例6 使用する菌株をロドバクター カプシュレイタス(Rh
odobactercapsulatus)ATCC1
1166(KrM=8.5×10-8)に、48時間以降
の攪拌数を400rpm とする以外は実施例1と同様の処
理を行った。この培養の最高5−アミノレブリン酸蓄積
量は0.086mM、48時間後からの培養液中の溶存
酸素濃度は検出されず(0.1ppm 未満)、48時間後
から84時間後までの平均酸化還元電位は、−31m
V、48時間後から84時間後までの平均菌呼吸速度は
2.7×10-8〔mol of O2/ml・min・cell〕であっ
た。
Example 6 The strain used was Rhodobacter capsulatus (Rh
odobactercapsulatus) ATCC1
1166 (KrM = 8.5 × 10 −8 ) was treated in the same manner as in Example 1 except that the stirring number after 48 hours was 400 rpm. The maximum amount of 5-aminolevulinic acid accumulated in this culture was 0.086 mM, the dissolved oxygen concentration in the culture medium after 48 hours was not detected (less than 0.1 ppm), and the average redox from 48 hours to 84 hours was detected. The potential is -31m
The average bacterial respiration rate from 48 hours to 84 hours after V was 2.7 × 10 −8 [mol of O 2 / ml · min · cell].

【0040】比較例2 使用する菌株をロドバクター カプシュレイタス(Rh
odobactercapsulatus)ATCC1
1166とする以外は比較例1と同様の処理を行った。
この培養の最高5−アミノレブリン酸蓄積量は検出され
ず(0.01mM未満)、48時間後からの培養液中の
溶存酸素濃度は18ppm 、48時間後から84時間後ま
での平均酸化還元電位は、131mV、48時間後から
84時間後までの平均菌呼吸速度は8.5×10-8〔mo
l of O2/ml・min・cell〕であった。
Comparative Example 2 The strain used was Rhodobacter capsulatus (Rh
odobactercapsulatus) ATCC1
The same process as in Comparative Example 1 was performed except that 1166 was used.
The maximum amount of 5-aminolevulinic acid accumulated in this culture was not detected (less than 0.01 mM), the dissolved oxygen concentration in the culture solution after 18 hours was 18 ppm, and the average redox potential from 48 hours to 84 hours was , 131 mV, the average bacterial respiration rate from 48 hours to 84 hours was 8.5 × 10 -8 [mo
l of O 2 / ml · min · cell].

【0041】実施例7 表1に示した組成の培地(培地1)を、30Lの発酵槽
に入れ、121℃で30分間滅菌した。上記の発酵槽
に、あらかじめ培地1を200ml入れた1L容の坂口フ
ラスコで好気条件下で振とう培養して増殖させたCR−
520株(FERM P−14672)を植菌し、30
℃、通気量0.1v/v/m、攪拌数200rpm で通気
攪拌培養を行った。培養はすべて暗条件で行った。培養
開始48時間後には、培養液中の菌体濃度は培養液1L
あたり0.68gとなった。次にグリシン、レブリン
酸、グルコース、酵母エキスがそれぞれ60mM、5m
M、50mM、1%になるように加え、またpHが6.5
から7.0になるように1N水酸化ナトリウム及び1N
硫酸での調整を開始した。通気量を空気0.028v/
v/mに減少させ、N2 ガス0.172v/v/m供給
した。攪拌数は300rpm とした。この条件で培養を8
4時間後まで行った。この培養の最高5−アミノレブリ
ン酸蓄積量は12.8mM、48時間後からの培養液中
の溶存酸素濃度は検出されず(0.1ppm 未満)、48
時間後から84時間後までの平均酸化還元電位は、−2
2mV、48時間後から84時間後までの平均菌呼吸速
度は2.2×10-8〔mol of O2/ml・min・cell〕であ
った。
Example 7 A medium (medium 1) having the composition shown in Table 1 was placed in a 30 L fermentor and sterilized at 121 ° C. for 30 minutes. CR- was grown by shaking culture under aerobic conditions in a 1 L Sakaguchi flask containing 200 ml of the culture medium 1 in the above fermentor.
520 strain (FERM P-14672) was inoculated, and
The culture was carried out with aeration and agitation at ℃, aeration rate of 0.1 v / v / m and agitation rate of 200 rpm. All cultures were performed under dark conditions. 48 hours after the start of culture, the bacterial cell concentration in the culture solution was 1 L of the culture solution.
It was 0.68 g per unit. Next, glycine, levulinic acid, glucose, and yeast extract are 60 mM and 5 m, respectively.
M, 50 mM, 1% added, and pH 6.5
To 7.0, 1N sodium hydroxide and 1N
Adjustment with sulfuric acid was started. Air flow rate is 0.028v /
It was reduced to v / m, and N 2 gas was supplied at 0.172 v / v / m. The stirring number was 300 rpm. Culture under these conditions 8
It went until 4 hours later. The maximum amount of 5-aminolevulinic acid accumulated in this culture was 12.8 mM, and the dissolved oxygen concentration in the culture medium after 48 hours was not detected (less than 0.1 ppm).
The average redox potential from the time after 84 hours is -2.
The average bacterial respiration rate from 2 hours after 48 hours to 84 hours was 2.2 × 10 −8 [mol of O 2 / ml · min · cell].

フロントページの続き (72)発明者 田中 徹 埼玉県幸手市権現堂1134−2 株式会社コ スモ総合研究所研究開発センター内 (72)発明者 堀田 康司 埼玉県幸手市権現堂1134−2 株式会社コ スモ総合研究所研究開発センター内Front page continuation (72) Inventor Toru Tanaka 1134-2 Gongendo, Satte City, Saitama Prefecture Cosmo Research Institute Co., Ltd. Research and Development Center (72) Inventor, Koji Horita 1134-2 Gongendo, Satte City, Saitama Prefecture Co., Ltd. Sumo Research Institute R & D Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 5−アミノレブリン酸を生産する光合成
細菌を、次の(a)、(b)及び(c) (a)培養液中の溶存酸素濃度が1ppm 未満 (b)培養液中の酸化還元電位が−180〜50mV (c)菌呼吸速度が5×10-9からKrM−2×10-8
〔mol of O2/ml・min・cell〕 (ここで、KrMは酸素を過剰供給したときの菌呼吸速
度の最大値を示す)のうち少なくとも一つの条件下で培
養することを特徴とする5−アミノレブリン酸の製造方
法。
1. A photosynthetic bacterium that produces 5-aminolevulinic acid is oxidized by the following (a), (b) and (c) (a) the dissolved oxygen concentration in the culture broth is less than 1 ppm (b) Reduction potential of -180 to 50 mV (c) Bacterial respiration rate of 5 x 10 -9 to KrM-2 x 10 -8
[Mol of O 2 / ml · min · cell] (where KrM represents the maximum value of the bacterial respiration rate when oxygen is excessively supplied) is cultivated under at least one condition 5 -A method for producing aminolevulinic acid.
JP31625194A 1994-12-20 1994-12-20 Method for producing 5-aminolevulinic acid Expired - Fee Related JP3124692B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP31625194A JP3124692B2 (en) 1994-12-20 1994-12-20 Method for producing 5-aminolevulinic acid
DE69529930T DE69529930T2 (en) 1994-12-20 1995-12-19 Process for the preparation of 5-aminolevulinic acid
DE69528440T DE69528440T2 (en) 1994-12-20 1995-12-19 5-aminolevulinic acid producing microorganism
EP00114144A EP1041154B1 (en) 1994-12-20 1995-12-19 Process for the preparation of 5-aminolevulinic acid
EP95120061A EP0718405B1 (en) 1994-12-20 1995-12-19 5-Aminolevulinic acid producing microorganism
US08/575,818 US5733770A (en) 1994-12-20 1995-12-20 5-aminolevulinic acid producing microorganism and process for producing 5-aminolevulinic acid
US08/813,088 US5763235A (en) 1994-12-20 1997-03-07 5-aminolevulinic acid producing microorganism and process for producing 5-aminolevulinic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31625194A JP3124692B2 (en) 1994-12-20 1994-12-20 Method for producing 5-aminolevulinic acid

Publications (2)

Publication Number Publication Date
JPH08168391A true JPH08168391A (en) 1996-07-02
JP3124692B2 JP3124692B2 (en) 2001-01-15

Family

ID=18075019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31625194A Expired - Fee Related JP3124692B2 (en) 1994-12-20 1994-12-20 Method for producing 5-aminolevulinic acid

Country Status (1)

Country Link
JP (1) JP3124692B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054297A1 (en) * 1997-05-27 1998-12-03 Cosmo Research Institute Microorganisms producing 5-aminolevulinic acid and processes for producing 5-aminolevulinic acid by using the same
JP2008029272A (en) * 2006-07-31 2008-02-14 Cosmo Oil Co Ltd Method for producing 5-aminolevulinic acid
WO2014148539A1 (en) 2013-03-22 2014-09-25 コスモ石油株式会社 Method for producing 5-aminolevulinic acid or salt thereof
JP2014183750A (en) * 2013-03-22 2014-10-02 Cosmo Oil Co Ltd Method for producing 5-aminolevulinic acid or salt thereof
JP2014207882A (en) * 2013-03-22 2014-11-06 コスモ石油株式会社 Method for producing 5-aminolevulinic acid or salt thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054297A1 (en) * 1997-05-27 1998-12-03 Cosmo Research Institute Microorganisms producing 5-aminolevulinic acid and processes for producing 5-aminolevulinic acid by using the same
US6342377B1 (en) 1997-05-27 2002-01-29 Cosmo Research Intitute Microorganisms producing 5-aminolevulinic acid and processes for producing 5-aminolevulinic acid by using the same
JP2008029272A (en) * 2006-07-31 2008-02-14 Cosmo Oil Co Ltd Method for producing 5-aminolevulinic acid
WO2014148539A1 (en) 2013-03-22 2014-09-25 コスモ石油株式会社 Method for producing 5-aminolevulinic acid or salt thereof
JP2014183750A (en) * 2013-03-22 2014-10-02 Cosmo Oil Co Ltd Method for producing 5-aminolevulinic acid or salt thereof
JP2014207882A (en) * 2013-03-22 2014-11-06 コスモ石油株式会社 Method for producing 5-aminolevulinic acid or salt thereof
KR20150141946A (en) 2013-03-22 2015-12-21 코스모세키유 가부시키가이샤 Method for producing 5-aminolevulinic acid or salt thereof
EP2977459A4 (en) * 2013-03-22 2016-11-02 Cosmo Ala Co Ltd Method for producing 5-aminolevulinic acid or salt thereof
US9963724B2 (en) 2013-03-22 2018-05-08 Neo Ala Co., Ltd. Method for producing 5-aminolevulinic acid or salt thereof

Also Published As

Publication number Publication date
JP3124692B2 (en) 2001-01-15

Similar Documents

Publication Publication Date Title
Zürrer et al. Hydrogen production by the photosynthetic bacterium Rhodospirillum rubrum
EP1041154B1 (en) Process for the preparation of 5-aminolevulinic acid
JP4919400B2 (en) Process for producing 5-aminolevulinic acid
JP3124692B2 (en) Method for producing 5-aminolevulinic acid
JP3026190B2 (en) 5-Aminolevulinic acid-producing microorganism and method for producing 5-aminolevulinic acid using the same
JP2816422B2 (en) Method for producing 5-aminolevulinic acid by microorganism
JP2991395B2 (en) 5-Aminolevulinic acid-producing microorganism and method for producing 5-aminolevulinic acid
JPS5840462B2 (en) How to culture microalgae
JPH05184376A (en) Production of 5-aminolevulinic acid
JP2995816B2 (en) Production method of L-lysine by fermentation method
JPH0595782A (en) Microorganism and production of 5-aminolevulinic acid
JP3786301B2 (en) 5-aminolevulinic acid-producing microorganism
JPH04349879A (en) Incubation of brevibacterium microorganism
WO1998054297A1 (en) Microorganisms producing 5-aminolevulinic acid and processes for producing 5-aminolevulinic acid by using the same
Avissar et al. Bacteroid characteristics in microaerobic Rhizobium
SU1541257A1 (en) Method of producing i-tryptophan
JPH074265B2 (en) Method for producing D-alanine by fermentation method
KANEDA STUDIES ON THE METABOLISM OF OXALIC ACID IN BACTERIUM OXALOPHILUM I. ISOLATION, DESCRIPTION AND NUTRITIONAL REQUIREMENTS
JPS5971697A (en) Preparation of l-tyrosine by fermentation
JPH0759583A (en) Production of 13c-labeled amino acid and apparatus therefor
JPS61128896A (en) Production of l-tyrosine by fermentation method
JPH0242995A (en) Production of l-lysine
JPS61128897A (en) Production of l-phenylalanine by fermentation method
JPS58107190A (en) Preparation of l-tryptophan by fermentation
JPH07222593A (en) Production of n-carbamyl-l-tert-leucine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071027

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20101027

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20131027

LAPS Cancellation because of no payment of annual fees