JPH08166388A - Method and sensor for immunoassay of enzyme - Google Patents

Method and sensor for immunoassay of enzyme

Info

Publication number
JPH08166388A
JPH08166388A JP6309365A JP30936594A JPH08166388A JP H08166388 A JPH08166388 A JP H08166388A JP 6309365 A JP6309365 A JP 6309365A JP 30936594 A JP30936594 A JP 30936594A JP H08166388 A JPH08166388 A JP H08166388A
Authority
JP
Japan
Prior art keywords
enzyme
antigen
antibody
sensor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6309365A
Other languages
Japanese (ja)
Other versions
JP2694809B2 (en
Inventor
Atsushi Saito
敦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6309365A priority Critical patent/JP2694809B2/en
Publication of JPH08166388A publication Critical patent/JPH08166388A/en
Application granted granted Critical
Publication of JP2694809B2 publication Critical patent/JP2694809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide the simple enzyme immunity sensor and the measuring method thereof, which do not require cleaning and substrate adding operation at the time of measurement. CONSTITUTION: Together with antigen to be measured 3, enzyme marker antigen 4 and an enzyme substrate 5 for the antigen 4 and pH buffer material 8 are dissolved into a sample. A pH sensor, wherein antibody 2 is fixed on a pH sensitive part 1, is immersed into the solution. The antigen to be measured 3 and the enzyme marker antigen 4 are made to compete and bonded to the antibody 2. In a product 6, which is formed by the reaction of the enzyme marker antigen 4 bonded to the antibody 2 and the substrate, the antibody 2 indicates the action of a limited transmission film and blocks the pH buffer material 8. Therefore, the product 6 contributes to the pH change of the pH sensor part. The product 6, which is formed by the enzyme marker antigen 4, which is not bonded to the antibody 2, receives the pH buffering of the pH buffering material 8 and does not contribute to the pH change. Thus, the concentration of the antigen 3 in the sample can be obtained by the amount of the pH change.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料溶液中に微量に含
まれる物質の濃度を測定する方法に関し、特に酵素免疫
測定方法及び酵素免疫センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the concentration of a substance contained in a sample solution in a trace amount, and more particularly to an enzyme immunoassay method and an enzyme immunosensor.

【0002】[0002]

【従来の技術】抗原と抗体の特異的な反応を利用した微
量成分の測定方法として免疫測定法が知られている。免
疫測定法の中には酵素標識した抗原もしくは抗体を用い
る方法があり、酵素免疫測定法と呼ばれている。酵素免
疫測定法には競争法と非競争法(サンドイッチ法)があ
るが原理を以下に示す。
2. Description of the Related Art An immunoassay is known as a method for measuring a trace amount of a component by utilizing a specific reaction between an antigen and an antibody. Among immunoassays, there is a method using an enzyme-labeled antigen or antibody, which is called enzyme immunoassay. The enzyme immunoassay method includes a competitive method and a non-competitive method (sandwich method), and the principle is shown below.

【0003】競争反応法ではまず試料(測定対象抗原を
含む)に、測定対象と同じ抗原に標識として酵素をあら
かじめつけた一定量の酵素標識抗原を添加し、両者の抗
原と一定量の抗体とを反応させる。次に適当な方法によ
り抗原抗体複合体を未反応な抗原あるいは抗体から分離
する。最後に抗原抗体複合体中の標識酵素の活性を測定
することにより、測定対象抗原の濃度を求める。
In the competitive reaction method, a sample (including an antigen to be measured) is first added with a fixed amount of an enzyme-labeled antigen in which the same antigen as that to be measured is labeled with an enzyme in advance, and both antigens and a fixed amount of antibody are added. React. Next, the antigen-antibody complex is separated from unreacted antigen or antibody by an appropriate method. Finally, the activity of the labeling enzyme in the antigen-antibody complex is measured to obtain the concentration of the antigen to be measured.

【0004】非競争反応法では2段階の抗原抗体反応が
行われる。まず測定対象抗原と第1次抗体を反応させ
る。続いて次に酵素標識された第2次抗体を反応させ
る。その後、未反応物質を除去する。最後に免疫複合体
の標識酵素の活性を定量し測定対象抗原の濃度を求め
る。
In the non-competitive reaction method, a two-step antigen-antibody reaction is carried out. First, the antigen to be measured is reacted with the primary antibody. Then, the enzyme-labeled secondary antibody is reacted. Then, unreacted substances are removed. Finally, the activity of the labeling enzyme of the immune complex is quantified to determine the concentration of the antigen to be measured.

【0005】このように酵素免疫測定法は酵素活性の測
定に基づくため、他の方法(例えばラジオアイソトー
プ)に比べて使用が簡単でありかつ感度が高く、臨床検
査などの分野で広く応用されている。
Since the enzyme immunoassay is based on the measurement of enzyme activity as described above, it is simpler to use and more sensitive than other methods (for example, radioisotope), and is widely applied in the field of clinical examination and the like. There is.

【0006】酵素免疫測定法において酵素活性の測定が
重要であるが、従来は酵素の作用を受ける基質や生成物
の吸光度、蛍光強度の測定及びpH、酸素濃度を測定す
ることにより、酵素活性の測定が行われてきた。これら
の方法に基づく装置は大型であり、また測定に必要な試
料の量も少なくはなかった。このため特開昭64−59
057号公報及び特開昭64−59058号公報に、微
量試料が測定可能かつ小型の酵素免疫測定法及びセンサ
が提案されている。さらに詳しく従来技術を明らかにす
るために、図を用いて具体的に説明する。図3は特開昭
64−59057号公報に示された測定方法が競争反応
である場合を模式的に示している。溶液のpH変化を検
知するpHセンサ1上に抗体2が固定化されている
(1)。このセンサ1を酵素ウレアーゼ標識抗原4を一
定量添加した試料(測定対象抗原3を含む)と反応させ
る(2)。次にセンサ1を洗浄し試料を除くと抗体2に
は標識抗原4と測定対象抗原3が試料に含まれていたと
きの濃度比に対応して結合している(3)。次にセンサ
1を酵素ウレアーゼの基質である尿素5を含む溶液に浸
すと、酵素ウレアーゼによりアンモニア6が生成する
(4)。アンモニアによるpH変化をpHセンサにより
測定することにより、測定対象抗原濃度を決定すること
が可能となる。このように微小なpHセンサ上に抗体を
固定化することにより、微量試料が測定可能で、かつ小
型の酵素免疫センサが実現している。しかしセンサを洗
浄したり基質を含む溶液と交換したりする操作を必要と
している。
In the enzyme immunoassay, it is important to measure the enzyme activity. Conventionally, the enzyme activity can be measured by measuring the absorbance and fluorescence intensity of a substrate or product which is affected by the enzyme, and by measuring pH and oxygen concentration. The measurements have taken place. Devices based on these methods were large in size, and the amount of sample required for measurement was not small. For this reason, JP-A 64-59
Japanese Patent Application Laid-Open No. 057 and Japanese Patent Application Laid-Open No. 64-59058 propose a small enzyme immunoassay method and sensor capable of measuring a small amount of sample. In order to clarify the prior art in more detail, a specific description will be given with reference to the drawings. FIG. 3 schematically shows a case where the measuring method disclosed in JP-A 64-59057 is a competitive reaction. The antibody 2 is immobilized on the pH sensor 1 which detects the pH change of the solution (1). The sensor 1 is reacted with a sample (including the antigen 3 to be measured) to which the enzyme urease-labeled antigen 4 is added in a fixed amount (2). Next, when the sensor 1 is washed and the sample is removed, the labeled antigen 4 and the antigen 3 to be measured are bound to the antibody 2 in accordance with the concentration ratio when the sample was contained (3). Next, when the sensor 1 is immersed in a solution containing urea 5 which is a substrate of the enzyme urease, ammonia 6 is produced by the enzyme urease (4). By measuring the pH change due to ammonia with a pH sensor, the concentration of the antigen to be measured can be determined. By immobilizing the antibody on the minute pH sensor as described above, a small-sized enzyme immunosensor capable of measuring a small amount of sample has been realized. However, the sensor needs to be washed and replaced with a solution containing the substrate.

【0007】図4は特開昭64−59058号公報に示
された免疫センサの概略断面図である。基板16上にn
型シリコン9及びp型シリコン10、ゲート酸化膜1
1、窒化シリコン膜12からなるpH感受性半導体セン
サが2個形成されている。また疑似参照電極13が基板
16上に形成されている。一方のpH感受性半導体セン
サのpH感受部上に抗体2が固定化されている。他方の
pH感受部及び疑似参照電極13上にはタンパク質架橋
膜14が形成されている。このセンサ基板16と微小な
間隙を保持して平板15が対向して配置されている。平
板15上にはウレアーゼ標識抗原4が塗布されている。
このセンサによる抗原の測定方法は前記特開昭64−5
9057号公報のものとほぼ同様である。まずセンサを
試料に浸すと一定量の試料が毛細管現象により基板16
と平板15の間の空間に吸い上げられる。このときウレ
アーゼ標識抗原4が試料中に溶解し、試料中の測定対象
抗原と競合して抗体2と結合する。次にセンサを洗浄
し、尿素を含む溶液に浸して酵素反応を行わせる。この
ときの酵素(ウレアーゼ)と基質(尿素)の反応により
生成されるアンモニアによるpH変化を、抗体2が固定
化されたpH感受性反応センサで測定する。あらかじめ
酵素、抗原濃度が既知の酵素標識抗原が塗布された平板
15を設けることにより、試料の定量が不要となった
が、この酵素免疫センサにおいても前記特開昭64−5
9057号公報と同様にセンサの洗浄及び尿素溶液との
交換操作が必要である。
FIG. 4 is a schematic sectional view of the immunosensor disclosed in Japanese Patent Laid-Open No. 64-59058. N on the substrate 16
Type silicon 9 and p type silicon 10, gate oxide film 1
1. Two pH-sensitive semiconductor sensors composed of the silicon nitride film 12 are formed. Further, the pseudo reference electrode 13 is formed on the substrate 16. The antibody 2 is immobilized on the pH-sensitive portion of one of the pH-sensitive semiconductor sensors. A protein cross-linking film 14 is formed on the other pH sensing portion and the pseudo reference electrode 13. The flat plate 15 is arranged so as to face the sensor substrate 16 with a minute gap therebetween. The urease labeled antigen 4 is coated on the flat plate 15.
The method for measuring the antigen by this sensor is described in the above-mentioned JP-A-64-5.
This is almost the same as that of the 9057 publication. First, when the sensor is dipped in the sample, a fixed amount of the sample is generated on the substrate 16 by the capillary phenomenon.
Is sucked up into the space between the flat plate 15. At this time, the urease-labeled antigen 4 dissolves in the sample and competes with the antigen to be measured in the sample to bind to the antibody 2. Next, the sensor is washed and immersed in a solution containing urea to cause an enzymatic reaction. At this time, the pH change due to ammonia generated by the reaction between the enzyme (urease) and the substrate (urea) is measured by the pH-sensitive reaction sensor on which the antibody 2 is immobilized. By providing the plate 15 coated with the enzyme-labeled antigen having a known enzyme and antigen concentration in advance, it became unnecessary to quantify the sample, but this enzyme immunosensor also has the above-mentioned JP-A-64-5.
As in Japanese Patent No. 9057, it is necessary to clean the sensor and replace it with a urea solution.

【0008】[0008]

【発明が解決しようとする課題】上述したように従来の
酵素免疫センサにおいては、センサを洗浄する操作及び
酵素の基質溶液を添加する操作が必要であった。このた
め使用者自身が煩わしいばかりでなく、誤差を生じると
いう問題があった。
As described above, in the conventional enzyme immunosensor, the operation of washing the sensor and the operation of adding the substrate solution of the enzyme are required. Therefore, there is a problem that not only the user himself is troublesome but also an error occurs.

【0009】従って本発明の目的は、使用者がセンサを
試料に浸す以外の操作を必要としない、酵素免疫測定方
法及び酵素免疫センサを提供することである。
Therefore, an object of the present invention is to provide an enzyme immunoassay method and an enzyme immunosensor, which does not require the user to perform any operation other than immersing the sensor in a sample.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、本発明の酵素免疫測定方法では、pH緩衝物質及び
酵素基質を酵素標識抗原と共に試料中に溶解させること
により、上記目的を達成している。
To solve the above problems, the enzyme immunoassay method of the present invention achieves the above object by dissolving a pH buffer substance and an enzyme substrate in a sample together with an enzyme-labeled antigen. There is.

【0011】本発明の第1の発明は、測定対象である抗
原を含む試料に、基質を酸もしくは塩基性物質に変換す
る酵素が前記抗原にあらかじめ標識された酵素標識抗原
と、前記酵素の基質と、pH緩衝物質を添加し、前記添
加された試料に、抗原に対して特異的に反応する抗体が
pHセンシング部上に固定化されたpHセンサを浸し、
pHセンシング部上に固定化された抗体と抗原−抗体反
応によって結合した酵素標識抗原の酵素によるpH変化
を検知することにより、試料中の抗原濃度を測定するこ
とを特徴とする酵素免疫測定方法である。
The first aspect of the present invention is to provide a sample containing an antigen to be measured with an enzyme-labeled antigen in which an enzyme for converting a substrate into an acid or a basic substance is pre-labeled with the antigen, and a substrate for the enzyme. And a pH buffer substance is added, and the pH sensor in which the antibody specifically reacting with the antigen is immobilized on the pH sensing unit is immersed in the added sample,
An enzyme immunoassay method characterized by measuring an antigen concentration in a sample by detecting a pH change due to an enzyme of an enzyme-labeled antigen bound by an antibody-antigen reaction with an antibody immobilized on a pH sensing unit. is there.

【0012】第2の発明は、測定対象である抗原に対し
て特異的に反応する抗体がpHセンシング部上に固定化
されたpHセンサと、基質を酸もしくは塩基性物質に変
換する酵素が前記抗原にあらかじめ標識された酵素標識
抗原と、前記酵素の基質と、pH緩衝物質が、板面に固
定化され、その固定化面が微小な間隔を保持してpHセ
ンシング部面に対向して設置された平板とから構成され
ることを特徴とする酵素免疫センサである。
A second aspect of the present invention is a pH sensor in which an antibody that specifically reacts with an antigen to be measured is immobilized on a pH sensing unit, and an enzyme that converts a substrate into an acid or a basic substance. An enzyme-labeled antigen pre-labeled with an antigen, a substrate for the enzyme, and a pH buffer substance are immobilized on a plate surface, and the immobilization surface is installed facing the surface of the pH sensing unit with a minute gap. It is an enzyme immunosensor characterized in that it is composed of a flat plate.

【0013】[0013]

【実施例】本発明の一実施例について図面を参照して説
明する。図1は本発明の一実施例であるpHセンサを使
用した酵素免疫測定方法を示す図である。酵素としてウ
レアーゼを用いた場合を示す。pHセンサのpH感受部
1上に抗体2が固定化されている。試料中の測定対象抗
原3及び添加されたウレアーゼ標識抗原4が競合して、
添加混合された時の測定対象抗原3とウレアーゼ標識抗
原4の濃度比に応じて抗体2に結合する。標識酵素ウレ
アーゼは抗体2と結合するしないに関わらず、添加され
た基質(尿素)5をその酵素の働きにより塩基性の生成
物(アンモニア)6に変換する。抗体と結合していない
ウレアーゼ標識抗原7のウレアーゼによって生成した生
成物6(アンモニア)は、試料中のpH緩衝物質8の作
用により消費されるため、pHセンサ表面1のpH変化
に寄与することはできない。一方、抗体2に結合したウ
レアーゼ標識抗原4のウレアーゼによって生成した生成
物6(アンモニア)は、pHセンサ表面1近傍に位置し
かつ固定化された抗体2が制限透過膜の作用を示してp
H緩衝物質8の透過を妨げているため、pH緩衝を受け
ずにすみ、pHセンサ表面1のpHを変化させる。よっ
て、抗体2と結合したウレアーゼ標識抗原のみを、pH
変化から測定することができるため、その値から測定対
象抗原3の濃度を求めることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an enzyme immunoassay method using a pH sensor according to an embodiment of the present invention. The case where urease is used as the enzyme is shown. The antibody 2 is immobilized on the pH sensing unit 1 of the pH sensor. The measurement target antigen 3 and the added urease-labeled antigen 4 in the sample compete with each other,
It binds to the antibody 2 according to the concentration ratio of the measurement target antigen 3 and the urease-labeled antigen 4 when added and mixed. The labeled enzyme urease converts the added substrate (urea) 5 into a basic product (ammonia) 6 by the action of the enzyme, regardless of whether it binds to the antibody 2. The product 6 (ammonia) produced by urease of the urease-labeled antigen 7 that is not bound to the antibody is consumed by the action of the pH buffer substance 8 in the sample, and therefore does not contribute to the pH change of the pH sensor surface 1. Can not. On the other hand, the product 6 (ammonia) produced by the urease of the urease-labeled antigen 4 bound to the antibody 2 is located near the pH sensor surface 1 and the immobilized antibody 2 exhibits the function of a limiting permeable membrane.
Since it impedes the permeation of the H buffer substance 8, it does not need to undergo pH buffering and changes the pH of the pH sensor surface 1. Therefore, only the urease-labeled antigen bound to antibody 2 is
Since it can be measured from the change, the concentration of the antigen 3 to be measured can be obtained from the value.

【0014】さらに本発明の一実施例である酵素免疫セ
ンサの構造(断面図)について図2に示す。
Further, FIG. 2 shows a structure (cross-sectional view) of an enzyme immunosensor which is an embodiment of the present invention.

【0015】基板上にn型シリコン9(ソース及びドレ
イン)及びp型シリコン10(チャンネル)、ゲート酸
化膜11、窒化シリコン膜12からなるpH感受性半導
体センサが計2個基板16上に形成されている。また疑
似参照電極13が基板16上に形成されている。一方の
pH感受性半導体センサのpH感受部上には抗体2が固
定化されている。他方のpH感受性半導体センサのpH
感受部及び疑似参照電極上にはタンパク質架橋膜14が
形成されている。このセンサ基板と微小な間隙を保持し
て平板15が対向している。平板15上にはウレアーゼ
標識抗原4、基質(尿素)5、pH緩衝物質8が塗布さ
れている。pH感受性半導体センサの動作方法は、ソー
スとドレイン間に一定の電圧を印加し一定の電流が流れ
るようにソースと疑似参照電極13間の電圧を変化させ
る。この電圧値が溶液のpH値と比例関係があることか
ら溶液のpHを検知することができる。実際には試料に
よるバックグラウンドの出力の影響を除くため、抗体の
固定化されたpHセンサの出力から抗体の固定化されて
いないpHセンサの出力を差し引いた値を応答とする。
A total of two pH-sensitive semiconductor sensors consisting of n-type silicon 9 (source and drain) and p-type silicon 10 (channel), gate oxide film 11 and silicon nitride film 12 are formed on the substrate 16. There is. Further, the pseudo reference electrode 13 is formed on the substrate 16. The antibody 2 is immobilized on the pH-sensitive portion of one of the pH-sensitive semiconductor sensors. PH of the other pH-sensitive semiconductor sensor
A protein cross-linking film 14 is formed on the sensing section and the pseudo reference electrode. The flat plate 15 is opposed to the sensor substrate with a minute gap therebetween. A urease-labeled antigen 4, a substrate (urea) 5, and a pH buffer substance 8 are coated on the plate 15. The operating method of the pH-sensitive semiconductor sensor is to apply a constant voltage between the source and the drain and change the voltage between the source and the pseudo reference electrode 13 so that a constant current flows. Since this voltage value is proportional to the pH value of the solution, the pH value of the solution can be detected. In practice, in order to eliminate the influence of the background output due to the sample, the value obtained by subtracting the output of the pH sensor without the antibody immobilized from the output of the pH sensor with the antibody immobilized is used as the response.

【0016】酵素免疫センサによる酵素免疫測定方法は
次の通りである。まずセンサを試料に浸すと一定量の試
料が毛細管現象により基板16と平板15の間の空隙に
吸い上げられる。このとき平板15上のウレアーゼ標識
抗原4、基質5、pH緩衝物質8が試料中に溶解する。
ウレアーゼ標識抗原4は試料中の測定対象抗原と競合し
て抗体2と結合する。抗体2に結合したウレアーゼ標識
抗原4のウレアーゼは、pH感受部近傍に位置しかつ固
定化された抗体2が制限透過膜のように作用しpH緩衝
物質8の透過を妨げるため、基質5との酵素活性により
生成物(アンモニア)を生成し、これによりpH感受部
表面のpHが変化する。一方、抗体2と結合していない
ウレアーゼ標識抗原4のウレアーゼによって生成した生
成物は、試料中のpH緩衝物質8の作用により消費され
るためpH感受部のpH変化に寄与することはできな
い。従って抗体2と結合したウレアーゼ標識抗原4のみ
をpH変化として検知することができるため、その値か
ら測定対象抗原の濃度を求めることが可能となる。
The enzyme immunoassay method using the enzyme immunosensor is as follows. First, when the sensor is dipped in the sample, a fixed amount of the sample is sucked up into the space between the substrate 16 and the flat plate 15 by the capillary phenomenon. At this time, the urease-labeled antigen 4, the substrate 5, and the pH buffer substance 8 on the plate 15 are dissolved in the sample.
The urease-labeled antigen 4 competes with the antigen to be measured in the sample and binds to the antibody 2. The urease of the urease-labeled antigen 4 bound to the antibody 2 is located in the vicinity of the pH-sensing part, and the immobilized antibody 2 acts like a limiting permeation membrane to prevent the pH buffer substance 8 from permeating, so that The enzyme activity produces a product (ammonia), which changes the pH of the pH sensing surface. On the other hand, the product produced by the urease of the urease-labeled antigen 4 that is not bound to the antibody 2 is consumed by the action of the pH buffer substance 8 in the sample, and therefore cannot contribute to the pH change of the pH sensitive part. Therefore, only the urease-labeled antigen 4 bound to the antibody 2 can be detected as a pH change, and the concentration of the measurement target antigen can be determined from the value.

【0017】次に実際に本発明による酵素免疫センサを
使用して、試料中のヒトイムノグログリンG(以下、ヒ
トIgGと略す)抗原の濃度を測定した結果について説
明する。酵素免疫センサは以下のようにして作成した。
まず、一方の感受性半導体センサのpH感受部上に15
%ウシ血清アルブミンと1%グルタルアルデヒドの混合
溶液をスピン塗布してタンパク質架橋膜を形成した。次
に10%抗ヒトIgG抗体を含む15%ウシ血清アルブ
ミン、1%グルタルアルデヒド混合液をスピン塗布する
ことにより、抗体をpH感受部上に固定化した。また平
板上に1%ウレアーゼ(酵素)標識ヒトIgG抗原溶液
4μl、0.5%HEPES−NaOHpH緩衝液4μ
l、0.1%尿素(基質)4μlを個別に塗布して付着
させ、平板を0.1mmの間隔でpHセンサ基板に対向さ
せて配置し装着した。約2μlの血清試料をpHセンサ
基板と平板の間に吸引させて5分間応答出力を測定し
た。その結果得られたセンサ応答出力と試料中のヒトI
gG濃度の関係を示したのが図5である。本発明による
センサの応答出力は従来型センサに比べてやや小さい
が、ほぼ同等の測定可能範囲を示した。
Next, the results of actually measuring the concentration of human immunoglobulin G (hereinafter abbreviated as human IgG) antigen in the sample using the enzyme immunosensor according to the present invention will be described. The enzyme immunosensor was prepared as follows.
First, 15 on the pH sensing part of one sensitive semiconductor sensor.
A protein cross-linked film was formed by spin coating a mixed solution of 1% bovine serum albumin and 1% glutaraldehyde. Next, a 15% bovine serum albumin containing 10% anti-human IgG antibody and a 1% glutaraldehyde mixed solution were spin-coated to immobilize the antibody on the pH sensitive part. In addition, 1% urease (enzyme) -labeled human IgG antigen solution 4 μl, 0.5% HEPES-NaOH pH buffer solution 4 μ
1 and 4 μl of 0.1% urea (substrate) were individually applied and attached, and the flat plate was arranged and mounted facing the pH sensor substrate at intervals of 0.1 mm. About 2 μl of the serum sample was sucked between the pH sensor substrate and the plate, and the response output was measured for 5 minutes. The resulting sensor response output and human I in the sample
FIG. 5 shows the relationship between the gG concentrations. Although the response output of the sensor according to the present invention is slightly smaller than that of the conventional sensor, it shows a substantially equivalent measurable range.

【0018】以上本実施例では測定対象抗原としてヒト
IgGを例にして説明したが、他の抗原についても対応
する抗体を使用することにより、全く同様にして本発明
の酵素免疫センサにより測定することが可能である。例
えば免疫グロブリンや酵素のようなタンパク質、ヒト絨
毛性ゴナドトロピンやα−フェトプロテインのようなペ
プチド、ジコキシンやテオフェリンのような薬物、肝炎
などのウイルス、アトラジンやトリアジンなどの農薬に
ついて対応する抗体をpHセンシング部上に作成すれば
本発明による測定が適用できる。また、測定に使用する
酵素についても、基質を酸もしくは塩基性物質に変換す
るものであればよい。
Although human IgG has been described as an example of the antigen to be measured in this example, other antigens can be measured by the enzyme immunosensor of the present invention in exactly the same manner by using corresponding antibodies. Is possible. For example, proteins corresponding to proteins such as immunoglobulins and enzymes, peptides such as human chorionic gonadotropin and α-fetoprotein, drugs such as zicoxin and theopherin, viruses such as hepatitis, pesticides such as atrazine and triazine, and corresponding antibodies to pH sensing parts. If the above is made, the measurement according to the present invention can be applied. Also, the enzyme used for the measurement may be any one as long as it converts a substrate into an acid or a basic substance.

【0019】以上本実施例では競争反応法に基づく例を
説明したが、非競争反応法においても全く同様にして本
発明の方法により測定が可能である。すなわちpHセン
サ表面に第1次抗体を固定化し、ウレアーゼ標識抗原の
代わりにウレアーゼ標識第2次抗体を用いることにより
適用することができる。
Although an example based on the competitive reaction method has been described in the present embodiment, the measurement can be performed by the method of the present invention in the same manner even in the non-competitive reaction method. That is, it can be applied by immobilizing the primary antibody on the surface of the pH sensor and using the urease-labeled secondary antibody instead of the urease-labeled antigen.

【0020】[0020]

【発明の効果】以上説明したように、本発明による酵素
免疫センサ及びその測定方法は、酵素標識抗原と共に基
質及びpH緩衝物質を試料中に溶解させることにより、
センサを試料に浸す以外に測定時に洗浄や試薬の添加と
いった操作を一切必要とせずに測定することができ、操
作が簡便であるという効果がある。
INDUSTRIAL APPLICABILITY As described above, the enzyme immunosensor and the method for measuring the same according to the present invention, by dissolving the substrate and the pH buffer substance together with the enzyme-labeled antigen in the sample,
There is an effect that the measurement can be performed without any operation such as washing or addition of a reagent at the time of measurement other than immersing the sensor in the sample, and the operation is simple.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による酵素免疫センサの測定方法を示す
説明図である。
FIG. 1 is an explanatory view showing a measuring method of an enzyme immunosensor according to the present invention.

【図2】本発明による酵素免疫センサの断面を示す概略
図である。
FIG. 2 is a schematic view showing a cross section of an enzyme immunosensor according to the present invention.

【図3】従来の酵素免疫センサの測定方法を示す説明図
である。
FIG. 3 is an explanatory view showing a measuring method of a conventional enzyme immunosensor.

【図4】従来の酵素免疫センサの断面を示す概略図であ
る。
FIG. 4 is a schematic diagram showing a cross section of a conventional enzyme immunosensor.

【図5】本発明による酵素免疫センサと従来のセンサに
よるヒトイムノグログリンGを測定した結果を示した図
である。
FIG. 5 is a diagram showing the results of measuring human immunoglobulin G by an enzyme immunosensor according to the present invention and a conventional sensor.

【符号の説明】[Explanation of symbols]

1 pHセンサ 2 抗体 3 測定対象抗原 4 酵素(ウレアーゼ)標識抗原 5 基質(尿素) 6 生成物(アンモニア) 7 抗体と結合しなかった酵素(ウレアーゼ)標識抗原 8 pH緩衝物質 9 n型シリコン 10 p型シリコン 11 ゲート酸化膜 12 窒化シリコン膜 13 疑似参照電極 14 タンパク質架橋膜 15 平板 16 基板 1 pH sensor 2 Antibody 3 Antigen to be measured 4 Enzyme (urease) -labeled antigen 5 Substrate (urea) 6 Product (ammonia) 7 Enzyme (urease) -labeled antigen that did not bind to antibody 8 pH buffer substance 9 n-type silicon 10 p Type silicon 11 gate oxide film 12 silicon nitride film 13 pseudo reference electrode 14 protein cross-linking film 15 flat plate 16 substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】測定対象である抗原を含む試料に、基質を
酸もしくは塩基性物質に変換する酵素が前記抗原にあら
かじめ標識された酵素標識抗原と、前記酵素の基質と、
pH緩衝物質を添加し、 前記添加された試料に、前記抗原に対して特異的に反応
する抗体がpHセンシング部上に固定化されたpHセン
サを浸し、 前記pHセンシング部上に固定化された前記抗体と抗原
−抗体反応によって結合した前記酵素標識抗原の酵素に
よるpH変化を検知することにより、前記試料中の抗原
濃度を測定することを特徴とする酵素免疫測定方法。
1. A sample containing an antigen to be measured, an enzyme-labeled antigen in which an enzyme for converting a substrate into an acid or a basic substance is pre-labeled with the antigen, and a substrate for the enzyme.
A pH buffer substance was added, and a pH sensor in which an antibody specifically reacting with the antigen was immobilized on the pH sensing unit was immersed in the added sample, and immobilized on the pH sensing unit. An enzyme immunoassay method, which comprises measuring an antigen concentration in the sample by detecting a pH change due to an enzyme of the enzyme-labeled antigen bound to the antibody by an antigen-antibody reaction.
【請求項2】測定対象である抗原に対して特異的に反応
する抗体がpHセンシング部上に固定化されたpHセン
サと、 基質を酸もしくは塩基性物質に変換する酵素が前記抗原
にあらかじめ標識された酵素標識抗原と、前記酵素の基
質と、pH緩衝物質が、板面に固定化され、前記固定化
面が微小な間隔を保持して前記pHセンシング部面に対
向して設置された平板とから構成されることを特徴とす
る酵素免疫センサ。
2. A pH sensor in which an antibody that specifically reacts with an antigen to be measured is immobilized on a pH sensing unit, and an enzyme that converts a substrate into an acid or a basic substance is pre-labeled on the antigen. The enzyme-labeled antigen, the substrate for the enzyme, and the pH buffer substance are immobilized on a plate surface, and the immobilization surface is placed at a minute interval so as to face the pH sensing unit surface. An enzyme immunosensor comprising:
JP6309365A 1994-12-14 1994-12-14 Enzyme immunoassay method and enzyme immunosensor Expired - Fee Related JP2694809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6309365A JP2694809B2 (en) 1994-12-14 1994-12-14 Enzyme immunoassay method and enzyme immunosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6309365A JP2694809B2 (en) 1994-12-14 1994-12-14 Enzyme immunoassay method and enzyme immunosensor

Publications (2)

Publication Number Publication Date
JPH08166388A true JPH08166388A (en) 1996-06-25
JP2694809B2 JP2694809B2 (en) 1997-12-24

Family

ID=17992130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6309365A Expired - Fee Related JP2694809B2 (en) 1994-12-14 1994-12-14 Enzyme immunoassay method and enzyme immunosensor

Country Status (1)

Country Link
JP (1) JP2694809B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866321A (en) * 1996-03-30 1999-02-02 Mochida Pharmaceutical Co., Ltd. Analytical method and device for precise analysis with a simple sensor
JP2009506312A (en) * 2005-08-25 2009-02-12 ケンブリッジ エンタープライズ リミテッド Use of holographic sensors
JP2010181155A (en) * 2009-02-03 2010-08-19 Fujifilm Corp Method of manufacturing substance fixing substrate
JP2012088326A (en) * 2008-11-29 2012-05-10 Korea Electronics Telecommun Biosensor chip
JP2014524567A (en) * 2011-08-05 2014-09-22 ジャンセン ダイアグノスティックス,エルエルシー A new method for molecular bonding to metal / metal oxide surfaces.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127450A (en) * 1983-10-25 1985-07-08 セロノ・デイアグノスチツクス・リミテツド Analyzing method
JPS6459058A (en) * 1987-08-31 1989-03-06 Nec Corp Enzyme immune sensor and enzyme immunoassay using said sensor
JPH01212347A (en) * 1988-02-19 1989-08-25 Kuraray Co Ltd Method and apparatus for measuring very small amount of analyte substance
JPH06500391A (en) * 1990-08-18 1994-01-13 ファイソンズ ピーエルシー Analysis equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127450A (en) * 1983-10-25 1985-07-08 セロノ・デイアグノスチツクス・リミテツド Analyzing method
JPS6459058A (en) * 1987-08-31 1989-03-06 Nec Corp Enzyme immune sensor and enzyme immunoassay using said sensor
JPH01212347A (en) * 1988-02-19 1989-08-25 Kuraray Co Ltd Method and apparatus for measuring very small amount of analyte substance
JPH06500391A (en) * 1990-08-18 1994-01-13 ファイソンズ ピーエルシー Analysis equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866321A (en) * 1996-03-30 1999-02-02 Mochida Pharmaceutical Co., Ltd. Analytical method and device for precise analysis with a simple sensor
JP2009506312A (en) * 2005-08-25 2009-02-12 ケンブリッジ エンタープライズ リミテッド Use of holographic sensors
US7968349B2 (en) 2005-08-25 2011-06-28 Cambridge Enterprise Limited Use of holographic sensor
JP2012088326A (en) * 2008-11-29 2012-05-10 Korea Electronics Telecommun Biosensor chip
JP2010181155A (en) * 2009-02-03 2010-08-19 Fujifilm Corp Method of manufacturing substance fixing substrate
JP2014524567A (en) * 2011-08-05 2014-09-22 ジャンセン ダイアグノスティックス,エルエルシー A new method for molecular bonding to metal / metal oxide surfaces.

Also Published As

Publication number Publication date
JP2694809B2 (en) 1997-12-24

Similar Documents

Publication Publication Date Title
Starodub et al. Immunosensor for the determination of the herbicide simazine based on an ion-selective field-effect transistor
US5958790A (en) Solid phase transverse diffusion assay
KR100599420B1 (en) Membrane Strip Biosensor System for Point-of-Care Testing
González-Martı́nez et al. On-line immunoanalysis for environmental pollutants: from batch assays to automated sensors
US4778769A (en) Methods of electrochemical assay employing a field effect transistor
Selvanayagam et al. An ISFET-based immunosensor for the detection of β-Bungarotoxin
JPS61247965A (en) Enzyme immunological measurement method
Campanella et al. New amperometric and potentiometric immunosensors for anti-human immunoglobulin G determinations
CA1256025A (en) Immuno-chemical measurement process for haptens and proteins
EP0207152B1 (en) Solid phase diffusion assay
Tsang et al. [30] Quantitative, single-tube, kinetic-dependent enzyme-linked immunosorbent assay (k-ELISA)
US6087187A (en) Mass-sensitive biosensors
Colapicchioni et al. Immunoenzymatic assay using CHEMFET devices
JP2694809B2 (en) Enzyme immunoassay method and enzyme immunosensor
JP3644780B2 (en) Immunological quantification equipment
JP2638877B2 (en) Immunochemical assay
JP3338551B2 (en) Method for measuring human serum albumin
Gotoh et al. Immuno-FET sensor
EP0488195B1 (en) Chemiluminescence immunoassay
JPH09210955A (en) Protein sensor
EP0125368A1 (en) A method of immunoassay detection by reaction-rate potentiometry using fluoride ion-selective electrode
JPH059740B2 (en)
JP3598333B2 (en) Measuring reagent and measuring method using quartz oscillator
JPH10319017A (en) Measuring method for substance utilizing fluorescent energy transfer and reagent therefor
Zachariah et al. Immunologically sensitive field-effect transistors

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970812

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees