JPH08166380A - Automatic bruise detector for vegitable and fruit - Google Patents
Automatic bruise detector for vegitable and fruitInfo
- Publication number
- JPH08166380A JPH08166380A JP31055894A JP31055894A JPH08166380A JP H08166380 A JPH08166380 A JP H08166380A JP 31055894 A JP31055894 A JP 31055894A JP 31055894 A JP31055894 A JP 31055894A JP H08166380 A JPH08166380 A JP H08166380A
- Authority
- JP
- Japan
- Prior art keywords
- pixel
- fruits
- color information
- vegetables
- injury
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、従来、熟練した検査作
業者によって行なわれている青果物の外観品位の判定、
代表的には傷害の有無,大きさなどの判定を、自動的,
機械的に行なうことができる青果物の傷害自動検出装置
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the determination of appearance quality of fruits and vegetables, which has been conventionally performed by a skilled inspection worker.
Typically, the presence / absence of injury, size, etc. are automatically judged.
The present invention relates to a mechanical injury automatic detection device for fruits and vegetables.
【0002】[0002]
【発明の背景と従来の技術】青果物を選別或は評価する
際の判定要素の一つである外観品位は、形状や寸法等に
よる階級付けの他、色や傷害の有無等の表面状態に基づ
く等級付けに関しても重要であり、生産地の選果場等に
おける青果物の選別要素として無視できない大きな比重
を占めている。Background of the Invention and Prior Art The appearance quality, which is one of the judgment factors when selecting or evaluating fruits and vegetables, is based on the surface condition such as color and presence of injury in addition to the classification according to the shape and dimensions. It is also important for grading, and it occupies a large weight that cannot be ignored as a selection factor for fruits and vegetables in the selection field of production areas.
【0003】このような階級付け等の要素のうち、青果
物の形状や寸法等の比較的単純な要素はモノクロカメラ
等の撮像情報に基づいて比較的容易に評価できるため従
来から多くの提案がされ、秤量した重量などの選別要素
と同様に自動選別等に実際に広く利用されている。Among such factors such as classification, relatively simple factors such as the shape and size of fruits and vegetables can be evaluated relatively easily based on the imaging information of a monochrome camera, and many proposals have been made. It is actually widely used for automatic sorting as well as sorting elements such as weighed weight.
【0004】しかし、青果物の傷害の有無や色合などを
要素とした等級判定は、熟練作業者の確保が難かしくな
っていることや作業の自動化,機械化によるコスト削減
が要望されているにも拘らず、従来提案されている自動
化方法や装置では熟練作業者による判定水準に比べてそ
の性能が著しく劣り、また問題点も多くあって、未だ適
当な解決手段が提供されていないのが実情である。However, it is difficult to secure a skilled worker for grade determination based on factors such as the presence or absence of injury or color of fruits and vegetables, and there is a demand for cost reduction through automation and mechanization of work. However, the performance of the conventionally proposed automation method and device is significantly inferior to the judgment level by the skilled worker, and there are many problems, so that the actual solution is not yet provided. .
【0005】傷害の有無判定を自動的に行なう方法につ
いての従来の提案としては、例えば、「へた付き青果
物」の傷害を検出する方法、あるいは柑橘類の白傷検出
を行なう方法(特開平2−218944号)などが知ら
れている。As a conventional proposal for a method of automatically determining the presence or absence of an injury, for example, a method of detecting an injury of "fat and attached fruits and vegetables" or a method of detecting a white injury of citrus fruits (Japanese Patent Laid-Open No. HEI 2) No. 218944) is known.
【0006】前者の「へた付き青果物」の傷を検出する
方法は、青果物の平面画像をカラーカメラで撮像して得
たR,G,B信号から彩度を計算し、この平面画像の一
定径の円の内側をヘタがある中心部分として除去し、さ
らに画像周囲のぼけや照明むらなどによる誤検出を防止
するために周辺部分を除去した後、残った部分の彩度を
一定の基準値と比較して、この基準値よりも低い点を傷
として判定するものである。In the former method of detecting scratches on "vegetable fruits and vegetables", saturation is calculated from R, G, B signals obtained by picking up a plane image of fruits and vegetables with a color camera, and the plane image is kept constant. The inside of the circle of diameter is removed as the central part where there is a stain, and further the peripheral part is removed to prevent erroneous detection due to blurring around the image and uneven lighting, and then the saturation of the remaining part is set to a constant reference value. The point lower than the reference value is judged as a scratch in comparison with the above.
【0007】また後者の柑橘類の白傷検出を行なう方法
は、柑橘表皮色である橙色とその近傍の波長を除いた波
長帯域に感度をもったカメラで柑橘類の表皮面を撮影
し、その映像信号を柑橘の表皮色の輝度レベルよりも高
く且つ白傷害の輝度レベルよりも低い第1の2値化レベ
ルで2値化処理を行ない、その2値化信号に基づいて
(白傷+ヘタ部)の第1の画素数を求め、また前記映像
信号の白傷害の輝度レベルよりも高く且つヘタ部の輝度
レベルよりも低い第2の2値化レベルで2値化処理を行
ない、その2値化信号に基づいて(ヘタ部)のみの第2
の画素数を求め、前記第1の画素数から第2の画素数を
差し引いて白傷害のみの画素数を求めるものであって、
特定の波長帯域の光を用い白傷とヘタ部の明暗の違いを
利用して検出を行なうものである。In the latter method of detecting citrus whites, the citrus epidermis surface is photographed by a camera having a sensitivity in a wavelength band excluding orange, which is the citrus epidermis color, and wavelengths in the vicinity thereof, and a video signal thereof is obtained. Is binarized at a first binarization level that is higher than the luminance level of the skin color of citrus and lower than the luminance level of white injury, and based on the binarized signal (white scratches + stains) The first number of pixels of the image signal is obtained, and the binarization processing is performed at a second binarization level that is higher than the luminance level of the white damage of the video signal and lower than the luminance level of the foot portion, and the binarization is performed. 2nd only based on the signal
And subtracting the second number of pixels from the first number of pixels to obtain the number of pixels with only white injury.
The detection is performed by using the light of a specific wavelength band and utilizing the difference between the lightness and darkness of the white flaw and the hem.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、上記前
者の「へた付き青果物」の傷害を検出する方法では、ヘ
タ部分を一定径の円の中央部として一律に定めるように
しているために、個々の果実のヘタの位置は必ずしも一
定していないことからすれば、除外する円の径を比較的
大きく定めなければならないことや、照明むらなどから
周辺部も除去するため、傷害を検出しようとする領域が
極めて狭く限定されてしまい、熟練作業者による判定水
準と比べて極めて不十分な傷害検出しかできず、到底実
用上の使用を満足できない。However, in the former method for detecting an injury of "fat and fruit and vegetables", since the settled portion is uniformly set as the central portion of a circle having a constant diameter, Since the position of the scabbard of the fruit is not always constant, the diameter of the circle to be excluded must be set relatively large, and the peripheral part is also removed from uneven lighting etc., so the injury is to be detected. The region is extremely narrow and limited, and the injury detection is extremely insufficient as compared with the judgment level by a skilled worker, and the practical use cannot be satisfied at all.
【0009】また上記後者の柑橘類についての白傷を検
出する方法は、特定波長域の照明光を利用した輝度によ
る明暗処理で白傷を検出するものであるため、柑橘類の
白傷以外の傷害を検出することができない。したがって
白傷以外を含めた等級判定を自動化するためには、更に
他の傷害検出手段を開発することが必要になる。Further, the latter method of detecting white blemishes on citrus fruits is to detect white blemishes by brightness / darkness treatment with brightness using illumination light in a specific wavelength range. Cannot be detected. Therefore, it is necessary to develop further other injury detection means in order to automate the grade determination including those other than white scratches.
【0010】ところで、青果物における傷害の検出は、
上述のように照明,撮像という光学技術と、これにより
得られた信号処理技術とを組み合わせて行なうことが必
須というだけでなく、検出対象の青果物が、種類により
その色合が異なっていたり、傷害の種類,色等も一定と
は言い難く、更に青果物によりヘタの有無があるなど、
極めて多種多様であって、しかも同一品種の青果物であ
っても季節などにより色合が異なることもあるなどの点
で、種々の青果物に適用できる汎用性のある傷害検出方
法を考えることは難しい。また単一品種についての専用
機を提供するとしてもその課題解決は容易でない。By the way, the detection of injury in fruits and vegetables is
As described above, not only is it necessary to combine the optical technology of illumination and imaging with the signal processing technology obtained thereby, but the fruits and vegetables to be detected may have different colors depending on the type, or may cause injury. It is hard to say that the types and colors are constant, and there is the presence or absence of stains due to fruits and vegetables.
It is difficult to consider a versatile injury detection method that can be applied to various fruits and vegetables because it is extremely diverse and the hues of fruits and vegetables of the same variety may differ depending on the season. Even if a dedicated machine for a single product is provided, it is not easy to solve the problem.
【0011】例えば、信号処理のための撮像信号を得る
点だけ考えても、青果物表面のできるだけ広い範囲につ
いて傷検出を行なうには青果物の上面のみを撮像するの
では十分でないから、複数台の撮像カメラを用いて広い
範囲を撮影することが考えられるが、一定の基準値との
比較で傷害を検出する従来法では、使用する複数のカメ
ラ間での感度調整が十分でないと傷害の誤検出が避けら
れない。また、上記従来の輝度による明暗処理で白傷を
検出する方法では、光源の経時的な光量変動や照明むら
に原因した誤検出の問題も無視できない。For example, considering only the point of obtaining an image pickup signal for signal processing, it is not enough to image only the upper surface of the fruit and vegetables in order to detect scratches on the surface of the fruit and vegetables as wide as possible. Although it is possible to use a camera to shoot a wide range, the conventional method of detecting injuries by comparing with a certain reference value may cause false detection of injuries if the sensitivity adjustment between multiple cameras used is not sufficient. Unavoidable. Further, in the above-described conventional method for detecting a white flaw by the brightness / darkness processing with brightness, the problem of erroneous detection due to the temporal variation of the light amount of the light source and the uneven illumination cannot be ignored.
【0012】以上のように、傷害の判定を自動化,機械
化した従来方法,装置は、工業的レベルでは実用化が実
質上できないか、あるいは可能としても極めて限られた
狭い範囲,限られた項目について熟練作業者による傷害
の有無等の外観品位の判定に比べてあまり正確でないレ
ベルでしか判定できないというのが実情であったが、本
発明は、かかる青果物の傷害検出を、自動的,機械的に
かつ判定を正確に安定して行なえる装置を提供するため
になされたものである。As described above, the conventional method and apparatus for automating and mechanizing the judgment of injury cannot be practically applied on an industrial level, or even if possible, in an extremely limited narrow range and limited items. Although it is the actual situation that it can be judged only at a level that is not very accurate as compared with the judgment of appearance quality such as the presence or absence of injury by a skilled worker, the present invention detects the injury of such fruits and vegetables automatically and mechanically. And it was made in order to provide the apparatus which can perform judgment correctly and stably.
【0013】すなわち、本発明の目的は、青果物の表皮
の広い範囲に渡って、安定かつ高い精度で傷害検出を行
なうことができる青果物の傷害自動検出装置を提供する
ところにある。That is, an object of the present invention is to provide an automatic injury detecting device for fruits and vegetables capable of stably and highly accurately detecting an injury over a wide range of the epidermis of fruits and vegetables.
【0014】また本発明の別の目的は、光源の経時的な
光量変動や照明系の照明むらなどの影響による傷害の誤
検出が可及的に低減でき、熟練作業者の判定水準に近付
いた高い水準での自動化,機械化した判定を行なうこと
ができる青果物の傷害自動検出装置を提供するところに
ある。Another object of the present invention is to reduce erroneous detection of an injury due to the influence of the light amount variation of the light source with time and the unevenness of illumination of the illumination system as much as possible, and to approach the judgment level of a skilled worker. An object is to provide an automatic injury detection device for fruits and vegetables that can perform high-level automation and mechanized determination.
【0015】また本発明の更に別の目的は、異なる品種
の青果物についての特定された傷害検出を行なうことが
できるように変更可能で、多数種類の青果物に対する傷
害検出に広く用いることができる汎用性の高い青果物の
傷害自動検出装置を提供するところにある。Still another object of the present invention is a versatility that can be modified so that specific damage detection can be performed on fruits and vegetables of different varieties and can be widely used for damage detection on many kinds of fruits and vegetables. It is in the position of providing an automatic injury detection device for fruits and vegetables.
【0016】[0016]
【課題を解決するための手段及び作用】上記の目的を達
成する本発明よりなる青果物の傷害自動検出装置の特徴
の一つは、多数離隔して搬送される青果物に対して照明
光を当てる光源手段と、該照明された青果物を撮像して
画素毎の赤,緑,青の信号を取出す受光手段と、前記の
赤,緑,青の信号に基づいて各画素の彩度(C)を演算
し、かつ移動平均法により各画素毎にその周辺の彩度の
部分平均値を求める演算手段と、各画素の彩度とこれに
対応する前記部分平均値を比較して傷害相当部位の有無
を判定する判定手段とを有するところにある。One of the features of the automatic fruit and vegetable injury detecting apparatus according to the present invention that achieves the above object is to provide a light source for applying illumination light to a plurality of fruits and vegetables which are conveyed apart from each other. Means, a light receiving means for picking up the illuminated fruits and vegetables to extract red, green and blue signals for each pixel, and the saturation (C) of each pixel based on the red, green and blue signals In addition, the presence or absence of the injury-corresponding part is compared by comparing the saturation of each pixel with the partial average value corresponding to the calculation means for obtaining the partial average value of the saturation of each pixel by the moving average method. And a determining means for determining.
【0017】傷害有無の判定等においては、対象となる
青果物の果表をできるだけ広い範囲に渡って撮像するよ
うに設けることが好ましく、このためには単一のカメラ
で3面を撮像する方法(特公平5−60544号)、単
一のカメラで5面を撮像する方法(特開昭63−611
05号)などを利用することができ、本発明の装置は、
これらの方法を採用した場合でも精度よく傷害有無等の
判定を行なうことができる。In determining the presence or absence of an injury, it is preferable to provide an image of the fruit surface of the target fruits and vegetables over as wide an area as possible. For this purpose, a method of imaging three surfaces with a single camera ( Japanese Examined Patent Publication No. 5-60544), a method of picking up images of 5 surfaces with a single camera (Japanese Patent Laid-Open No. 63-611).
No. 05) and the like, and the device of the present invention is
Even when these methods are adopted, the presence or absence of injury can be accurately determined.
【0018】すなわち、上記のように青果物の果表を広
い範囲に渡って撮像する場合には、撮影する果表全体を
均一に照明することは容易でないため周辺部分の光量が
低くなる場合が多い。しかし本発明装置においては、移
動平均法により得たその周辺画素の彩度の部分平均値と
当該画素の彩度を比較するようにしているので、果表全
体の照明の均一化が容易でなくともその影響が大幅に軽
減されるからである。このような、ある点が傷であるか
否かを判定する場合にその中心画素と周辺領域を比較す
ることで光量の変動やシェーディング等の影響をできる
だけ小さくする具体的な手段としては、限定されるもの
ではないが、例えばある点Cn からX方向に関して±x
1 ,±x2 (x2 >x1 )ドット離れた4点、あるいは
該点CnからX方向に関して±xドット離れた点(Cn-x
),(Cn+x )の2点と、Y方向に関して±yドット
離れた点(Cn-y ),(Cn+y )の2点の合計4点、の
彩度の平均値を算出する方式のものが例示できる。That is, in the case of picking up a fruit table of fruits and vegetables over a wide range as described above, it is not easy to uniformly illuminate the whole fruit table to be photographed, so that the light amount in the peripheral portion is often low. . However, in the device of the present invention, since the partial average value of the saturation of the peripheral pixels obtained by the moving average method is compared with the saturation of the pixel, it is not easy to uniformize the illumination of the entire result table. This is because the effect is greatly reduced. Such a specific means for minimizing the influence of fluctuations in light quantity, shading, etc. by comparing the central pixel and the peripheral area when determining whether or not a certain point is a scratch is limited. Although not limited, for example, ± x in the X direction from a certain point C n
4 points separated by 1 , ± x 2 (x 2 > x 1 ) dots, or a point separated by ± x dots in the X direction from the point C n (C nx
), (C n + x ), and two points (C ny ) and (C n + y ), which are ± y dots apart in the Y direction, a total of 4 points, and the average value of the saturation is calculated. The system can be exemplified.
【0019】また、中心点からマトリックス状に離れた
複数点、例えば上記の(Cn-x ),(Cn+x )の2点
と、これらの各点からY方向に夫々±yドット離れてい
る点(Cn-xy1 ),(Cn-xy2 ),(Cn+xy1 ),(C
n+xy2 )の4点、の合計6点の彩度の平均値を算出する
方式のものも挙げることができる。線状の傷を確実に検
出するためには、中心点からX,Y2方向の複数点の平
均を求める方式のものが好ましい。なお、これらの部分
平均値を求めるために選択される周辺画素の中心画素か
らの離隔の程度は、数画素〜数十画素分の離間の範囲で
適宜定めることがよい。Further, a plurality of points separated from the center point in a matrix form, for example, the above-mentioned two points (C nx ), (C n + x ), and ± y dots from each of these points in the Y direction. Points (C n-xy1 ), (C n-xy2 ), (C n + xy1 ), (C
It is also possible to use a method of calculating an average value of saturation of 6 points in total of 4 points ( n + xy2 ). In order to reliably detect a linear scratch, a method of obtaining the average of a plurality of points in the X and Y2 directions from the center point is preferable. Note that the degree of separation of the peripheral pixels selected for obtaining these partial average values from the central pixel may be appropriately determined within a range of several pixels to several tens of pixels.
【0020】上記判定手段としては、上記のようにして
得られた各画素に対応する彩度の部分平均値[Cn ]
と、原信号Cn との差分ΔCn を、 ΔCn =[Cn ]
−Cnとして演算し、このΔCn と予め定めた閾値CK
とを比較して、CK を越える部位を傷害と判定するよう
に設けることができる。As the judging means, the partial average value [ C n ] of the saturation corresponding to each pixel obtained as described above is used.
And the difference ΔC n between the original signal C n and ΔC n = [C n ]
-C n , and this ΔC n and a predetermined threshold value C K
It can be provided so as to judge that a site exceeding C K is an injury by comparing with.
【0021】このようにすることで、照明条件が概ね揃
った周辺範囲の情報の中から傷を検出できることにな
り、装置全体での照明光学系のバラツキ等の影響を低減
できる。By doing so, the flaw can be detected from the information of the peripheral range in which the illumination conditions are substantially uniform, and the influence of variations in the illumination optical system in the entire apparatus can be reduced.
【0022】本発明の傷害自動検出装置としては、黒系
統傷害の検出のために、上記の彩度(C)の信号を用い
る方式に代えて、輝度(Y)信号を用いることができ
る。すなわち、多数離隔して搬送される青果物に対して
照明光を当てる光源手段と、該照明された青果物を撮像
して画素毎の輝度信号を取出す受光手段と、移動平均法
により各画素毎にその周辺の輝度の部分平均値を求める
演算手段と、各画素の輝度とこれに対応する前記部分平
均値を比較して傷害相当部位の有無を判定する判定手段
とを有する装置とすることができる。As the automatic injury detection device of the present invention, a luminance (Y) signal can be used in place of the above-described method of using the signal of the saturation (C) in order to detect the black injury. That is, a light source unit that applies illumination light to a plurality of fruits and vegetables conveyed apart from each other, a light receiving unit that picks up an image of the illuminated fruits and vegetables and extracts a luminance signal for each pixel, and a moving average method for each pixel. It is possible to provide an apparatus having a calculating means for obtaining a partial average value of peripheral brightness and a determining means for comparing the brightness of each pixel with the partial average value corresponding thereto and for determining the presence or absence of the injury-corresponding part.
【0023】この構成においては、上記彩度信号を用い
る場合と同様に、移動平均法により各画素周辺の輝度の
部分平均値[Yn ]を求め、これと原信号Yn とから求
めた差分ΔYn を、予め定めた閾値YK と比較すること
で輝度が低くなる黒系統の傷を検出することができる。In this configuration, similarly to the case of using the saturation signal, the partial average value [ Y n ] of the luminance around each pixel is obtained by the moving average method, and the difference obtained from this and the original signal Y n is obtained. By comparing ΔY n with a predetermined threshold value Y K , it is possible to detect a black line flaw in which the luminance is low.
【0024】また、本発明の青果物の傷害自動検出装置
においては、傷として検出しない色についての検出除外
色情報を設定する検出除外色情報設定手段と、前記受光
手段により取出した画素毎の赤,緑,青の信号から前記
検出除外色情報と対応する色情報を求める色情報演算手
段と、この色情報演算手段で得られた各画素の色情報と
前記設定された検出除外色情報を比較して傷としての検
出の要,不要を判定する検出除外判定手段とを備えるよ
うに構成することも好ましい。Further, in the automatic damage detection device for fruits and vegetables of the present invention, detection exclusion color information setting means for setting detection exclusion color information for colors not detected as scratches, and red for each pixel taken out by the light receiving means, The color information calculation means for obtaining color information corresponding to the detection exclusion color information from the green and blue signals, and the color information of each pixel obtained by this color information calculation means are compared with the set detection exclusion color information. It is also preferable to include a detection exclusion determination unit that determines whether or not the detection as a scratch is necessary or unnecessary.
【0025】例えば青果物がヘタを有するものである場
合には、このヘタ部分を傷として誤検出することを防止
する手段として、かかる検出除外色情報設定手段と、受
光手段により取出した画素毎の赤,緑,青の信号から前
記検出除外色情報と対応する色情報を求める色情報演算
手段と、傷としての検出の要,不要を判定する検出除外
判定手段とを設けることができる。For example, when the fruits and vegetables have stains, the detection exclusion color information setting means and the red color for each pixel taken out by the light receiving means are used as means for preventing the false detection of the stain portion as a scratch. It is possible to provide color information calculation means for obtaining color information corresponding to the detection exclusion color information from the green, green, and blue signals, and detection exclusion determination means for determining the necessity / unnecessity of detection as a flaw.
【0026】すなわちヘタ部分を傷として誤検出するの
を防止するには、青果物の種類により与えられるヘタの
平均的な色が、明度(Y)20、色相(H)160、彩
度(C)30である場合、これらの3要素について例え
ば夫々±20を許容範囲として、Y=0〜40、H=1
40〜180、C=10〜50を色情報として設定し、
この3条件を満足する画素については、この部分がヘタ
であって傷ではないと判定する(検出除外する)ように
した構成のものを例示することができる。That is, in order to prevent erroneous detection of the stain portion as a scratch, the average color of the stain given by the type of fruits and vegetables is lightness (Y) 20, hue (H) 160, and saturation (C). In the case of 30, Y = 0 to 40 and H = 1 for each of these three elements with ± 20 as an allowable range.
40-180, C = 10-50 are set as color information,
As for a pixel satisfying these three conditions, it is possible to exemplify a pixel which has a configuration in which it is determined that this portion is a stain and is not a flaw (detection is excluded).
【0027】また、果表の色が緑と黄色の混在する青果
物、例えば未着色/半完熟のミカンの場合には、緑部分
の彩度は低くなり易く、このために傷として誤検出する
虞れがある。そこで上記のヘタの場合と同様にしてこの
緑領域の誤検出を防止する手段を設けることが好まし
い。Further, in the case of fruits and vegetables in which the color of the fruit surface is a mixture of green and yellow, for example, uncolored / semi-ripe mandarin orange, the saturation of the green portion is likely to be low, which may cause false detection as a scratch. There is Therefore, it is preferable to provide a means for preventing the erroneous detection of the green area in the same manner as the case of the above-mentioned problem.
【0028】このような緑領域の誤検出を防止する手段
としては、上記ヘタ部分の誤検出手段と同様に、緑領域
として扱うべき上記色の3要素Y,H,Cの条件を色情
報として設定し、この条件を満足する画素については、
この部分が緑領域であって傷ではないと判定する(検出
除外する)ようにした構成のものを例示することができ
る。As means for preventing such erroneous detection of the green area, the condition of the three elements Y, H, C of the color to be treated as the green area is used as color information, as in the erroneous detection means for the green portion. For the pixels that are set and satisfy this condition,
It is possible to exemplify a configuration in which this portion is a green region and is determined not to be a flaw (detection is excluded).
【0029】又更に、これらのヘタ部分の誤検出防止あ
るいは緑領域の誤検出防止を、上述した複数の撮像画面
(例えば3画面、5画面等)の夫々について行なう場合
には、各画面毎に別々に、傷害検出除外色情報の条件を
定めることもでき、このようにすることで、画面毎に異
なる光学系のシェーディングの影響をより一層小さくす
ることができる。Furthermore, when the false detection prevention of the unclean portion or the false detection of the green area is performed for each of the plurality of image pickup screens (for example, 3 screens, 5 screens, etc.) described above, The condition of the injury detection exclusion color information can be separately set, and by doing so, the influence of the shading of the optical system different for each screen can be further reduced.
【0030】本発明装置はまた、上記のように検出除外
色情報を設定してヘタ等の部分を傷として誤検出するこ
とを防止することとは反対に、ある種の青果物において
特有の色傷(例えば柑橘において果表に現れる褐色の
傷)を、例えば前記と同様にY,H,Cの条件設定によ
って特定傷色情報として設定し、受光手段により取出し
た画素毎の赤,緑,青の信号から前記特定傷色情報と対
応する色情報を色情報演算手段により求めて、この設定
した特定傷色情報と演算して求めた色情報の比較によ
り、特定の色傷相当部位の有無を判定する手段を設ける
こともできる。The apparatus of the present invention also sets the detection exclusion color information as described above to prevent erroneous detection of a portion such as a stain as a flaw. (For example, brown scratches appearing on the fruit surface in citrus fruits) are set as specific scratch color information by setting the conditions of Y, H, and C as described above, and the red, green, and blue of each pixel extracted by the light receiving unit are set. The color information corresponding to the specific flaw color information is obtained from the signal by the color information calculating means, and the presence or absence of the specific color flaw corresponding portion is determined by comparing the set specific flaw color information with the calculated color information. Means can also be provided.
【0031】本発明装置を用いて傷害を自動的に検出す
ることができる青果物は、特定のものに限定されるもの
ではないが、カキ、ミカン、トマト、リンゴ、ナシ等を
代表的なものとして挙げることができる。The fruits and vegetables which can automatically detect an injury using the device of the present invention are not limited to specific ones, but representative ones include oysters, mandarin oranges, tomatoes, apples and pears. Can be mentioned.
【0032】本発明の彩度(あるいは輝度)の信号に基
づく移動平均法による部分平均値を傷害検出に利用する
方式は、撮像した青果物の果表の全面についてこの方式
を適用する装置として構成することができるが、青果物
上面中心領域のように照明が均一に行なわれ易いために
従来法によっても高い判定水準で傷害検出を行なえる部
分(青果物上面中心領域)は、予め定めた彩度(あるい
は輝度)の閾値と、検出した彩度信号(あるいは輝度信
号)とを直接比較する方式とし、周辺領域についてだ
け、上記移動平均法による部分平均値を利用した傷害検
出方式を採用することもできる。The method of using the partial average value by the moving average method based on the signal of the saturation (or luminance) of the present invention for detecting the injury is configured as a device to which this method is applied to the whole surface of the fruit and vegetables imaged. However, the area where the injury can be detected at a higher judgment level by the conventional method (such as the central area of the upper surface of fruits and vegetables) because the illumination is likely to be performed uniformly, like the central area of the upper surface of the fruits and vegetables, is the predetermined saturation (or It is also possible to adopt a method of directly comparing the threshold value of luminance) with the detected saturation signal (or luminance signal), and employ a injury detection method using a partial average value by the moving average method only for the peripheral area.
【0033】尚、中心領域と周辺領域とのように領域を
区画するには、各画素毎に赤,緑,青の信号からトータ
ル輝度又は赤,緑,青のいずれか1つの信号から輝度を
算出し、これを予め設定した輝度の閾値(検査領域設定
値)と比較して閾値よりも大きい領域を中心領域とし、
閾値よりも小さい領域を周辺領域として区画するのがよ
いが、この他に、撮像した画素群を予め定めた所定の単
位長さ(又は範囲)を基準として、この長さ(又は範
囲)内における輝度の変化量の大きさを所定の閾値と比
較して、輝度の変化量の大きい領域と該変化量の小さい
領域に区画することで、検査領域を区画設定することが
できる。In order to divide the area into the central area and the peripheral area, the total brightness is obtained from the red, green and blue signals or the brightness is obtained from any one of the red, green and blue signals for each pixel. Calculated and compared with a preset threshold value of luminance (inspection area setting value), an area larger than the threshold value is set as the central area,
It is preferable to partition a region smaller than the threshold value as a peripheral region, but in addition to this, a predetermined unit length (or range) of the imaged pixel group is set as a reference within this length (or range). The inspection area can be partitioned and set by comparing the magnitude of the luminance change amount with a predetermined threshold value and partitioning the area into a large luminance change area and a small luminance change area.
【0034】[0034]
【実施例】以下本発明を図面に示す実施例に基づいて更
に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be further described below based on the embodiments shown in the drawings.
【0035】実施例1 図1は搬送される青果物を撮像する照明光学系と撮像手
段とを示したものであり、この図において、1はコンベ
アであり、青果物2を図の奥側から手前側に搬送するよ
うに設けられている。そしてこのコンベア1の搬送路の
途中には左右斜め上方から照明光を照射する一対の光源
3,3が配置されていて、この光源により照明された青
果物2を撮像するためのCCDカラーカメラ等の撮像装
置(R・G・Bカメラ)4が、コンベア1の真上に配置
されている。Embodiment 1 FIG. 1 shows an illumination optical system and an image pickup means for picking up images of fruits and vegetables to be conveyed. In this figure, reference numeral 1 is a conveyor, and fruits and vegetables 2 are arranged from the back side to the front side of the figure. It is provided to be transported to. A pair of light sources 3, 3 for irradiating the illumination light from diagonally above and to the left are arranged in the middle of the conveying path of the conveyor 1, and a CCD color camera or the like for imaging the fruits and vegetables 2 illuminated by the light sources. An imaging device (R, G, B camera) 4 is arranged directly above the conveyor 1.
【0036】図2は、単一のカラーカメラにより青果物
の両側面と上面の3面を撮像するように構成された照明
光学系と撮像手段とを示したものであり、この図2にお
いてコンベア1、青果物2、光源3、撮像装置4は図1
と同様のものである。そしてこの例の特徴は、搬送され
る青果物2の左右にボックス12,13を配置し、青果
物からの反射光を、拡散板10,11に設けたスリット
16を通してミラー6,7で反射し、更に上部の板14
のスリット15を通して撮像装置4に入射させるように
しているところにあり、こうして撮像装置4は青果物2
の両側面と上面との3面を撮像する。FIG. 2 shows an illumination optical system and an image pickup means configured to pick up images of both sides and the upper surface of fruits and vegetables by a single color camera. In FIG. 1, the fruits and vegetables 2, the light source 3, and the imaging device 4 are shown in FIG.
Is similar to. The feature of this example is that boxes 12 and 13 are arranged on the left and right of the fruits and vegetables 2 to be conveyed, and the reflected light from the fruits and vegetables is reflected by the mirrors 6 and 7 through the slits 16 provided in the diffusion plates 10 and 11, and Top plate 14
The image pickup device 4 is made to enter the image pickup device 4 through the slit 15 of the
The three surfaces of both side surfaces and the upper surface are imaged.
【0037】このような照明光学系と撮像装置により得
られた撮像(青果物の両側面と上面の3面)は、像が互
いに重なり合う部分があるが、例えば、撮像情報を不図
示のメモリーに記憶して、これを読み出すときに、各像
の中央部分を選択して読み出すことで、シェーディング
の少ない連続面の撮像情報を得ることができる。In the image pickup (three sides of the both sides and the upper surface of the fruit and vegetables) obtained by such an illumination optical system and the image pickup device, the images overlap each other. For example, the image pickup information is stored in a memory (not shown). Then, when reading this, by selecting and reading the central portion of each image, it is possible to obtain imaging information of a continuous surface with less shading.
【0038】以上のような照明光学系と撮像装置によ
り、図3の(a)褐色傷、(b)白色傷、(c)褐色傷
+白色傷、(d)ヘタ、を有した各青果物を撮像した場
合について行なわれる傷検出のための信号処理を、その
信号処理回路を示した図4に基づいて説明する。なお図
3は説明の便宜上、青果物を側面から撮像した場合とし
て示した。By using the illumination optical system and the image pickup apparatus as described above, the fruits and vegetables having (a) brown scratches, (b) white scratches, (c) brown scratches + white scratches, and (d) heat of FIG. The signal processing for detecting a flaw that is performed when an image is picked up will be described based on FIG. 4 showing the signal processing circuit. Note that FIG. 3 is illustrated as a case where fruits and vegetables are imaged from the side for convenience of description.
【0039】上記の図1又は図2の撮像装置(R・G・
Bカメラ)4により撮像された各画素の赤(R),緑
(G),青(B)の信号は、A/D変換器20でA/D
変換された後、画像処理コンピュータに入力され、色変
換器21に設定された既知の所定の演算式に従って色の
3要素である明度(Y)、色相(H)、彩度(C)が各
画素毎に算出され、不図示のメモリーに記憶される。The image pickup device (R, G,
The red (R), green (G), and blue (B) signals of each pixel imaged by the B camera 4 are A / D converted by the A / D converter 20.
After conversion, the lightness (Y), the hue (H), and the saturation (C), which are the three elements of color, are input to the image processing computer and are set in the color converter 21 according to a known predetermined arithmetic expression. It is calculated for each pixel and stored in a memory (not shown).
【0040】また別に、R・G・B信号に基づいてトー
タル輝度TがT算出器40において算出される。このト
ータル輝度Tの算出は、果表の検査領域を中心領域と周
辺領域、あるいは上部領域と下部領域というように区画
するためであり、本例では、比較器42により検査領域
設定手段41で与えらる輝度の閾値との比較によって閾
値よりも大きい領域が中心領域又は上部領域として検出
され、閾値よりも小さい領域が周辺領域又は下部領域と
して検出され、この検出結果が後述のアンド回路26及
び35に出力される。Separately, the total brightness T is calculated in the T calculator 40 based on the R, G, B signals. The calculation of the total brightness T is for dividing the inspection area of the result table into the central area and the peripheral area, or the upper area and the lower area, and in this example, is given by the inspection area setting means 41 by the comparator 42. An area larger than the threshold value is detected as a central area or an upper area by comparison with the threshold value of the brightness obtained, and an area smaller than the threshold value is detected as a peripheral area or a lower area. Is output to.
【0041】上記色の3要素Y,H,Cは、これが記憶
された不図示のメモリーから読み出され、本例では3つ
の信号処理が並行して行なわれるようになっている。The three color elements Y, H, and C are read out from a memory (not shown) in which they are stored, and in this example, three signal processes are performed in parallel.
【0042】並行信号処理されるその第1は、彩度Cに
基づいて行なわれる傷害相当部位の有無の判定である。
すなわち本例では、部分平均値算出器22により、ある
画素Cn に対応する彩度の部分平均値[Cn ]が、各画
素毎に、その画素を中心として直交する2方向に所定画
素数だけ離れている複数点の画素の彩度を平均すること
で求められ、差分検出器23で求めたこの部分平均値
[Cn ]と上記各画素の彩度Cn の差ΔCn が、傷検出
感度設定手段24で設定した所定の閾値CK を上回る場
合に、比較器25が傷部位として判定し、出力するよう
に設けられている。なお本例においては、アンド回路2
6において上述した比較器42との論理積をとること
で、彩度による傷検出を行なう領域(例えば果表の周辺
領域のみ、あるいは果表の全領域)である場合に、彩度
差の傷ありとしての出力を出すようにしている。The first of the parallel signal processes is the determination of the presence or absence of the injury-corresponding part, which is performed based on the saturation C.
That is, in the present example, the partial average value calculator 22 calculates the partial average value [ C n ] of the saturation corresponding to a certain pixel C n for each pixel by a predetermined number of pixels in two directions orthogonal to the pixel. The difference ΔC n between the partial average value [ C n ] obtained by the difference detector 23 and the saturation C n of each pixel is obtained by averaging the saturations of the pixels at a plurality of points The comparator 25 is provided so as to judge and output as a scratched part when it exceeds a predetermined threshold value C K set by the detection sensitivity setting means 24. In this example, the AND circuit 2
6, the logical product with the above-mentioned comparator 42 is taken, and thus, in the case of the region where the flaw detection by the saturation is performed (for example, only the peripheral area of the fruit table or the entire area of the fruit table), the flaw of the saturation difference is detected. I am trying to output as is.
【0043】並行信号処理されるその第2は、ヘタ部位
の誤検出防止であり、本例ではこのためにヘタ色情報設
定手段27により、例えば上述したY=0〜40、H=
140〜180、C=10〜50がヘタ色情報として設
定される。そしてこれに対応する各画素毎のY,H,C
と該設定されたヘタ色情報が比較器28で比較され、ヘ
タ部位の色を有する画素が検出される。このようにして
検出されるヘタ部位は、通常は青果物の上面略中央付近
にある。そして本例では、このヘタ部位として検出され
る領域近傍の誤検出を防ぐために、当該ヘタ部位として
検出された画素群の集まりの外側に、拡大演算器29に
より一定画素数分の外郭領域を設定し、この外郭領域の
内側をヘタ部位と判定するようにしている。そしてこの
ヘタ部位と判定した画素については、上記拡大演算器2
9の出力を反転器30で反転し、これを後述のアンド回
路36からの出力との論理積(アンド回路31)とする
ことで、彩度信号に基づいては傷検出部位であってもヘ
タ部位である場合には、傷として検出しないように構成
している。The second of the parallel signal processing is the prevention of erroneous detection of the shaving portion. In this example, for this reason, the stagnation color information setting means 27 is used, for example, Y = 0 to 40 and H =
140-180 and C = 10-50 are set as the heat color information. And Y, H, C for each pixel corresponding to this
The set hetero color information is compared by the comparator 28, and pixels having the color of the hetero region are detected. The heather part detected in this manner is usually located near the center of the upper surface of the fruit and vegetables. Then, in this example, in order to prevent erroneous detection in the vicinity of the region detected as the heat region, the expansion calculator 29 sets an outer region for a certain number of pixels outside the group of pixel groups detected as the heat region. However, the inside of the outer region is determined to be the heather part. Then, for the pixel determined to be the heat region, the enlargement calculator 2 is used.
The output of 9 is inverted by the inverter 30, and the logical product (AND circuit 31) with the output from the AND circuit 36, which will be described later, is used. If it is a part, it is configured not to be detected as a scratch.
【0044】並行信号処理されるその第3は、特定の色
傷を検出するために、本例では、その色傷に相当する
Y,H,Cの数値範囲を特定の傷色情報として予め傷色
情報設定手段32に設定し、不図示のメモリから読出し
た各画素毎のY,H,C信号と、この傷色情報設定手段
32に設定された傷色情報とを比較器33で比較するこ
とにより、設定されたY,H,Cの数値範囲にそのいず
れもが含まれる画素については、特定の色傷であると判
定し、アンド回路35において上記比較器42との論理
積をとることで、傷検出を行なう領域(例えば果表の中
央領域のみ、又は果表の周辺領域のみ、あるいは果表の
全領域)である場合に、色傷ありとしての出力を出すよ
うにしている。In order to detect a specific color flaw, in the third example of parallel signal processing, in the present example, the numerical range of Y, H and C corresponding to the color flaw is used as the specific flaw color information in advance. The comparator 33 compares the Y, H, and C signals for each pixel set in the color information setting means 32 and read from a memory (not shown) with the flaw color information set in the flaw color information setting means 32. Accordingly, it is determined that a pixel including any of them in the set numerical range of Y, H, and C has a specific color flaw, and the AND circuit 35 takes a logical product with the comparator 42. In the case where the scratch is detected (for example, only the central area of the fruit table, only the peripheral area of the fruit table, or the entire area of the fruit table), an output indicating that there is a color flaw is output.
【0045】そして本例の回路では、各画素毎に、オア
回路36によって、アンド回路26,35の出力の論理
和を出力し、これが反転器30からの出力によってヘタ
部位でない場合に、アンド回路31が成立して最終的に
該当画素の傷信号が出力されることになる。In the circuit of this example, the OR circuit 36 outputs the logical sum of the outputs of the AND circuits 26 and 35 for each pixel, and when the output from the inverter 30 does not indicate the OR portion, the AND circuit 36 outputs. When 31 is satisfied, the flaw signal of the corresponding pixel is finally output.
【0046】図5〜図8は、上記の図4で説明した信号
処理回路のうちの、色変換器21により求められた明度
(Y)、色相(H)、彩度(C)の信号出力状態を示し
た図であり、これらの図は便宜的に、図3の(a)〜
(d)の夫々について傷等の部分を含むように、図の左
右方向に一列の直線的画素列として検出したY,H,C
の変化を示した。FIGS. 5 to 8 show signal outputs of lightness (Y), hue (H), and saturation (C) obtained by the color converter 21 in the signal processing circuit described in FIG. 4 above. It is the figure which showed the state, and these figures are (a) -of FIG. 3 for convenience.
Y, H, and C detected as one linear pixel row in the left-right direction of the drawing so as to include a portion such as a scratch in each of (d).
Showed the change.
【0047】これらの図から、Y,H,C信号はそれぞ
れ、コンベア面(図の横軸の左側)から青果物の上面
(図の横軸の右側)に向かって検出値が高くなってお
り、また傷害部位やヘタ部位で彩度信号Cが特徴的に変
化すること(図5〜図8参照)、ヘタ部位において色相
H信号が特徴的に大きくなっていること(図8参照)、
が分かる。From these figures, the detected values of the Y, H, and C signals increase from the conveyor surface (left side of the horizontal axis in the figure) toward the upper surface of the fruit and vegetables (right side of the horizontal axis in the figure), In addition, the saturation signal C characteristically changes at the injured portion or the heather portion (see FIGS. 5 to 8), and the hue H signal characteristically increases at the heather portion (see FIG. 8).
I understand.
【0048】図9は、以上の図5〜図8の横軸のスケー
ルを変更して各Y,H,C信号をまとめて示したもので
あり、この図の左側から順に図5、図6、図7、図8の
結果を夫々示している。FIG. 9 shows the Y, H, and C signals collectively by changing the scale of the horizontal axis in FIGS. 5 to 8 described above. , FIG. 7 and FIG. 8 are shown respectively.
【0049】そしてこの図9に対応する図4の比較器2
5の出力信号(移動平均法による相対彩度変化)を図1
0に示した。なお本例における部分平均値は中心画素に
対して左右に3画素(ドット)離れた点の移動平均とし
て求めた。The comparator 2 of FIG. 4 corresponding to this FIG.
Fig. 1 shows the output signal of No. 5 (relative saturation change by the moving average method).
It was shown at 0. The partial average value in this example was obtained as a moving average of points separated by 3 pixels (dots) to the left and right of the central pixel.
【0050】この図から分かるように、図3の各青果物
における彩度が周辺よりも低くなっている部位は、図1
0において明瞭に検出できることが分かる。なお、本例
においては、図3の(d)の場合、ヘタ部位が比較器2
5の出力においては傷として検出されているが、反転器
30ではこのヘタ部位についての出力がない(検出出力
は反転されている)ので、アンド回路31からは傷信号
が出力されない。As can be seen from this figure, the portions of the fruits and vegetables shown in FIG. 3 where the saturation is lower than the surrounding areas are shown in FIG.
It can be seen that it can be clearly detected at 0. In addition, in this example, in the case of FIG.
Although the output of 5 is detected as a flaw, the inverter 30 does not output the output of this region (the detected output is inverted), and therefore the AND circuit 31 does not output a flaw signal.
【0051】実施例2 本例は、果表の概ね全体が黄色を呈していて、一部緑色
の部位が存在するミカンを対象とし、その緑部位を傷と
して検出することから除外する例を示している。Example 2 This example shows an example in which a mandarin orange in which almost the entire fruit surface is yellow and a part of green is present is excluded from the detection of the green part as a scratch. ing.
【0052】すなわち、図11に示すように、青果物2
の果表の略全面が黄色で、その一部に緑の部位がある
と、この緑の部位の彩度は低く検出傾向にある。このた
め図4の移動平均法による彩度の相対変化を求めると、
図の中段のグラフにおける彩度の原信号の曲線(実線で
示した)に比べて、移動平均法により求めた部分平均値
の曲線(破線で示した)が高い値を示し、図の下段で示
すように、図4の比較器25の出力としては、これを傷
として検出する可能性がある。That is, as shown in FIG. 11, fruits and vegetables 2
If almost all of the fruit surface is yellow and there is a green part in that part, the saturation of this green part is low and tends to be detected. Therefore, when the relative change in saturation is calculated by the moving average method of FIG.
The curve of the partial average value (indicated by the broken line) obtained by the moving average method shows a higher value than the curve of the original signal of saturation (indicated by the solid line) in the graph in the middle part of the figure, and in the lower part of the figure As shown, the output of the comparator 25 in FIG. 4 may be detected as a flaw.
【0053】そこで、本例においては、図3のヘタ部位
を検出除外するのと同じ構成で、緑の部位を検出除外す
る信号処理回路(図示せず)を構成させるようにしてい
る。なお、緑の検出を除外するための検出除外色情報の
設定は、ヘタ部位の色情報の設定と同じくY,H,C信
号の条件範囲を設定する方式でもよいし、設定した緑の
色相と、撮像したR,G,B信号からこれに対応する緑
の色相信号を求めて比較する方式としてもよい。Therefore, in this example, a signal processing circuit (not shown) for detecting and excluding the green portion is configured with the same configuration as that for detecting and excluding the heat portion in FIG. It should be noted that the detection exclusion color information for excluding the detection of green may be set by the method of setting the condition range of the Y, H, and C signals, similarly to the setting of the color information of the heather part, or by the set hue of green. Alternatively, a method may be used in which a green hue signal corresponding to the captured R, G, B signals is obtained and compared.
【0054】[0054]
【発明の効果】本発明によれば、従来の傷害検出を機械
的に行なっていた装置に比べて、その検出精度が大幅に
向上し、特に照明,撮像の光学系に関する経時的変化、
変動があっても、検出精度に殆ど悪影響を与えることな
く安定に傷害検出を行なうことができるという効果が得
られる。According to the present invention, the accuracy of detection is greatly improved as compared with the conventional apparatus that mechanically detects an injury, and in particular, changes with time in the optical system for illumination and imaging,
Even if there is a change, it is possible to obtain the effect that the injury can be detected stably with almost no adverse effect on the detection accuracy.
【0055】また、青果物の照明におけるシェーディン
グの影響も低減され、特に中央領域に比べて周辺領域の
光量が低くなり易い場合にも、移動平均法により各画素
をその周辺部位を背景として比較するので、高い検出精
度を維持することができるという効果が得られる。Further, the influence of shading in the illumination of fruits and vegetables is reduced, and even when the light amount in the peripheral area is likely to be lower than that in the central area, each pixel is compared by the moving average method with the peripheral area as the background. An effect that high detection accuracy can be maintained is obtained.
【0056】更に、ヘタ付き青果物やミカンにおける緑
部位を傷として誤検出する虞れも、必要に応じてこれを
傷として検出することから除外する信号処理を行なうこ
とで確実に防止することができるので、誤検出の虞れが
大幅に低減されるとい効果がある。Furthermore, the risk of erroneously detecting a green portion of a fruit or fruit or a mandarin orange as a scratch can be reliably prevented by performing signal processing that excludes this from being detected as a scratch if necessary. Therefore, there is an effect that the risk of erroneous detection is significantly reduced.
【0057】又更に、青果物によっては特徴的な色傷傷
害を検出することが求められる場合もあるが、この場合
にも、その特徴的な色傷を検出するようにできるので、
傷検出の精度が向上するという効果が得られる。Furthermore, it may be required to detect a characteristic color damage injury depending on fruits and vegetables. In this case, the characteristic color damage injury can also be detected.
The effect of improving the accuracy of scratch detection can be obtained.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の実施に用いられる照明光学系、撮像装
置の配置関係の一例を示した図、FIG. 1 is a diagram showing an example of a positional relationship between an illumination optical system and an imaging device used for implementing the present invention,
【図2】本発明の実施に用いられる照明光学系、撮像装
置の配置関係の他の例を示した図、FIG. 2 is a diagram showing another example of an arrangement relationship between an illumination optical system and an image pickup apparatus used for implementing the present invention,
【図3】本発明装置により傷検出を行なう対象の青果物
の傷等の例を示した図であり、(a)は、褐色傷のある
青果物、(b)は白色傷のある青果物、(c)は褐色傷
及び白色傷の双方がある青果物、(d)はヘタを有する
青果物をそれぞれ示している。FIG. 3 is a diagram showing an example of a scratch or the like of a fruit or vegetable targeted for scratch detection by the device of the present invention, where (a) is a fruit or vegetable with brown scratches, (b) is a fruit or vegetable with white scratches, (c). ) Indicates fruits and vegetables having both brown and white scars, and (d) indicates fruits and vegetables having a scab.
【図4】本発明装置の信号処理を行なう回路の構成概要
をブロックで示した図、FIG. 4 is a block diagram showing a schematic configuration of a circuit that performs signal processing of the device of the present invention;
【図5】図3(a)の青果物について求められた直線的
画素一列のY,H,C信号の変化曲線を示した図、FIG. 5 is a diagram showing a change curve of Y, H, and C signals in a linear pixel row obtained for the fruits and vegetables shown in FIG.
【図6】図3(b)の青果物について求められた直線的
画素一列のY,H,C信号の変化曲線を示した図、FIG. 6 is a diagram showing a change curve of Y, H, and C signals in a straight line of pixels obtained for the fruits and vegetables shown in FIG.
【図7】図3(c)の青果物について求められた直線的
画素一列のY,H,C信号の変化曲線を示した図、FIG. 7 is a diagram showing a change curve of Y, H, and C signals of a linear pixel row obtained for the fruits and vegetables of FIG.
【図8】図3(d)の青果物について求められた直線的
画素一列のY,H,C信号の変化曲線を示した図、FIG. 8 is a diagram showing a change curve of Y, H, and C signals in a linear pixel row obtained for the fruits and vegetables shown in FIG.
【図9】図5〜図8の曲線を、横軸スケールを変えて一
括に示した図、9 is a diagram collectively showing the curves of FIGS. 5 to 8 with the horizontal scale being changed,
【図10】図9の彩度信号に基づく移動平均法により求
めた相対彩度変化を示した図、10 is a diagram showing a relative saturation change obtained by a moving average method based on the saturation signal of FIG. 9;
【図11】ミカンにおける緑の部位の検出除外を行なう
ことを説明するための図。FIG. 11 is a diagram for explaining how to exclude detection of a green part in oranges.
1・・・コンベア、2・・・青果物、3・・・光源、4
・・・撮像装置、6,7・・・ミラー、10,11・・
・拡散板、12,13・・・ボックス、14・・・上部
の板、15,16・・・スリット、20・・・A/D変
換器、21・・・色変換器、22・・・部分平均値算出
器、23・・・差分検出器、24・・・傷検出感度設定
手段、25・・・比較器、26・・・アンド回路、27
・・・ヘタ色情報設定手段、28・・・比較器、29・
・・拡大演算器、30・・・反転器、31・・・アンド
回路、32・・・傷色情報設定手段、33・・・比較
器、35・・・アンド回路、36・・・オア回路、40
・・・T算出器、41・・・検査領域設定手段、42・
・・比較器。1 ... conveyor, 2 ... fruits and vegetables, 3 ... light source, 4
... Imaging device, 6,7 ... Mirror, 10,11 ...
・ Diffusion plate, 12, 13 ... Box, 14 ... Upper plate, 15, 16 ... Slit, 20 ... A / D converter, 21 ... Color converter, 22 ... Partial average value calculator, 23 ... difference detector, 24 ... flaw detection sensitivity setting means, 25 ... comparator, 26 ... AND circuit, 27
... Various color information setting means, 28 ... Comparator, 29.
..Enlargement calculator, 30 ... Inverter, 31 ... AND circuit, 32 ... Scratch color information setting means, 33 ... Comparator, 35 ... AND circuit, 36 ... OR circuit , 40
... T calculator, 41 ... inspection area setting means, 42 ...
..Comparators
Claims (7)
照明光を当てる光源手段と、該照明された青果物を撮像
して画素毎の赤,緑,青の信号を取出す受光手段と、前
記の赤,緑,青の信号に基づいて各画素の彩度(C)を
演算し、かつ移動平均法により各画素毎にその周辺の彩
度の部分平均値を求める演算手段と、各画素の彩度とこ
れに対応する前記部分平均値を比較して傷害相当部位の
有無を判定する判定手段と、を有することを特徴とする
青果物の傷害自動検出装置。1. A light source means for applying illumination light to a plurality of fruits and vegetables conveyed at a distance, and a light receiving means for imaging the illuminated fruits and vegetables to extract red, green, and blue signals for each pixel, Calculating means for calculating the saturation (C) of each pixel on the basis of the red, green, and blue signals of each pixel, and calculating the partial average value of the saturation of each pixel by the moving average method; An automatic injury detection device for fruits and vegetables, comprising: a determining unit that determines the presence or absence of an injury-corresponding portion by comparing saturation and the partial average value corresponding thereto.
照明光を当てる光源手段と、該照明された青果物を撮像
して画素毎の輝度信号を取出す受光手段と、移動平均法
により各画素毎にその周辺の輝度の部分平均値を求める
演算手段と、各画素の輝度とこれに対応する前記部分平
均値を比較して傷害相当部位の有無を判定する判定手段
と、を有することを特徴とする青果物の傷害自動検出装
置。2. A light source means for applying illumination light to a large number of fruits and vegetables conveyed separately, a light receiving means for picking up an image of the illuminated fruits and vegetables to obtain a luminance signal for each pixel, and each pixel by a moving average method. And a determining unit that determines the presence or absence of an injury-corresponding site by comparing the brightness of each pixel with the partial average value corresponding to the brightness of each pixel. Automatic injury detection device for fruits and vegetables.
平均値は、各画素夫々に対して直交する2方向にそれぞ
れ所定間隔離れた複数点の画素の平均値として求める
か、又は、各画素夫々を中心としてマトリックス状に所
定間隔離れた複数点の画素の平均値として求めることを
特徴とする青果物の傷害自動検出装置。3. The partial average value obtained by the moving average method according to claim 1 or 2 is obtained as an average value of pixels at a plurality of points separated by a predetermined interval in two directions orthogonal to each pixel, or An automatic injury detection device for fruits and vegetables, characterized in that it is obtained as an average value of pixels at a plurality of points spaced in a matrix form centering on each pixel.
に、傷として検出しない色についての検出除外色情報を
設定する検出除外色情報設定手段と、前記受光手段によ
り取出した画素毎の赤,緑,青の信号から前記検出除外
色情報と対応する色情報を求める色情報演算手段と、こ
の色情報演算手段で得られた各画素の色情報と前記設定
された検出除外色情報を比較して傷としての検出の要,
不要を判定する検出除外判定手段と、を設けたことを特
徴とする青果物の傷害自動検出装置。4. The automatic fruit and vegetable injury detection device according to claim 1, wherein detection exclusion color information setting means for setting detection exclusion color information for colors not detected as flaws, and red for each pixel taken out by the light receiving means, The color information calculation means for obtaining color information corresponding to the detection exclusion color information from the green and blue signals, and the color information of each pixel obtained by this color information calculation means are compared with the set detection exclusion color information. Of scratches,
An automatic detection device for a fruit or vegetable injury, which is provided with a detection exclusion determination means for determining unnecessaryness.
色情報が、ヘタ付き青果物である場合に該ヘタの色情報
であることを特徴とする青果物の傷害自動検出装置。5. The automatic injury detection device for fruits and vegetables according to claim 4, wherein the detection exclusion color information that is set is the color information of the fruits and vegetables when the fruits and vegetables are attached.
色情報が、青果物が柑橘類である場合に緑色であること
を特徴とする青果物の傷害自動検出装置。6. The automatic injury detection device for fruits and vegetables according to claim 4, wherein the set detection exclusion color information is green when the fruits and vegetables are citrus fruits.
に、特定の色傷についての傷色情報を設定する傷色情報
設定手段と、前記受光手段により取出した画素毎の赤,
緑,青の信号から前記傷色情報と対応する色情報を求め
る色情報演算手段と、この色情報演算手段で得られた各
画素の色情報と前記設定された傷色情報を比較して特定
の色傷相当部位の有無を判定する判定手段と、を設けた
ことを特徴とする青果物の傷害自動検出装置。7. The automatic fruit and vegetable injury detection device according to claim 1, wherein flaw color information setting means for setting flaw color information on a specific color flaw, and red for each pixel taken out by the light receiving means,
Color information calculation means for obtaining color information corresponding to the flaw color information from green and blue signals, and color information of each pixel obtained by this color information computation means and specified flaw color information are specified. And a determination means for determining the presence or absence of the color scratch-corresponding part, and an automatic injury detection device for fruits and vegetables.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31055894A JP3311880B2 (en) | 1994-12-14 | 1994-12-14 | Automatic detection device for fruits and vegetables injury |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31055894A JP3311880B2 (en) | 1994-12-14 | 1994-12-14 | Automatic detection device for fruits and vegetables injury |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08166380A true JPH08166380A (en) | 1996-06-25 |
JP3311880B2 JP3311880B2 (en) | 2002-08-05 |
Family
ID=18006690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31055894A Expired - Fee Related JP3311880B2 (en) | 1994-12-14 | 1994-12-14 | Automatic detection device for fruits and vegetables injury |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3311880B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006300767A (en) * | 2005-04-21 | 2006-11-02 | Maki Mfg Co Ltd | Visual inspection apparatus for agricultural product |
CN100337243C (en) * | 2003-12-31 | 2007-09-12 | 中国农业大学 | A fruit surface image collection system and method |
CN100429501C (en) * | 2004-12-14 | 2008-10-29 | 中国农业大学 | Non-destructive detection method for quickly detecting brown core of pear |
JP2008309678A (en) * | 2007-06-15 | 2008-12-25 | Naberu:Kk | Contaminated egg inspection device |
JPWO2017168469A1 (en) * | 2016-03-28 | 2019-03-22 | パナソニックIpマネジメント株式会社 | Appearance inspection device and appearance inspection method |
-
1994
- 1994-12-14 JP JP31055894A patent/JP3311880B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100337243C (en) * | 2003-12-31 | 2007-09-12 | 中国农业大学 | A fruit surface image collection system and method |
CN100429501C (en) * | 2004-12-14 | 2008-10-29 | 中国农业大学 | Non-destructive detection method for quickly detecting brown core of pear |
JP2006300767A (en) * | 2005-04-21 | 2006-11-02 | Maki Mfg Co Ltd | Visual inspection apparatus for agricultural product |
JP4656399B2 (en) * | 2005-04-21 | 2011-03-23 | 静岡シブヤ精機株式会社 | Agricultural products visual inspection equipment |
JP2008309678A (en) * | 2007-06-15 | 2008-12-25 | Naberu:Kk | Contaminated egg inspection device |
JP4734620B2 (en) * | 2007-06-15 | 2011-07-27 | 株式会社ナベル | Stained egg inspection device |
JPWO2017168469A1 (en) * | 2016-03-28 | 2019-03-22 | パナソニックIpマネジメント株式会社 | Appearance inspection device and appearance inspection method |
Also Published As
Publication number | Publication date |
---|---|
JP3311880B2 (en) | 2002-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101298957B1 (en) | Wood knot detecting method, device, and program | |
US5046111A (en) | Methods and apparatus for optically determining the acceptability of products | |
JP6357617B2 (en) | Defect inspection equipment | |
US6433293B1 (en) | Method and device for detecting dirt as present on articles, for example eggs | |
JP4708904B2 (en) | Wood inspection method, apparatus and program | |
JP3614980B2 (en) | Agricultural product appearance inspection method and apparatus | |
JPH08166380A (en) | Automatic bruise detector for vegitable and fruit | |
JP2006239602A (en) | Grading method for fruit and vegetable | |
US12106468B2 (en) | Foreign material inspection system | |
CA2153647A1 (en) | Method and apparatus for recognizing geometrical features of parallelepiped-shaped parts of polygonal section | |
KR20090124335A (en) | Method of determining color index for color grading of fruits and method of grading color of fruits | |
JP3962525B2 (en) | Image generation device and sorting classification determination device used for sorting agricultural products | |
JP2000155098A (en) | Watermelon external appearance inspecting device | |
JPH04184573A (en) | Visual device, such as fruit collecting machine or the like | |
JP2003251282A (en) | System for measuring and deciding grade and class of strawberry | |
JP4656399B2 (en) | Agricultural products visual inspection equipment | |
JP2642107B2 (en) | Automatic grading method and device for fruits and vegetables | |
JP4653340B2 (en) | Can appearance inspection device using a three-plate CCD camera | |
JPS6342411A (en) | Method and instrument for inspecting three-dimensional measurement of body | |
JP2696166B2 (en) | Fruit and vegetable testing device | |
JPH04147002A (en) | Inspecting apparatus of surface of fruit and vegetable | |
KR102094314B1 (en) | Machine vision based crop selection apparatus | |
JPH08189901A (en) | Testing device using picture signal | |
JPH036447A (en) | Inspecting apparatus of packaged board | |
JPS6111679B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080524 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080524 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090524 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100524 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100524 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110524 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120524 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130524 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |