JPH08165918A - Particulate collecting system control method - Google Patents

Particulate collecting system control method

Info

Publication number
JPH08165918A
JPH08165918A JP6311791A JP31179194A JPH08165918A JP H08165918 A JPH08165918 A JP H08165918A JP 6311791 A JP6311791 A JP 6311791A JP 31179194 A JP31179194 A JP 31179194A JP H08165918 A JPH08165918 A JP H08165918A
Authority
JP
Japan
Prior art keywords
filter
engine
regeneration
collection
collection efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6311791A
Other languages
Japanese (ja)
Inventor
Kenji Kimura
憲治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6311791A priority Critical patent/JPH08165918A/en
Publication of JPH08165918A publication Critical patent/JPH08165918A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PURPOSE: To reduce the deposit of unburnt component, and to prevent abnormal combustion of collected particulate and melting of a filter by varying the filter regeneration time starting time with the discharge quantity of unburnt components from an engine. CONSTITUTION: According to an ignition off signal, the particulate collection efficiency of a filter 1 which collects particulates at present is stored. When the engine is restarted, the stored collection efficiency is read out, and if it is larger than a designated value, valves 5, 6 are switched, whereby the filter 1 is forced to enter regeneration and be on standby after the lapse of designated regeneration time. If smaller than a designated value, collection is continued until the collection efficiency reaches a designated value. Even if a filter 2 is put in its collecting state, there is the possibility that unburnt components are adsorbed to excess. Accordingly, it is determined whether the collection efficiency reaches a designated value or not, and if it exceeds a designated value, regeneration of the filter 2 is executed. After that, collection is continued until the collection efficiency of the filter 1 becomes 100% or more, the filter 2 is regenerated, if 100% or more, collection is continued by the filter 2 until the collection efficiency becomes 100% or more, and the filter 1 is regenerated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の排気系にパ
ティキュレートを捕集するフィルタを備えたパティキュ
レート捕集システムの制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling a particulate collection system having a filter for collecting particulates in an exhaust system of an internal combustion engine.

【0002】[0002]

【従来の技術】実開平1−139014号公報は、機関
排気系にパティキュレートフィルタを並列に設け、フィ
ルタの目詰りによって背圧が上った時に管路を切替え、
目詰りをした方のフィルタのパティキュレートを燃焼さ
せてフィルタを再生するパティキュレート捕集システム
を開示している。
In Japanese Utility Model Laid-Open No. 1-139014, a particulate filter is provided in parallel with an engine exhaust system, and when a back pressure rises due to clogging of the filter, a pipe line is switched.
Disclosed is a particulate collection system in which the particulates of the clogged filter are burned to regenerate the filter.

【0003】[0003]

【発明が解決しようとする課題】従来システムにおい
て、連続捕集状態では、フィルタ圧損とパティキュレー
ト捕集量の関係は、図4に実線で示すように、ほぼ1次
(リニア)の関係を示すが、途中エンジン停止が発生す
ると、再始動直後未燃成分(HC等)が多量に排出さ
れ、それと同時に見掛け上の圧損が上昇してシステムと
してはフィルタ再生要の判定をし、再生を実行する。と
くに長時間のエンジン停止後の始動において、その傾向
が強い。この再生の際、フィルタ中に多量の未燃分が付
着しているために、パティキュレートの異常燃焼が生
じ、フィルタを溶損させるおそれがある。本発明の目的
は、エンジン始動時のフィルタの溶損を防止できるパテ
ィキュレート捕集システム制御方法を提供することにあ
る。
In the conventional system, in the continuous collection state, the relationship between the filter pressure loss and the particulate collection amount shows a substantially linear relationship as shown by the solid line in FIG. However, if the engine is stopped midway, a large amount of unburned components (HC, etc.) will be discharged immediately after restart, and at the same time, the apparent pressure loss will rise, and the system will determine whether the filter needs to be regenerated and regenerate it. . This tendency is particularly strong when starting the engine after the engine has been stopped for a long time. During this regeneration, since a large amount of unburned matter adheres to the filter, abnormal combustion of particulates may occur, and the filter may be melted and damaged. It is an object of the present invention to provide a particulate collection system control method capable of preventing the filter from being melted when the engine is started.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する本発
明は次の通りである。 (1)機関排気系に設けられたフィルタにパティキュレ
ートが蓄積されるとフィルタを再生するパティキュレー
ト捕集システム制御方法において、機関の未燃成分排出
量が大の時と小の時とでフィルタ再生開始時期を異なら
せるパティキュレート捕集システム制御方法。 (2)機関排気系に設けられたフィルタの圧損が所定値
に達するとフィルタを再生するパティキュレート捕集シ
ステム制御方法において、機関の未燃成分排出量が大の
時と小の時とで前記所定値を異ならせるパティキュレー
ト捕集システム制御方法。
The present invention which achieves the above object is as follows. (1) In a particulate collection system control method that regenerates a filter when particulates are accumulated in a filter provided in an engine exhaust system, the filter is used when the unburned component emission amount of the engine is large and when it is small. A method for controlling a particulate collection system in which regeneration start time is different. (2) In a particulate collection system control method that regenerates a filter when a pressure loss of a filter provided in an engine exhaust system reaches a predetermined value, the method is used when the unburned component emission amount of the engine is large and small. A method for controlling a particulate collection system for varying a predetermined value.

【0005】[0005]

【作用】上記(1)の方法では、未燃成分排出量が大の
ときにはフィルタ再生開始時期を早くすることにより、
未燃成分のフィルタへの付着量を低減でき、捕集パティ
キュレートの異常燃焼、フィルタ溶損を防止できる。上
記(2)の方法では、フィルタ再生開始時期を早めるの
に、上記所定値を低くし、測定した圧損がこの所定値に
達するとフィルタ再生を開始する方法をとったので、上
記(1)と同様、捕集パティキュレートの異常燃焼、フ
ィルタ溶損を防止できる。
In the above method (1), when the unburned component emission amount is large, the filter regeneration start time is set earlier,
The amount of unburned components adhering to the filter can be reduced, and abnormal combustion of trapped particulates and filter melting damage can be prevented. In the above method (2), the predetermined value is lowered to accelerate the filter regeneration start time, and the filter regeneration is started when the measured pressure loss reaches this predetermined value. Similarly, it is possible to prevent abnormal combustion of the collected particulates and filter melting damage.

【0006】[0006]

【実施例】以下に、本発明の望ましい実施例を図1〜図
3を参照して説明する。図1は本発明方法の工程を示
し、図2は本発明方法が実施される第1のシステムを示
し、図3は本発明方法が実施される第2のシステムを示
す。ただし、第1、第2のシステムにおいて、共通する
構成部分には同じ符号を付してある。まず、システムを
説明する。第1、第2のシステムの共通構成部分を説明
すると、図2、図3に示すように、機関(たとえば、デ
ィーゼル機関)の排気系には並列通路部分があって、並
列通路3、4のそれぞれに、フィルタ1、フィルタ2が
設けられている。エンジンよりの排気ガスが、通路3、
4の一方に流れるいるときは、他方の通路には流れな
い。並列通路3、4への排気ガスの流れは切替弁5、6
によって切替えられる。フィルタ1、2は排気ガス中の
パティキュレート(機関がディーゼル機関の場合はディ
ーゼルパティキュレート、たとえば、HCパティキュレ
ートからなる)を捕集する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to FIGS. 1 shows the steps of the inventive method, FIG. 2 shows a first system in which the inventive method is implemented, and FIG. 3 shows a second system in which the inventive method is implemented. However, in the first and second systems, the same components are given the same reference numerals. First, the system will be described. Explaining the common components of the first and second systems, as shown in FIGS. 2 and 3, the exhaust system of the engine (for example, a diesel engine) has a parallel passage portion, and the parallel passage portions of the parallel passages 3 and 4 are provided. A filter 1 and a filter 2 are provided for each. Exhaust gas from the engine, the passage 3,
When it is flowing in one of the four, it does not flow in the other passage. The flow of exhaust gas to the parallel passages 3 and 4 is controlled by the switching valves 5 and 6.
Is switched by. The filters 1 and 2 collect particulates in the exhaust gas (comprising diesel particulates such as HC particulates when the engine is a diesel engine).

【0007】各フィルタ1、2には、フィルタが捕集パ
ティキュレートによって目詰りしそうになったときに捕
集パティキュレートを燃焼させてフィルタを再生させる
ヒータ(電気ヒータ)7、8が設けられている。図示例
はヒータ7、8がフィルタ1、2の後端(排気ガス流れ
方向にみて下流側端)に設けられた場合を示している
が、ヒータ設置部位はそれに限るものではない。フィル
タが再生される時には、再生中のフィルタがある通路に
は排気ガスは流さず、非再生中のフィルタがある通路に
排気ガスを流してパティキュレートを捕集する。再生中
のフィルタにパティキュレート燃焼用のエアを供給する
エア供給装置9が設けられている。エア供給装置9から
の供給エアはフィルタのヒータ設置側端部から反対側端
部に向って流される。
Each of the filters 1 and 2 is provided with heaters (electric heaters) 7 and 8 which burn the trapped particulates to regenerate the filters when the filters are about to be clogged by the trapped particulates. There is. The illustrated example shows the case where the heaters 7 and 8 are provided at the rear ends (downstream ends when viewed in the exhaust gas flow direction) of the filters 1 and 2, but the heater installation site is not limited thereto. When the filter is regenerated, the exhaust gas does not flow through the passage having the filter being regenerated, and the exhaust gas is caused to flow through the passage having the filter not being regenerated to collect the particulates. An air supply device 9 for supplying air for particulate combustion to the filter being regenerated is provided. Air supplied from the air supply device 9 flows from the end of the filter on which the heater is installed to the end on the opposite side.

【0008】フィルタ1、2へのパティキュレート蓄積
の度合は、フィルタ1、2の圧損、したがってフィルタ
1、2の前後の差圧によって検出される。このために、
フィルタ1、2の前後の差圧を検出する差圧センサ10
が設けられている。差圧センサ10の出力はECU(電
子制御装置)11に供給される。ECU11はたとえば
車両に搭載されたコンピュータからなり、図1の方法を
実行する制御ルーチンを格納している。ECU11に
は、上記の他に種々のエンジン運転条件が入力される。
これらのエンジン運転条件の信号には、エンジン回転数
センサからのエンジン回転数信号、スロットルセンサか
らのスロットル開度信号、エンジン12が始動時か否か
を判定するために用いる水温センサ13からの水温信
号、および排気温センサ14からの排気温信号が含まれ
る。ECU11の指令信号によって、切替弁5、6は切
替えられ、ヒータ7、8がオンオフされ、エアのフィル
タ1、2への供給が切替えられる。15はマフラーであ
る。
The degree of particulate accumulation in the filters 1 and 2 is detected by the pressure loss of the filters 1 and 2, and thus the differential pressure across the filters 1 and 2. For this,
Differential pressure sensor 10 for detecting the differential pressure before and after the filters 1 and 2
Is provided. The output of the differential pressure sensor 10 is supplied to an ECU (electronic control unit) 11. The ECU 11 comprises, for example, a computer mounted on a vehicle, and stores a control routine for executing the method of FIG. In addition to the above, various engine operating conditions are input to the ECU 11.
These engine operating condition signals include the engine speed signal from the engine speed sensor, the throttle opening signal from the throttle sensor, and the water temperature from the water temperature sensor 13 used to determine whether the engine 12 is starting. The signal and the exhaust temperature signal from the exhaust temperature sensor 14 are included. In response to a command signal from the ECU 11, the switching valves 5 and 6 are switched, the heaters 7 and 8 are turned on / off, and the supply of air to the filters 1 and 2 is switched. 15 is a muffler.

【0009】つぎに、図2、図3のシステムとで異なる
構成を説明する。図2のシステムでは、パティキュレー
ト燃焼用エアは電動エアポンプ16から供給され、バキ
ュームスイッチングバルブ17、18によって一方の弁
19、20が開、他方の弁21、22が閉とされ、開と
された弁を通して供給される。切替弁5、6もバキュー
ムスイッチングバルブ17、18によって切替えられ
る。バキュームスイッチングバルブ17、18のバキュ
ームはエンジンスロットル弁下流の負圧を利用する。差
圧センサ10は切替弁5、6より上、下流の点の差圧を
検出する。図3のシステムでは、パティキュレート燃焼
用エアには2次エア(排気系に未燃分燃焼用に供給され
るものを兼用)の一部が用いられて通路23から供給さ
れ、フィルタを再生した後の捕集パチキュレート燃焼ガ
スは通路24から排出される。差圧センサ10a、10
bは各々のフィルタ1、2に対して設けられ、各々のフ
ィルタ1、2の前後の差圧△p1、△p2を検出して出
力する。切替弁5、6の切替はバキュームスイッチング
バルブ17によって行われ、バキュームスイッチングバ
ルブ17はECU11からの指令で作動する。
Next, a different structure from the system of FIGS. 2 and 3 will be described. In the system of FIG. 2, the particulate combustion air is supplied from the electric air pump 16, and the vacuum switching valves 17 and 18 open one valve 19 and 20 and the other valve 21 and 22 to open. Supplied through the valve. The switching valves 5 and 6 are also switched by the vacuum switching valves 17 and 18. The vacuum of the vacuum switching valves 17 and 18 uses the negative pressure downstream of the engine throttle valve. The differential pressure sensor 10 detects the differential pressure at a point above and above the switching valves 5 and 6. In the system of FIG. 3, part of the secondary air (also used for the unburned component combustion in the exhaust system) is used as the particulate combustion air and is supplied from the passage 23 to regenerate the filter. The collected trapped particulate combustion gas is discharged from the passage 24. Differential pressure sensor 10a, 10
b is provided for each of the filters 1 and 2, and detects and outputs the differential pressures Δp1 and Δp2 before and after the filters 1 and 2, respectively. The switching of the switching valves 5 and 6 is performed by the vacuum switching valve 17, and the vacuum switching valve 17 operates according to a command from the ECU 11.

【0010】つぎに、本発明の方法を、該方法の工程の
流れを示した図1を参照して説明する。ステップ101
〜108は、エンジン始動時等エンジンの未燃成分排出
量が大の時にパティキュレート捕集システムを制御する
部分で、ステップ109〜112は、エンジン暖機後等
エンジンの未燃成分排出量が小の時にパティキュレート
捕集システムを制御する部分である。本発明方法では、
エンジンの未燃成分排出量が大の時(ステップ101〜
108)と小の時(ステップ109〜112)とで、フ
ィルタ1、2の再生開始時期が異ならせてあり(ステッ
プ102の75%とステップ110の100%とが異な
らされている)、未燃成分排出量が大の時の方が小の時
よりもフィルタ再生開始時期を早めてある。たとえば、
フィルタ再生開始時期を、現在のフィルタ圧損の規定フ
ィルタ圧損に対する百分率g1 で制御する場合には、エ
ンジンの未燃成分排出量が大の時はg1 を100%より
小さい値(たとえば、75%)でフィルタ再生を開始す
るが、未燃成分排出量が小の時はg1 が100%でフィ
ルタ再生を開始するようにしてある。
Next, the method of the present invention will be described with reference to FIG. 1, which shows the flow of steps of the method. Step 101
Steps 108 to 108 are parts for controlling the particulate collection system when the amount of unburned components emitted from the engine is large, such as when the engine is started. Steps 109 to 112 show that the amount of unburned components emitted from the engine is small after warming up the engine. It is the part that controls the particulate collection system at the time. In the method of the present invention,
When the amount of unburned components emitted from the engine is large (step 101-
108) and when it is small (steps 109 to 112), the regeneration start timings of the filters 1 and 2 are different (75% of step 102 and 100% of step 110 are different), and unburned. When the amount of discharged components is large, the filter regeneration start time is earlier than when it is small. For example,
The filter regeneration start timing, when controlling a percentage g 1 for defining the filter pressure loss of the current filter pressure drop, the g 1 when unburned emissions of the engine is larger value less than 100% (e.g., 75% ), The filter regeneration is started, and when the unburned component discharge amount is small, g 1 is 100% and the filter regeneration is started.

【0011】さらに、具体例で説明すると、ステップ1
13でイグニッションオフ信号をECU11が受けとる
と、ステップ114で現在捕集中のフィルタ1(どちら
のフィルタが現在捕集中のフィルタか)と現在までのパ
ティキュレート捕集率g1 をECU11内に記憶(格
納)する。ただし、 g1 ={(現在のフィルタ圧損)/(規定フィルタ圧
損)}×100(%) である。ステップ115でエンジンを停止する。ステッ
プ101でエンジン再始動後、記憶されていた捕集率g
1 を直ちに読み出す。ステップ102で、g1 が100
%より小さい適宜の値(たとえば、75%、ただし、7
5%に限るものではない)より大か否かを判定する。g
1 が75%より大であれば直ちにバルブ5、6を切替
え、フィルタ1の再生に入る(ステップ106)。そし
て、再生時間T1 だけのフィルタ再生が済んだら、再生
フィルタ1を待機させる。一方、g1 が75%以下であ
れば、捕集率が75%になるまで捕集を継続し、75%
で再生を実施する。またフィルタ2が捕集状態となって
も(ステップ104)、フィルタ2に未燃成分が過剰に
吸着される可能性があるため(たとえば、フィルタ1が
1 90%でエンジン停止し、始動後g1 >75%のた
め直ちに弁5、6が切替ってフィルタ2が捕集を始め、
フィルタ1の再生時間中に、フィルタ2の捕集率が75
%を越えるような場合)、フィルタ2も捕集率g2 が1
00%より小さい適宜の値(たとえば、75%、ただ
し、75%に限るものではない)になったか否かを判定
し(ステップ105)、g2 が75%を越えたらフィル
タ2の再生を実施する(ステップ109)。ただし、フ
ィルタ2の再生は、フィルタ1再生のルーチンワーク
(ステップ106〜108に準じたワーク)を行う。
Further, a specific example will be described. Step 1
When the ECU 11 receives the ignition-off signal at 13, the ECU 11 stores (stores in the ECU 11 the current trapping filter 1 (which filter is currently trapping) and the particulate collection rate g 1 up to the present in step 114. ) Do. However, g 1 = {(current filter pressure loss) / (specified filter pressure loss)} × 100 (%). At step 115, the engine is stopped. After the engine was restarted in step 101, the collection rate g stored in memory
Read 1 immediately. In step 102, g 1 is 100
An appropriate value less than% (for example, 75%, but 7
It is not limited to 5%). g
If 1 is greater than 75%, the valves 5 and 6 are immediately switched to start regeneration of the filter 1 (step 106). When the filter regeneration for the regeneration time T 1 is completed, the regeneration filter 1 is put on standby. On the other hand, if g 1 is 75% or less, collection is continued until the collection rate reaches 75%, and 75%
Play back at. Further, even if the filter 2 is in a trapped state (step 104), unburned components may be excessively adsorbed to the filter 2 (for example, after the engine of the filter 1 is stopped at g 1 90%, the engine is stopped). Since g 1 > 75%, the valves 5 and 6 are immediately switched, and the filter 2 starts collecting.
During the regeneration time of filter 1, the collection rate of filter 2 is 75
%), Filter 2 also has a collection rate g 2 of 1
It is judged whether or not it becomes an appropriate value smaller than 00% (for example, 75%, but not limited to 75%) (step 105), and when g 2 exceeds 75%, the filter 2 is regenerated. (Step 109). However, the regeneration of the filter 2 is performed by the routine work of the regeneration of the filter 1 (work according to steps 106 to 108).

【0012】その後のフィルタ1からの捕集、再生は、
規定通りの捕集量(g1 =100%、g2 =100%)
でフィルタ再生を実施する(ステップ109〜11
2)。すなわち、ステップ110でg1 が100%以上
になるまでステップ109でフィルタ1による捕集フィ
ルタ2の再生を行い、ステップ112でg2 が100%
以上になるまでステップ111でフィルタ1の再生、フ
ィルタ2による捕集を行うことを、繰り返す。ステップ
109〜112までのステップの何れの状態にある時で
も、イグニッションオフ(ステップ113)となった時
に捕集中にあるフィルタをフィルタ1としてg1 を記憶
し(ステップ114)、エンジン停止して(ステップ1
15)、つぎの始動時には、再びステップ101に戻り
ステップ101からの制御ルーチンを実行する。上記の
75%の値は変えてもよく、たとえば60%でもよく、
小さい程フィルタ再生開始が早められる。
The subsequent collection and regeneration from the filter 1
Collection amount as specified (g 1 = 100%, g 2 = 100%)
The filter regeneration is carried out at (steps 109 to 11).
2). That is, in step 110, the collection filter 2 is regenerated by the filter 1 in step 109 until g 1 becomes 100% or more, and in step 112, g 2 becomes 100%.
Until the above, the regeneration of the filter 1 and the collection by the filter 2 are repeated in step 111. In any state of steps 109 to 112, when the ignition is turned off (step 113), g 1 is stored as the filter 1 in the trapped concentration (step 114) and the engine is stopped (step 114). Step 1
15) At the next start, the process returns to step 101 and the control routine from step 101 is executed. The above 75% value may vary, for example 60%,
The smaller the value, the earlier the filter regeneration starts.

【0013】上記の方法による作用は、次の通りであ
る。未燃成分排出量が大の時(たとえば、エンジン始動
時)には、フィルタ再生開始時期が早められるので、フ
ィルタに未燃成分が長期間、したがって大量に付着する
ことが低減され、再生制御を実行した時に異常燃焼が生
じることもなく、フィルタの溶損も防止できる。上記の
フィルタ再生開始時期の早め方は、図1に示すようにフ
ィルタ圧損所定値(75%)を100%より小とするこ
とによって行うことができるが、他の早め方によっても
よい。
The operation of the above method is as follows. When the amount of unburned components discharged is large (for example, when the engine is started), the filter regeneration start time is advanced, so that unburned components are prevented from adhering to the filter for a long period of time, and thus a large amount of unburned components is reduced, and regeneration control Abnormal combustion does not occur at the time of execution, and melting damage of the filter can be prevented. The filter regeneration start time can be advanced by setting the filter pressure loss predetermined value (75%) to be less than 100% as shown in FIG. 1, but may be changed by another method.

【0014】[0014]

【発明の効果】請求項1の方法によれば、未燃成分排出
量が大の時と小の時とでフィルタ再生開始時期を異なら
せたので、未燃成分排出量が大の時にフィルタ再生開始
時期を早めることにより、未燃成分排出量大の時の、フ
ィルタへのパティキュレート付着量を低減でき、フィル
タ再生開始時の捕集パティキュレートの異常燃焼、フィ
ルタ溶損を防止できる。請求項2の方法によれば、未燃
成分排出量が大の時と小の時とでフィルタ再生を開始す
るフィルタ圧損値(所定値)を異ならせたので、未燃成
分排出量が大の時に所定値を下げることにより、未燃成
分排出量大の時の、フィルタへのパティキュレート付着
量を低減でき、フィルタ再生開始時の捕集パティキュレ
ートの異常燃焼、フィルタ溶損を防止できる。
According to the method of the present invention, since the filter regeneration start time is made different when the unburned component discharge amount is large and when it is small, the filter regeneration is performed when the unburned component discharge amount is large. By advancing the start timing, it is possible to reduce the amount of particulates adhering to the filter when the amount of unburned components discharged is large, and it is possible to prevent abnormal combustion of trapped particulates and filter melting loss at the start of filter regeneration. According to the method of claim 2, since the filter pressure loss value (predetermined value) for starting the filter regeneration is made different when the unburned component discharge amount is large and when it is small, the unburned component discharge amount is large. By lowering the predetermined value at some times, the amount of particulates adhering to the filter when the amount of unburned components discharged is large can be reduced, and abnormal combustion of trapped particulates at the start of filter regeneration and filter melting loss can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のパティキュレート捕集シス
テム制御方法のフローチャートである。
FIG. 1 is a flowchart of a particulate collection system control method according to an embodiment of the present invention.

【図2】本発明の方法を実施する第1のシステムの系統
図である。
FIG. 2 is a systematic diagram of a first system for carrying out the method of the present invention.

【図3】本発明の方法を実施する第2のシステムの系統
図である。
FIG. 3 is a systematic diagram of a second system for carrying out the method of the present invention.

【図4】一般のシステムでのパティキュレート捕集量と
フィルタ圧損との関係図である。
FIG. 4 is a relationship diagram between a particulate collection amount and a filter pressure loss in a general system.

【符号の説明】[Explanation of symbols]

1、2 フィルタ 3、4 通路 5、6 切替弁 7、8 ヒータ 9 エア供給装置 10 差圧センサ 11 ECU 1, 2 Filters 3, 4 Passages 5, 6 Switching valve 7, 8 Heater 9 Air supply device 10 Differential pressure sensor 11 ECU

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F01N 3/02 ZAB 321 K 9/00 ZAB Z F02D 45/00 ZAB 310 B 345 E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location F01N 3/02 ZAB 321 K 9/00 ZAB Z F02D 45/00 ZAB 310 B 345 E

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 機関排気系に設けられたフィルタにパテ
ィキュレートが蓄積されるとフィルタを再生するパティ
キュレート捕集システム制御方法において、機関の未燃
成分排出量が大の時と小の時とでフィルタ再生開始時期
を異ならせることを特徴とするパティキュレート捕集シ
ステム制御方法。
1. A particulate collection system control method for regenerating a filter when particulates are accumulated in a filter provided in an engine exhaust system, when the unburned component emission amount of the engine is large and when it is small. A method for controlling a particulate collection system, characterized in that the filter regeneration start time is varied according to.
【請求項2】 機関排気系に設けられたフィルタの圧損
が所定値に達するとフィルタを再生するパティキュレー
ト捕集システム制御方法において、機関の未燃成分排出
量が大の時と小の時とで前記所定値を異ならせることを
特徴とするパティキュレート捕集システム制御方法。
2. A particulate collection system control method for regenerating a filter provided when a pressure loss of a filter provided in an engine exhaust system reaches a predetermined value, when the unburned component emission amount of the engine is large and when it is small. A method for controlling a particulate collection system, characterized in that the predetermined value is changed according to the above.
JP6311791A 1994-12-15 1994-12-15 Particulate collecting system control method Pending JPH08165918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6311791A JPH08165918A (en) 1994-12-15 1994-12-15 Particulate collecting system control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6311791A JPH08165918A (en) 1994-12-15 1994-12-15 Particulate collecting system control method

Publications (1)

Publication Number Publication Date
JPH08165918A true JPH08165918A (en) 1996-06-25

Family

ID=18021502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6311791A Pending JPH08165918A (en) 1994-12-15 1994-12-15 Particulate collecting system control method

Country Status (1)

Country Link
JP (1) JPH08165918A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030973A1 (en) * 2004-09-14 2006-03-23 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system of internal combustion engine
JP2006170101A (en) * 2004-12-16 2006-06-29 Nissan Motor Co Ltd Control device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030973A1 (en) * 2004-09-14 2006-03-23 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system of internal combustion engine
JP2006083726A (en) * 2004-09-14 2006-03-30 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2006170101A (en) * 2004-12-16 2006-06-29 Nissan Motor Co Ltd Control device for internal combustion engine

Similar Documents

Publication Publication Date Title
EP1905992B1 (en) Method of controlling exhaust gas purification system, and exhaust gas purification system
EP1584807A2 (en) Control method for an exhaust gas purification system and an exhaust gas purification system
JP2004011446A (en) Fuel injection control device for internal combustion engine
JP2002303123A (en) Exhaust emission control device
JP2008180154A (en) Exhaust emission control system and control method for exhaust emission control system
WO2006093035A1 (en) Exhaust gas purifier of internal combustion engine
JP2008128170A (en) Exhaust gas purification device of internal combustion engine
JP3572439B2 (en) Diesel engine exhaust purification system
JP4049193B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP2002227688A (en) Exhaust gas purifying device for diesel engine
JP3454350B2 (en) Regeneration control device for particulate filter
JPH0431613A (en) Exhaust treatment system for internal combustion engine
JP2861599B2 (en) Diesel engine exhaust purification system
JP2006274907A (en) Exhaust emission control device
JPH08165918A (en) Particulate collecting system control method
JP3622624B2 (en) Exhaust gas purification device for internal combustion engine
JPH0650130A (en) Exhaust emission control device of diesel engine
JPH06137133A (en) Exhaust emission control device for internal combustion engine
JP2004162612A (en) Exhaust emission control device for internal combustion engine
JP2007023876A (en) Exhaust emission control system and method for controlling exhaust emission control system
JP4013813B2 (en) Diesel engine exhaust purification system
JP2848204B2 (en) Exhaust particulate cleaning equipment
JPH0715250B2 (en) Exhaust gas purification device for diesel engine
JP2847976B2 (en) Exhaust gas purification device for internal combustion engine
JPH052813B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20070815

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080815

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090815

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100815

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110815