JPH08165130A - Apparatus for producing synthetic quartz glass - Google Patents

Apparatus for producing synthetic quartz glass

Info

Publication number
JPH08165130A
JPH08165130A JP6307252A JP30725294A JPH08165130A JP H08165130 A JPH08165130 A JP H08165130A JP 6307252 A JP6307252 A JP 6307252A JP 30725294 A JP30725294 A JP 30725294A JP H08165130 A JPH08165130 A JP H08165130A
Authority
JP
Japan
Prior art keywords
quartz glass
gas
exhaust
synthetic quartz
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6307252A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nakagawa
和博 中川
Shoji Yajima
昭司 矢島
Hiroyuki Hiraiwa
弘之 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6307252A priority Critical patent/JPH08165130A/en
Publication of JPH08165130A publication Critical patent/JPH08165130A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1446Means for after-treatment or catching of worked reactant gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

PURPOSE: To enable production most suitable for uniformity of refractive index and stabilized in discharge state by providing a gas introducing means as a discharge means in an apparatus for producing a synthetic quartz glass. CONSTITUTION: This closed type synthetic quartz glass producing apparatus is constituted by installing a burner 1 for synthesizing a quartz glass in a state in which the top part of the burner 1 is turned toward a target 2 for forming an ingot 3 from the upper part of a furnace and connectedly installing a discharge port, a poisonous gas-removing apparatus and a discharge fan 8 into a discharge gas line in a discharge means for discharging silica fine particles which were not deposited on a target. A gas introducing means 9 is provided in the discharge means and measured value of the flow rate measuring apparatus 10 and flow rate measuring apparatus 11 provided in the downstream, that is, an introduced gas amount and discharge gas amount data are treated by a computer 12 and an introduction gas flow amount of the gas introducing means 9 is controlled so as to keep discharge gas amount from the furnace constant and prevent adhesion of a substance produced in the discharged line.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は石英ガラスの製造方法に
関するものであり、特に高均質が要求される合成石英ガ
ラス部材を必要とする分野、例えば、光リソグラフィ
ー、高精度分光器、レーザー等の精密光学機器に有用と
される高均質な光学用合成石英ガラスに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing quartz glass, and particularly in fields requiring a synthetic quartz glass member that requires high homogeneity, such as photolithography, high-precision spectroscope, and laser. The present invention relates to a highly homogeneous synthetic quartz glass for optics, which is useful for precision optical instruments.

【0002】[0002]

【従来の技術】近年のLSIの高集積化にともない、シ
リコンウエハ上に集積回路を露光、転写する光リソグラ
フィー露光装置における微細パターン化が進められてい
る。そのため、光源の短波長化が進められ、紫外線リソ
グラフィの光学素子としての石英ガラスには、紫外域の
高透過性と屈折率の高均質性が要求されている。紫外域
の高透過性を実現するためには、石英ガラス中の不純物
濃度を抑えることが必要となる。そこで、石英ガラスの
原料となるSi化合物ガスとSi化合物ガスを送るキャ
リアガス(H2、もしくはO2ガス等)、及び、加熱のた
めの燃焼ガスをバーナーから流出し、火炎内で石英ガラ
スを堆積させる火炎加水分解法が一般的に用いられてい
る。
2. Description of the Related Art With the recent increase in the degree of integration of LSIs, fine patterning is progressing in an optical lithography exposure apparatus that exposes and transfers integrated circuits onto a silicon wafer. Therefore, the wavelength of the light source has been shortened, and quartz glass as an optical element for ultraviolet lithography is required to have high transmittance in the ultraviolet region and high homogeneity of the refractive index. In order to realize high transmittance in the ultraviolet region, it is necessary to suppress the impurity concentration in quartz glass. Therefore, a Si compound gas as a raw material of the quartz glass and a carrier gas (H 2 or O 2 gas, etc.) for sending the Si compound gas, and a combustion gas for heating flow out from the burner to remove the quartz glass in the flame. The flame hydrolysis method of depositing is commonly used.

【0003】火炎加水分解法により石英ガラスを合成す
るための合成石英ガラスの製造装置は、大きく分けて、
炉の一部が大気に開放された開放系の製造装置と、炉内
を大気と遮断した密閉系の製造装置とがある。これら
は、それぞれ用途によって使い分けられる。たとえば、
有毒ガスを石英ガラスにドープするような場合、有毒ガ
スが炉外に流出しないように密閉系の製造装置を使用す
る。また、大口径の光学部材用の石英ガラスを製造する
にはインゴットも大口径化するが、この場合には炉内の
雰囲気を均一に保つことが容易な開放系の製造装置を使
用する。
An apparatus for producing synthetic quartz glass for synthesizing quartz glass by the flame hydrolysis method is roughly classified into
There are an open type manufacturing apparatus in which a part of the furnace is open to the atmosphere, and a closed type manufacturing apparatus in which the inside of the furnace is shut off from the atmosphere. These are properly used depending on the intended use. For example,
In the case where quartz glass is doped with toxic gas, a closed system manufacturing device is used so that the toxic gas does not flow out of the furnace. Further, in order to manufacture quartz glass for large-diameter optical members, the diameter of the ingot is also increased. In this case, however, an open-type manufacturing apparatus that can easily maintain a uniform atmosphere in the furnace is used.

【0004】図2は、開放系の合成石英ガラスの製造装
置の一例である。具体的には、炉と、該炉内部に設置さ
れたインゴット形成用のターゲットと、ターゲットに先
端を向けて設置された石英ガラス合成用のバーナーと、
ターゲット上に堆積されなかったシリカ微粒子を排気す
る排気手段とからなる。また、火炎加水分解法は、原
料、燃焼ガスの不純物を抑えることが容易なため、高純
度な石英ガラスを得られることが知られているが、この
種の石英ガラスは、屈折率分布を持つことも知られてい
る。石英ガラスの屈折率分布が均質にならない主な原因
は、石英ガラスを合成する際に生ずるさまざまな条件の
ゆらぎ、例えば、火炎による合成面の温度分布の変化、
ガラスへの不純物の拡散状態の変化等のためである。こ
れらの因子、すなわち合成時に石英ガラスが受けた熱的
条件や化学反応、不純物の拡散等は結果的に石英ガラス
内に脈理と呼ばれる成長縞や、径方向の屈折率に分布を
もたらすことが知られている。
FIG. 2 shows an example of an open system synthetic quartz glass manufacturing apparatus. Specifically, a furnace, a target for ingot formation installed inside the furnace, a burner for synthesizing quartz glass installed with its tip facing the target,
And an exhaust means for exhausting silica fine particles not deposited on the target. In addition, it is known that the flame hydrolysis method can obtain high-purity silica glass because it is easy to suppress impurities in the raw material and combustion gas, but this type of silica glass has a refractive index distribution. It is also known. The main cause of the non-uniform refractive index distribution of quartz glass is fluctuations in various conditions that occur when synthesizing quartz glass, such as changes in the temperature distribution on the synthetic surface due to flames.
This is because of changes in the diffusion state of impurities into the glass. These factors, that is, the thermal conditions, chemical reactions, diffusion of impurities, etc., that the quartz glass receives during synthesis may result in growth stripes called striae in the quartz glass and distribution in the radial refractive index. Are known.

【0005】[0005]

【発明が解決しようとする課題】これらの問題に対し、
特願平5-022294号、特願平5-022293号では、合成面の温
度分布を計測し、その温度分布を制御し、最適化する方
法が提案されており、屈折率を均質化させる効果は得ら
れている。しかし、合成面の温度分布を一定にするため
には、制御条件の変動があるため、成長した石英ガラス
の径が不安定になることや、また、場合によっては、発
散して制御不能になることもあった。
To solve these problems,
In Japanese Patent Application No. 5-022294 and Japanese Patent Application No. 5-022293, a method of measuring the temperature distribution of the composite surface, controlling the temperature distribution, and optimizing the temperature distribution is proposed, and the effect of homogenizing the refractive index is proposed. Has been obtained. However, in order to keep the temperature distribution on the synthetic surface constant, the diameter of the grown quartz glass becomes unstable due to fluctuations in control conditions, and in some cases, divergence causes uncontrollability. There were things.

【0006】石英ガラスを合成する際に生ずるさまざま
な条件ゆらぎの中で、排気状態の変動を取り除くこと
は、特願平5-255417号において、定期的に排気状態を良
化する方法が提案されている。しかし、この方法による
と、安定化する際に排気状態を一時的に変化させるた
め、ある条件下において脈理が残留する場合があり、結
果的に屈折率のばらつきΔn=1×10-6程度以下の光学
的に均質な石英ガラスを成長方向の脈理なく製造するこ
とができなかった。
In order to eliminate the fluctuation of the exhaust condition in the fluctuation of various conditions that occur when synthesizing quartz glass, Japanese Patent Application No. 5-255417 proposes a method of periodically improving the exhaust condition. ing. However, according to this method, the exhaust state is temporarily changed when stabilizing, so striae may remain under certain conditions, and as a result, the dispersion of the refractive index Δn = 1 × 10 −6. The following optically homogeneous quartz glass could not be manufactured without striations in the growth direction.

【0007】本発明の目的はこれらの問題点の解決にあ
る。
The object of the present invention is to solve these problems.

【0008】[0008]

【課題を解決するための手段】火炎内における石英ガラ
スの合成では、原料が反応し、インゴットに連続的に堆
積する過程において、火炎温度、炉内温度、インゴット
温度、堆積点近傍のガス流速等に左右される捕捉率が存
在する。一般的に、捕捉率は100%とはなり得ないた
め、捕捉されない生成物質が炉内に付着、堆積する。さ
らにインゴットと接触する等、安定な合成条件での製造
を困難なものにしている。
[Means for Solving the Problems] In the synthesis of quartz glass in a flame, in the process of reacting raw materials and continuously depositing on an ingot, flame temperature, furnace temperature, ingot temperature, gas flow velocity near the deposition point, etc. There is a capture rate that depends on In general, the trapping rate cannot be 100%, so that the product substances that are not trapped adhere and deposit in the furnace. Further, contact with an ingot makes it difficult to manufacture under stable synthesis conditions.

【0009】また、この生成物質は炉の排気手段にも付
着、堆積するため、炉内の雰囲気ガスの排気状態が変化
して炉内の温度分布に影響を及ぼし、ひいては、合成中
の石英ガラスの径方向の屈折率の均質性への影響や、成
長方向の脈理の発生を促すことが確認されている。つま
り、安易に排気ガス量を増加させれば、炉内の付着物を
減少させることはできるが、生成物質が排気ラインや除
外装置等の排気手段へ付着する量が増加するため、結果
的に排気状態の変動を引き起こし、径方向の屈折率の均
質性がインゴット内でばらつくほか、製造する石英ガラ
ス内の成長方向に屈折率のゆらぎ、いわゆる脈理を発生
させる。
Further, since the generated substance adheres to and deposits on the exhaust means of the furnace, the exhaust state of the atmospheric gas in the furnace changes, affecting the temperature distribution in the furnace, and by extension, the silica glass being synthesized. It has been confirmed that the effect on the homogeneity of the refractive index in the radial direction and the generation of striae in the growth direction are promoted. In other words, if the amount of exhaust gas is easily increased, the amount of deposits in the furnace can be reduced, but the amount of produced substances attached to exhaust means such as the exhaust line and the exclusion device is increased, resulting in This causes fluctuations in the exhaust state, and the homogeneity of the refractive index in the radial direction varies in the ingot. In addition, the refractive index fluctuates in the growth direction in the silica glass to be produced, so-called striae are generated.

【0010】本発明者らは、この様な状況を踏まえた上
で、屈折率の均質性に最適な排気状態について鋭意研究
を重ねた結果、ガスの導入により、インゴットの温度分
布を変化させることなく排気ライン等への付着を抑える
ことが可能となり、排気状態を安定化させ、上記問題を
解決できることを見いだし、本発明を成すに至った。よ
って、本発明は、Si化合物ガスとO2ガスとH2ガスと
をバーナーから噴出して燃焼させ、ターゲット上に石英
ガラスを堆積させインゴットを形成する合成石英ガラス
の製造装置において、排気手段にガス導入手段を設けた
ことを特徴とする合成石英ガラスの製造装置を提供する
ものである。また、本発明の製造装置では、ガス導入手
段の導入ガス量及び除害装置のガスの流れから見た下流
の総排気ガス量を計測し、コンピュータによって導入ガ
ス量を制御することによって、炉からの排気ガス量を一
定に保つことを特徴とする。
Based on such a situation, the inventors of the present invention have conducted earnest researches on an exhaust condition optimal for the homogeneity of the refractive index, and as a result, changed the temperature distribution of the ingot by introducing gas. Therefore, it has been found that it is possible to suppress the adhesion to the exhaust line and the like, stabilize the exhaust state, and solve the above-mentioned problems, and have completed the present invention. Therefore, the present invention provides a synthetic quartz glass manufacturing apparatus that ejects Si compound gas, O 2 gas, and H 2 gas from a burner and burns them to deposit quartz glass on a target to form an ingot. The present invention provides an apparatus for producing synthetic quartz glass, which is provided with a gas introducing means. Further, in the manufacturing apparatus of the present invention, the total amount of exhaust gas at the downstream viewed from the gas flow of the gas introduction unit and the gas flow of the abatement device is measured, and the amount of introduced gas is controlled by a computer to remove the gas from the furnace. It is characterized in that the exhaust gas amount of is kept constant.

【0011】[0011]

【作用】合成石英ガラスの製造装置において、排気ガス
量を増加させることは、合成面の外周部の温度が下が
り、結果的に合成面の温度分布に強く作用する。これに
より炉内の雰囲気が変化するため、インゴットを一定径
で合成することが難しくなる。一方、排気ガス量を減少
させることは、生成物質が排気手段に付着することを防
止できなくなることから、不安定な排気状態をつくり出
す。
In the synthetic quartz glass manufacturing apparatus, increasing the amount of exhaust gas lowers the temperature of the outer peripheral portion of the synthetic surface, resulting in a strong effect on the temperature distribution of the synthetic surface. This changes the atmosphere in the furnace, making it difficult to synthesize the ingot with a constant diameter. On the other hand, reducing the amount of exhaust gas makes it impossible to prevent the produced substance from adhering to the exhaust means, and thus creates an unstable exhaust state.

【0012】これら排気ガス量の相反する問題を、排気
手段にガス導入手段を設けることにより解決する。本発
明では炉内からの排気ガス量を変えることなく、排気ラ
インにガスを導入することで、見かけ上排気ガス量を増
加させる。これにより、排気ライン内での排気流速が増
加され、生成物質の付着が防止される。その結果、排気
状態が安定化し、炉内の雰囲気を均一に保つことがで
き、屈折率の均質性に最適な合成を安定に行うことが可
能となる。
These contradictory problems of exhaust gas amount are solved by providing a gas introducing means in the exhaust means. In the present invention, the amount of exhaust gas is apparently increased by introducing the gas into the exhaust line without changing the amount of exhaust gas from the furnace. As a result, the flow velocity of exhaust gas in the exhaust line is increased, and adhesion of the produced substance is prevented. As a result, the exhausted state is stabilized, the atmosphere in the furnace can be kept uniform, and it is possible to perform stable synthesis that is optimal for the homogeneity of the refractive index.

【0013】ガス導入手段は開口部を制御可能とし、排
気手段の状態をフィードバックした排気ガス量を制御す
ることで、インゴットの温度分布を良好に保つことがで
き、高均質の石英ガラスが合成できる。仮に開口部が固
定であっても、排気ライン内の付着に対しては十分な効
果が得られる。開放系あるいは密閉系の製造装置であっ
ても、ガス導入手段を設けたことで排気流速が増加する
効果は得られるが、炉床から入る外気が無く、排気ガス
量が小さい密閉系の方が得られる効果が大きい。
The gas introducing means makes it possible to control the opening, and by controlling the amount of exhaust gas by feeding back the state of the exhaust means, the temperature distribution of the ingot can be kept good, and highly homogeneous quartz glass can be synthesized. . Even if the opening is fixed, a sufficient effect can be obtained with respect to adhesion in the exhaust line. Even if it is an open-type or closed-type manufacturing apparatus, the effect of increasing the exhaust gas flow rate can be obtained by providing the gas introduction means, but there is no outside air entering from the hearth and a closed system with a small amount of exhaust gas is better. The effect obtained is large.

【0014】合成する石英ガラス中にH2,F,Cl,
OH等をドープするためにSF6等を使用するが、この
場合は炉内で反応したガス中にHF,SO2といった有
毒ガスが含まれている。このガスは全て除害する必要が
あるが、ガス導入手段を設けると、何らかの原因で有毒
ガスがこのガス導入手段より逆流することが考えられ
る。本発明の場合、ガス導入用の開口部をコンピュータ
により流量測定装置の計測値によって制御しているた
め、排気系の異常をいち早く判断し、ガス導入用開口部
を完全に閉じることが出来る。また、停電によって制御
が効かなくなった場合も想定し、開口部の制御方法をダ
ンパー式にし、ノーマリークローズの構造とした。
In the quartz glass to be synthesized, H 2 , F, Cl,
SF 6 or the like is used to dope OH or the like, but in this case, the gas reacted in the furnace contains toxic gases such as HF and SO 2 . It is necessary to remove all of this gas, but if a gas introduction means is provided, it is conceivable that the toxic gas will flow backward from this gas introduction means for some reason. In the case of the present invention, since the opening for introducing gas is controlled by the computer according to the measured value of the flow rate measuring device, the abnormality in the exhaust system can be promptly judged and the opening for introducing gas can be completely closed. In addition, assuming that the control will not work due to a power failure, we adopted a damper type control method for the opening and made it a normally closed structure.

【0015】本発明の合成石英ガラスの製造装置により
合成された石英ガラスは、主としてレンズ、プリズム、
反射板等の光学素子の母材として用いられる。この母材
の外周部分は切削され、必要に応じて切断、再成形され
て任意の形状に加工される。そして、内部歪をなくす目
的でアニール(熱処理)した後、研磨、コーティング工
程を経て光学素子となる。
The quartz glass synthesized by the synthetic quartz glass manufacturing apparatus of the present invention is mainly composed of lenses, prisms,
Used as a base material for optical elements such as reflectors. The outer peripheral portion of this base material is cut, cut and re-formed as necessary to be processed into an arbitrary shape. Then, after annealing (heat treatment) for the purpose of eliminating internal strain, polishing and coating steps are performed to obtain an optical element.

【0016】[0016]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれに限られるものではない。 〔実施例1〕本発明の合成石英ガラスの製造装置は図1
に示す様に、バーナー1が炉の上部からターゲット2に
その先端部を向けて設置されており、排気手段は排気
口、除害装置7、排気ファン8を排気ラインで連設して
構成されている。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. Example 1 A synthetic quartz glass manufacturing apparatus of the present invention is shown in FIG.
As shown in FIG. 1, the burner 1 is installed from the upper part of the furnace to the target 2 with its tip end portion, and the exhaust means is constituted by connecting the exhaust port, the abatement device 7, and the exhaust fan 8 in series in the exhaust line. ing.

【0017】ガス導入手段9に設けられた流量測定装置
10と除害装置のガスの流れから見た下流に設けられた
流量測定装置11のそれぞれの計測値、導入ガス量と総
排気ガス量は、データ処理するためのコンピュータ12
に送られ、炉からの排気ガス量Vを計算により求める。
得られたVは、排気ファンの周波数により決定される
が、排気系の経時変化(排気管内への付着による圧力損
失等)により変動する。この変動を無くし、安定した排
気ガス量を保つために、排気周波数を高くして排気管内
を流れるガス流速を速く保ち排気管内への付着を抑え
た。排気周波数を高くすると当然排気ガス量は増える
が、炉からの排気ガス量を一定に保ちながら排気流速を
速く保ち、かつ変動を吸収するために、2次空気導入手
段の開口部面積を制御した。
The respective measured values of the flow rate measuring device 10 provided in the gas introducing means 9 and the flow rate measuring device 11 provided downstream from the gas flow of the abatement device, the introduced gas amount and the total exhaust gas amount are , Computer 12 for processing data
The exhaust gas amount V from the furnace is calculated.
The obtained V is determined by the frequency of the exhaust fan, but varies with the aging of the exhaust system (pressure loss due to adhesion in the exhaust pipe, etc.). In order to eliminate this fluctuation and maintain a stable amount of exhaust gas, the exhaust frequency was raised to keep the flow velocity of the gas flowing in the exhaust pipe high and suppress the adhesion to the exhaust pipe. When the exhaust frequency is increased, the amount of exhaust gas naturally increases, but the opening area of the secondary air introduction means was controlled in order to keep the exhaust gas flow rate from the furnace constant and to keep the exhaust flow velocity fast and to absorb fluctuations. .

【0018】炉からの排気ガス量をモニターするために
は排気口直後の排気ラインに流量測定装置を設置し、直
接測定することが望ましいが、排気ガスが高温で腐食性
が高いため、導入ガス量と総排気ガス量の差からVを求
める。なお、これらは全てオンラインでの処理が可能と
なっている。また、合成石英ガラス中にFをドープする
ため、原料であるSiCl4のキャリアにはSF6を使用
した。この時、排気ガスには有毒ガスであるHF,SO
2等が含まれるが、密閉系の製造装置であるため、これ
ら有毒ガスを全て除害装置へ送り込むことができた。さ
らに、ガス導入手段からの排気ガスが外気へ逆流する危
険性を排除するために排気ファンの作動状態、各測定箇
所の排気状態はコンピュータで常時監視し、排気手段の
異常時(ファンの停止,排気ラインの詰まり等による排
気ガス量の異常低下等)には、ガス導入手段の開口部面
積を0にする逆流防止手段を設けた。このガス導入手段
は、図1の13に示す様なダンパー式にすることによっ
て停電時においても自重によって開口部面積が0になる
構造とした。
In order to monitor the amount of exhaust gas from the furnace, it is desirable to install a flow rate measuring device in the exhaust line immediately after the exhaust port and measure directly, but since the exhaust gas is hot and corrosive, V is calculated from the difference between the amount and the total exhaust gas amount. All of these can be processed online. Further, since SF is doped in the synthetic quartz glass, SF 6 is used as a carrier of SiCl 4 as a raw material. At this time, the exhaust gas is toxic gas such as HF and SO.
Although 2 etc. are included, it was possible to send all of these toxic gases to the abatement device because it is a closed manufacturing device. Furthermore, in order to eliminate the risk that the exhaust gas from the gas introduction means flows back to the outside air, the operating status of the exhaust fan and the exhaust status at each measurement point are constantly monitored by a computer, and when the exhaust means is abnormal (fan stop, In order to prevent the exhaust gas amount from abnormally decreasing due to clogging of the exhaust line and the like), a backflow preventing means for reducing the opening area of the gas introducing means to 0 is provided. By adopting a damper type as shown in 13 of FIG. 1, the gas introducing means has a structure in which the opening area becomes 0 due to its own weight even in the event of power failure.

【0019】以上の合成石英ガラスの製造装置を用いて
インゴットを形成した。この場合の排気ファンの周波数
は50Hz近傍であり、製造終了後の排気ラインへの生
成物質の付着はほとんど見られなかった。また、合成さ
れた石英ガラスはインゴットの径が一定に保たれ、径方
向の屈折率の均質性はインゴット上部と下部で安定し、
高均質であり、成長方向の脈理も見られなかった。 〔比較例〕上記製造装置において、ガス導入手段の開口
面積を0にし、インゴットを形成した。この場合は、炉
内温度分布に影響を及ぼさず、石英ガラスの合成に十分
な高温を得るため、排気ファンの周波数は20〜25H
zと低く、排気流速は実施例1より遅くなり、製造終了
後の排気ライン内には多量の生成物質の付着が見られ
た。また、このガス導入手段を持たない製造装置で合成
された石英ガラスはインゴットの径が安定せず、排気ガ
ス量の変動によると思われる多数の脈理が検出された。
An ingot was formed using the above synthetic quartz glass manufacturing apparatus. In this case, the frequency of the exhaust fan was around 50 Hz, and almost no deposition of the produced substance on the exhaust line was observed after the manufacturing was completed. In addition, the synthesized quartz glass keeps the diameter of the ingot constant, and the homogeneity of the refractive index in the radial direction is stable in the upper and lower parts of the ingot.
It was highly homogeneous and no striae in the growth direction was observed. [Comparative Example] In the above manufacturing apparatus, the opening area of the gas introduction means was set to 0 to form an ingot. In this case, the temperature of the exhaust fan is 20 to 25H in order to obtain a high temperature sufficient for synthesizing quartz glass without affecting the temperature distribution in the furnace.
It was as low as z, the exhaust flow rate was slower than that in Example 1, and a large amount of the produced substance was observed to be adhered to the exhaust line after the production was completed. In addition, the quartz glass synthesized by the manufacturing apparatus without the gas introduction means had an ingot with an unstable diameter, and a large number of striae which were considered to be due to fluctuations in the exhaust gas amount were detected.

【0020】[0020]

【発明の効果】以上の様に、本発明の合成石英ガラスの
製造装置によれば、排気状態を安定に制御することがで
きる。また、それにより炉内の温度,圧力及びガス濃度
を安定化することができるため、石英ガラスの屈折率の
均質性を安定させることが可能となった。つまり、本発
明の合成石英ガラスの製造装置により、光学素子用とし
て最適な合成石英ガラスを得ることができる。
As described above, according to the synthetic quartz glass manufacturing apparatus of the present invention, the exhaust state can be controlled stably. Further, since it is possible to stabilize the temperature, pressure and gas concentration in the furnace, it is possible to stabilize the homogeneity of the refractive index of the silica glass. That is, the synthetic quartz glass manufacturing apparatus of the present invention makes it possible to obtain optimal synthetic quartz glass for an optical element.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の密閉系の合成石英ガラスの製造装置
の概念図
FIG. 1 is a conceptual diagram of a closed system synthetic quartz glass manufacturing apparatus of the present invention.

【図2】 従来の開放系の合成石英ガラスの製造装置の
概念図
FIG. 2 is a conceptual diagram of a conventional open-type synthetic quartz glass manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1 バーナー 2 ターゲット 3 インゴット 4 炉床 5 炉枠 6 耐火物 7 除害装置 8 排気ファン 9 ガス導入手段 10 流量測定装置 11 流量測定装置 12 コンピュータ 13 ダンパー DESCRIPTION OF SYMBOLS 1 burner 2 target 3 ingot 4 hearth 5 furnace frame 6 refractory 7 detoxification device 8 exhaust fan 9 gas introduction means 10 flow measuring device 11 flow measuring device 12 computer 13 damper

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】炉と、該炉内部に設置されたインゴット形
成用のターゲットと、該ターゲットに先端を向けて設置
された石英ガラス合成用のバーナーと、前記ターゲット
上に堆積されなかったシリカ微粒子を排気する排気手段
とからなる密閉系の合成石英ガラス製造装置において、
排気手段にガス導入手段を設けたことを特徴とする合成
石英ガラス製造装置。
1. A furnace, a target for forming an ingot installed inside the furnace, a burner for synthesizing quartz glass installed with its tip facing the target, and silica fine particles not deposited on the target. In a closed system synthetic quartz glass manufacturing apparatus consisting of exhaust means for exhausting
An apparatus for producing synthetic quartz glass, characterized in that a gas introduction means is provided in the exhaust means.
【請求項2】炉と、該炉内部に設置されたインゴット形
成用のターゲットと、該ターゲットに先端を向けて設置
された石英ガラス合成用のバーナーと、前記ターゲット
上に堆積されなかったシリカ微粒子を排気する排気手段
とからなる密閉系の合成石英ガラス製造装置において、
前記排気手段が炉に設けられた排気口と、除害装置と、
排気ファンとを有し、これらが排気ラインにより連設さ
れ、かつ排気口と、除害装置との間の排気ラインにガス
導入手段を有することを特徴とする合成石英ガラス製造
装置。
2. A furnace, a target for forming an ingot installed inside the furnace, a burner for synthesizing quartz glass installed with its tip facing the target, and silica fine particles not deposited on the target. In a closed system synthetic quartz glass manufacturing apparatus consisting of exhaust means for exhausting
An exhaust port provided with the exhaust means in the furnace, and an abatement device,
An apparatus for producing synthetic quartz glass, comprising an exhaust fan, which are connected to each other by an exhaust line, and which has a gas introducing means in the exhaust line between the exhaust port and the abatement device.
【請求項3】請求項1または請求項2に記載の合成石英
ガラス製造装置において、SiO2以外の成分を導入す
ることを特徴とする合成石英ガラス製造装置。
3. The synthetic quartz glass manufacturing apparatus according to claim 1 or 2 , wherein a component other than SiO 2 is introduced.
【請求項4】請求項3に記載の合成石英ガラス製造装置
において、SiO2以外の成分がH2またはFまたはCl
またはOHであることを特徴とする合成石英ガラス製造
装置。
4. The synthetic quartz glass manufacturing apparatus according to claim 3, wherein components other than SiO 2 are H 2 or F or Cl.
Alternatively, it is OH, which is a synthetic quartz glass manufacturing apparatus.
【請求項5】請求項2に記載の合成石英ガラス製造装置
において、除害装置のガスの流れから見た下流と、ガス
導入手段に流量測定装置をそれぞれ設けたことを特徴と
する合成石英ガラス製造装置。
5. The synthetic quartz glass manufacturing apparatus according to claim 2, wherein a flow rate measuring device is provided at the downstream of the abatement device as seen from the gas flow and at the gas introduction means. Manufacturing equipment.
【請求項6】請求項2に記載の合成石英ガラス製造装置
において、ガス導入手段にガスの逆流防止手段を設けた
ことを特徴とする合成石英ガラス製造装置。
6. The synthetic quartz glass manufacturing apparatus according to claim 2, wherein the gas introduction means is provided with a gas backflow prevention means.
【請求項7】請求項2に記載の合成石英ガラス製造装置
において、ガス導入手段により導入するガスが空気であ
ることを特徴とする合成石英ガラス製造装置。
7. The synthetic quartz glass manufacturing apparatus according to claim 2, wherein the gas introduced by the gas introducing means is air.
JP6307252A 1994-12-12 1994-12-12 Apparatus for producing synthetic quartz glass Pending JPH08165130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6307252A JPH08165130A (en) 1994-12-12 1994-12-12 Apparatus for producing synthetic quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6307252A JPH08165130A (en) 1994-12-12 1994-12-12 Apparatus for producing synthetic quartz glass

Publications (1)

Publication Number Publication Date
JPH08165130A true JPH08165130A (en) 1996-06-25

Family

ID=17966873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6307252A Pending JPH08165130A (en) 1994-12-12 1994-12-12 Apparatus for producing synthetic quartz glass

Country Status (1)

Country Link
JP (1) JPH08165130A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067521A (en) * 1996-08-22 1998-03-10 Nikon Corp Fluorine containing quartz glass, production of the same, and projection recording system
EP1046617A2 (en) * 1999-04-21 2000-10-25 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass manufacturing process
JP2009132549A (en) * 2007-11-29 2009-06-18 Covalent Materials Tokuyama Corp Synthetic quartz glass production device
JP2009132551A (en) * 2007-11-29 2009-06-18 Covalent Materials Corp Manufacturing apparatus of synthetic silica glass
JP2009132550A (en) * 2007-11-29 2009-06-18 Covalent Materials Corp Manufacturing apparatus of synthetic silica glass, and manufacturing method of synthetic silica glass
JP2012158516A (en) * 2012-03-28 2012-08-23 Covalent Materials Corp Device for producing synthetic silica glass
KR101528055B1 (en) * 2013-11-25 2015-06-11 주식회사 엘지실트론 Ingot growing apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067521A (en) * 1996-08-22 1998-03-10 Nikon Corp Fluorine containing quartz glass, production of the same, and projection recording system
EP1046617A2 (en) * 1999-04-21 2000-10-25 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass manufacturing process
EP1046617A3 (en) * 1999-04-21 2001-03-21 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass manufacturing process
US6339940B1 (en) 1999-04-21 2002-01-22 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass manufacturing process
JP2009132549A (en) * 2007-11-29 2009-06-18 Covalent Materials Tokuyama Corp Synthetic quartz glass production device
JP2009132551A (en) * 2007-11-29 2009-06-18 Covalent Materials Corp Manufacturing apparatus of synthetic silica glass
JP2009132550A (en) * 2007-11-29 2009-06-18 Covalent Materials Corp Manufacturing apparatus of synthetic silica glass, and manufacturing method of synthetic silica glass
JP2012158516A (en) * 2012-03-28 2012-08-23 Covalent Materials Corp Device for producing synthetic silica glass
KR101528055B1 (en) * 2013-11-25 2015-06-11 주식회사 엘지실트론 Ingot growing apparatus

Similar Documents

Publication Publication Date Title
JPH08165130A (en) Apparatus for producing synthetic quartz glass
KR100514668B1 (en) Quartz glass manufacturing apparatus and manufacturing method
JP3520541B2 (en) Quartz glass burner, quartz glass produced using the same, method for producing quartz glass using quartz glass burner
JP7359322B2 (en) Silicon tetrachloride measurement unit, silicon tetrachloride quality evaluation method, silicon tetrachloride quality control method, silicon carbide substrate manufacturing method, and silicon carbide substrate manufacturing device
JP5252258B2 (en) Synthetic quartz glass base material manufacturing apparatus and synthetic silica glass base material manufacturing method using the same
JPH06234531A (en) Production of quartz glass
JP3401942B2 (en) Synthetic quartz glass manufacturing equipment
JP2004131337A (en) Apparatus for manufacturing synthetic quartz glass
JPS62176936A (en) Method and device for producing optical fiber preform
JP2814866B2 (en) Manufacturing method of quartz glass
JP2009132549A (en) Synthetic quartz glass production device
EP1853525B1 (en) Process and apparatus for producing porous quartz glass base
JP3341395B2 (en) Quartz glass manufacturing equipment
JP3360374B2 (en) Manufacturing method of quartz glass
JP3143445B2 (en) Manufacturing method of synthetic quartz
JP3295444B2 (en) Method for producing porous silica preform
JPH08283946A (en) Apparatus for producing deposited film and production
JP2000053434A (en) Apparatus for producing quartz glass
JPH11116255A (en) Homogenizing method of quartz glass and quartz glass obtained by the same
JP4114027B2 (en) Method for predicting occurrence of shape distortion in synthetic quartz glass production and method for producing synthetic quartz glass
JP4470581B2 (en) Quartz glass manufacturing furnace and method for manufacturing quartz glass
JP3427136B2 (en) Synthetic quartz glass manufacturing apparatus and manufacturing method using the same
JP2003057401A (en) Optical element
JP2000281359A (en) Production of synthetic quartz glass and control of hydrogen molecule concentration in the synthetic quartz glass
JP3818567B2 (en) Method for producing synthetic quartz glass ingot