JPH08164359A - Antifouling member and production thereof - Google Patents

Antifouling member and production thereof

Info

Publication number
JPH08164359A
JPH08164359A JP33211894A JP33211894A JPH08164359A JP H08164359 A JPH08164359 A JP H08164359A JP 33211894 A JP33211894 A JP 33211894A JP 33211894 A JP33211894 A JP 33211894A JP H08164359 A JPH08164359 A JP H08164359A
Authority
JP
Japan
Prior art keywords
antifouling
base material
ion beam
vapor deposition
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33211894A
Other languages
Japanese (ja)
Inventor
Koichi Ito
紘一 伊藤
Reiko Takazawa
令子 高澤
Shigeo Ohira
重男 大平
Hisashi Hori
久司 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP33211894A priority Critical patent/JPH08164359A/en
Publication of JPH08164359A publication Critical patent/JPH08164359A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PURPOSE: To obtain an antifouling member keeping excellent antifouling function for a long period. CONSTITUTION: A film of an antifouling substance is formed on the surface of a base of metal, coating film, plastics, rubber, ceramics, fiber or the like by an ion beam support vacuum deposition method or an ion implantation method. Cu, Ag, Zn, Sn, Cr, Co, H, F, Cl, B, He, Ne, Ar, O and N, etc., are cited as antifouling substances performed ion implantation. In the ion beam support vacuum deposition method, Cu, Ag, Zn, Sn, Cr and Co, etc., are vapor- deposition, while the surface of the base is irradiated with ion beams of He, Ar and O, etc. Thus, since a dense surface layer superior in adhesive strength to the base is formed, a work for preventing sticking of aquatic living thing is sustained for a long period.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水中生物の付着を防止
する表面処理を施した防汚部材及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-treated antifouling member for preventing adhesion of aquatic organisms and a method for producing the same.

【0002】[0002]

【従来の技術】水中構築物,冷却水管,排水管,船舶の
船底等のように、常時水と接触する部材には、藻類やフ
ジツボ,ムラサキガイ等の貝類が付着し易い。配管類に
水中生物が付着すると、流路断面積を減少させ、内部を
通過する冷水,温水等の円滑な流動を妨げる。また、配
管内壁から離脱した水中生物がポンプ等の機器内部に流
入すると、重大な事故を発生させる虞れもある。船底に
付着した水中生物は、大きな抵抗となって船舶の推進力
を弱め、船底を構成している鋼材の腐食を促進させる原
因ともなる。そのため、定期的に船底に付着している水
中生物を定期的に掻き落とす作業が必要となる。このよ
うな問題を引き起こす水中生物の付着を防止するため、
従来から種々の防汚対策が採用されている。なかでも、
各種の防汚剤を塗布する方法や殺菌効果のある金属や金
属化合物で基材表面をコーティングする方法が汎用的で
ある。
2. Description of the Related Art Algae, barnacles, shellfish such as mussels tend to adhere to members that are in constant contact with water, such as underwater structures, cooling water pipes, drain pipes, and ship bottoms. When aquatic organisms adhere to the pipes, the cross-sectional area of the flow path is reduced and the smooth flow of cold water, hot water, etc. passing through the inside is hindered. Further, if aquatic organisms separated from the inner wall of the pipe flow into equipment such as a pump, a serious accident may occur. The aquatic organisms attached to the bottom of the ship become a great resistance and weaken the propulsive force of the ship, which also causes the corrosion of the steel material forming the bottom of the ship. Therefore, it is necessary to periodically scrape off the underwater organisms attached to the bottom of the ship. To prevent the attachment of aquatic organisms that cause such problems,
Conventionally, various antifouling measures have been adopted. Above all,
The method of applying various antifouling agents and the method of coating the surface of the substrate with a metal or metal compound having a bactericidal effect are general-purpose.

【0003】たとえば、特開昭59−145074号公
報では、海水に没する構造物の表面に絶縁コーティング
を施した後、殺菌効果のあるCu又はCu合金を溶射し
ている。特開昭61−97480号公報では、Cu,S
n,Zn等を溶射した繊維質テープで構造物を被覆して
いる。特開昭64−21086号公報では、樹脂被覆し
た基材にCu又はCu合金を溶射した後、更に合成樹脂
塗料を塗布している。殺菌効果のあるCu,Sn,Zn
等の金属又は合金は、めっき,スパッタ,真空蒸着等で
基材表面に施されることもある。また、有機スズ化合
物,亜酸化銅等の銅系化合物,アルキルフェノール類等
の防汚剤を塗布することによっても、生物付着に抵抗力
を持つ表面が得られる。
For example, in Japanese Patent Laid-Open No. 59-145074, an insulating coating is applied to the surface of a structure immersed in seawater, and then Cu or a Cu alloy having a bactericidal effect is sprayed. In Japanese Patent Laid-Open No. 61-97480, Cu, S
The structure is covered with a fibrous tape sprayed with n, Zn or the like. In Japanese Patent Laid-Open No. 64-21086, a base material coated with a resin is sprayed with Cu or a Cu alloy, and then a synthetic resin coating is applied. Cu, Sn, Zn with bactericidal effect
Metals or alloys such as the above may be applied to the surface of the base material by plating, sputtering, vacuum deposition or the like. Also, by applying an organic tin compound, a copper-based compound such as cuprous oxide, or an antifouling agent such as an alkylphenol, a surface having resistance to biofouling can be obtained.

【0004】[0004]

【発明が解決しようとする課題】溶射,めっき,スパッ
タ,真空蒸着等で防汚剤を基材表面に施すとき、形成さ
れた機能層は、基材に対する密着性が十分でないものが
多い。そのため、機能層は、本来の防汚機能を十分に発
揮する前に、摩擦や衝撃によって基材から剥離し易い。
潮流や水流の激しいところほど、水中の浮遊物による摩
擦や衝撃が頻繁に加えられ、水中生物の付着を十分に抑
制できない。また、従来の方法で形成された機能層で
は、有効成分であるCu,Ag等が水中に溶出する割合
が多く、結果として防汚機能が短期間に低下する。しか
も、処理方法によっては高温を要するものもあり、処理
可能な基材の種類に制約が加わる。本発明は、このよう
な問題を解消すべく案出されたものであり、イオン注入
法やイオンビーム支援蒸着法で防汚物質を基材表面に注
入又は蒸着することにより、基材に対する機能層の密着
性を高め、且つ機能層を緻密化することで防汚物質の過
剰な溶出を抑え、長期間にわたって優れた防汚作用を持
続する防汚部材を得ることを目的とする。
When an antifouling agent is applied to the surface of a substrate by thermal spraying, plating, sputtering, vacuum deposition, etc., the functional layer formed often has insufficient adhesion to the substrate. Therefore, the functional layer is easily peeled off from the base material by friction or impact before sufficiently exerting the original antifouling function.
The more intense the tidal currents and water currents, the more frequently friction and impact due to suspended matter in the water are applied, and the adhesion of aquatic organisms cannot be sufficiently suppressed. In addition, in the functional layer formed by the conventional method, Cu, Ag, etc., which are active ingredients, are often eluted in water, and as a result, the antifouling function is reduced in a short period of time. Moreover, some treatment methods require high temperatures, which limits the types of substrates that can be treated. The present invention has been devised to solve such problems, and a functional layer for a substrate is obtained by injecting or depositing an antifouling substance on the surface of the substrate by an ion implantation method or an ion beam assisted vapor deposition method. It is an object of the present invention to obtain an antifouling member that suppresses excessive elution of an antifouling substance by improving the adhesion of the above and densifying the functional layer, and maintaining an excellent antifouling action for a long period of time.

【0005】[0005]

【課題を解決するための手段】本発明の防汚部材は、そ
の目的を達成するため、基材の表面にイオンビーム支援
蒸着法又はイオン注入法で防汚物質を含む機能層が形成
されていることを特徴とする。基材としては、金属,塗
膜,プラスチックス,ゴム,セラミックス,繊維等の素
材や加工品が使用される。防汚物質としては、Cu,A
g,Zn,Sn,Cr,Co及びこれらの合金から選ば
れた1種又は2種以上が使用される。イオン注入された
水素,フッ素,塩素,硼素,ヘリウム,ネオン,アルゴ
ン,酸素,窒素等も、防汚作用を呈する。イオン注入法
では、基材の表面にイオン化した防汚物質を注入する。
イオンの種類としては、Cu,Ag,Zn,Sn,C
r,Co等の金属イオンがある。また、イオン化可能な
ものである限り、水素,フッ素,塩素,硼素,ヘリウ
ム,ネオン,アルゴン,酸素,窒素等も使用される。イ
オンビーム支援蒸着法では、基材表面をイオンビームで
照射しながら防汚物質を蒸着させる。蒸着される防汚物
質には、Cu,Ag,Zn,Sn,Cr,Co等の金属
又は合金がある。支援するイオンビームの種類は、ヘリ
ウム,アルゴン,酸素等のイオンがある。
In order to achieve the object, the antifouling member of the present invention has a functional layer containing an antifouling substance formed on the surface of a substrate by an ion beam assisted vapor deposition method or an ion implantation method. It is characterized by being As the base material, materials and processed products such as metal, coating film, plastics, rubber, ceramics, fiber are used. As antifouling substances, Cu, A
One or more selected from g, Zn, Sn, Cr, Co and alloys thereof are used. Ion-implanted hydrogen, fluorine, chlorine, boron, helium, neon, argon, oxygen, nitrogen, etc. also exhibit antifouling action. In the ion implantation method, an ionized antifouling substance is implanted on the surface of the base material.
The types of ions are Cu, Ag, Zn, Sn, C
There are metal ions such as r and Co. Also, hydrogen, fluorine, chlorine, boron, helium, neon, argon, oxygen, nitrogen, etc. are used as long as they are ionizable. In the ion beam assisted deposition method, an antifouling substance is deposited while irradiating the surface of the base material with an ion beam. The antifouling substance to be deposited includes metals or alloys such as Cu, Ag, Zn, Sn, Cr and Co. The types of ion beams supported include ions such as helium, argon, and oxygen.

【0006】[0006]

【作用】イオン注入法で基材に注入された防汚物質は、
溶射,めっき,スパッタ,真空蒸着等によって形成され
た基材とは異質の被覆層となることはなく、基材表層の
内部に取り込まれる。そのため、塗膜や蒸着膜のよう
に、基材から剥離する虞れは全くない。毒性をもつC
u,Zn,Sn,Cr,Co等の金属元素をイオン注入
したものでは、これら金属元素の濃度が基材表層部で高
くなっている。そのため、Cu,Zn,Sn,Cr,C
o等の毒性作用が部材周辺部に及び、水中生物は、この
毒性を嫌って、基材表面に付着することがない。また、
すでに付着している水中生物は、Cu,Zn,Sn,C
r,Co等の毒性によって成育が妨げられ、最終的には
死滅する。Agは、触媒作用があり、水中の酸素から活
性酸素を生成し、活性酸素によって水中生物の付着を抑
制する。金属以外の水素,フッ素,塩素,硼素,ヘリウ
ム,ネオン,アルゴン,酸素,窒素等も、イオン注入に
よって同様に基材表層の内部に取り込まれ、剥離の虞れ
がない表層部を形成する。この表層部は、非金属元素の
濃度が高く、濡れ性等の表面状態が改質され、水中生物
が付着し難い表面になる。また、フッ素,塩素,硼素等
では、水中生物が嫌うイオンを水中に出すことから、水
中生物の付着を抑制する作用もある。
[Function] The antifouling substance injected into the substrate by the ion implantation method is
It does not form a coating layer different from the base material formed by thermal spraying, plating, sputtering, vacuum deposition, etc., but is taken into the inside of the base material surface layer. Therefore, unlike a coating film or a vapor deposition film, there is no possibility of peeling from the base material. C with toxicity
In those in which metal elements such as u, Zn, Sn, Cr, and Co are ion-implanted, the concentrations of these metal elements are high in the surface layer of the base material. Therefore, Cu, Zn, Sn, Cr, C
A toxic effect such as o extends to the periphery of the member, and aquatic organisms dislike this toxicity and do not adhere to the surface of the base material. Also,
Aquatic organisms that have already adhered are Cu, Zn, Sn, C
Growth is hindered by toxicity of r, Co, etc., and eventually they die. Ag has a catalytic action, produces | generates active oxygen from oxygen in water, and suppresses adhesion of aquatic organisms by active oxygen. Hydrogen, fluorine, chlorine, boron, helium, neon, argon, oxygen, nitrogen and the like other than metals are similarly taken into the inside of the surface layer of the base material by ion implantation to form a surface layer portion which is not likely to peel off. The surface layer portion has a high concentration of a non-metal element, the surface condition such as wettability is modified, and the aquatic organism hardly adheres to the surface. In addition, since fluorine, chlorine, boron, etc. put out into the water ions that aquatic organisms dislike, they also have an action of suppressing attachment of aquatic organisms.

【0007】イオンビーム支援蒸着法では、真空雰囲気
に基材を配置し、イオンビームで基材表面を照射しなが
らCu,Ag,Zn,Sn,Cr,Coの1種又は2種
以上の金属元素を蒸着させる。イオンビームは、イオン
銃でヘリウム,アルゴン,酸素等をイオン化して、0.
1kV以上の加速電圧を印加することにより発生させ
る。形成された蒸着膜は、イオンビームの照射によって
活性化された基材表面に蒸着されたものであるため、基
材に対する密着性が極めて高くなっている。蒸着膜の金
属元素自体は、水中生物が嫌う毒性や活性酸素を発生さ
せる。毒性又は活性酸素は、基材の周辺にいる水中生物
の成育を抑制し死滅させる。蒸着膜の防汚作用は、支援
イオンビームに由来して基材表面に注入された金属又は
非金属と相俟つて相乗的に向上する。また、イオンビー
ム支援蒸着法で形成された蒸着膜は、緻密化されている
ので、蒸着膜から水中に溶出する金属の溶出量が抑えら
れ、長期間にわたって防汚作用を持続する。
In the ion beam assisted vapor deposition method, a base material is placed in a vacuum atmosphere and one or more metal elements of Cu, Ag, Zn, Sn, Cr and Co are irradiated while irradiating the surface of the base material with an ion beam. Is vapor deposited. An ion beam is used to ionize helium, argon, oxygen, etc. with an ion gun,
It is generated by applying an acceleration voltage of 1 kV or more. Since the formed vapor deposition film is vapor-deposited on the surface of the base material activated by the irradiation of the ion beam, the adhesion to the base material is extremely high. The metal element itself of the deposited film generates toxicity and active oxygen that aquatic organisms dislike. Toxic or active oxygen inhibits and kills the growth of aquatic organisms around the substrate. The antifouling effect of the vapor-deposited film is synergistically improved with the metal or non-metal implanted on the surface of the substrate due to the assisted ion beam. Further, since the vapor deposition film formed by the ion beam assisted vapor deposition method is densified, the amount of metal eluted from the vapor deposition film into water is suppressed and the antifouling action is maintained for a long time.

【0008】[0008]

【実施例】【Example】

(試験片の作成) 実施例1:板厚1mmで100mm×200mmのアル
ミニウム合金(1100)板に膜厚10μmの電着塗装
を施したものを基材として使用した。この基材に、表1
に示す条件下でCuをイオン注入した。 実施例2:実施例1と同じ電着塗装を施したアルミニウ
ム合金製基材に、表2に示す条件下でイオンビーム支援
蒸着法によってCu蒸着膜を形成した。 実施例3:板厚5mmで100mm×200mmの塩化
ビニル板を基材として使用し、表1に示す条件下でCu
をイオン注入した。 実施例4:実施例3と同じ塩化ビニル板製基材に、表2
に示す条件下でイオンビーム支援蒸着法によってCu蒸
着膜を形成した。 実施例5:実施例1と同じ電着塗装を施したアルミニウ
ム合金製基材に、表2に示す条件下でイオンビーム支援
蒸着法によってAg蒸着膜を形成した。
(Preparation of test piece) Example 1: A 100 mm x 200 mm aluminum alloy (1100) plate having a plate thickness of 1 mm, which was subjected to electrodeposition coating with a film thickness of 10 µm, was used as a substrate. To this substrate, Table 1
Cu was ion-implanted under the conditions shown in. Example 2: A Cu vapor deposition film was formed on the aluminum alloy substrate coated with the same electrodeposition coating as in Example 1 by the ion beam assisted vapor deposition method under the conditions shown in Table 2. Example 3: A vinyl chloride plate having a thickness of 5 mm and a size of 100 mm × 200 mm was used as a substrate, and Cu was used under the conditions shown in Table 1.
Was ion-implanted. Example 4: The same vinyl chloride plate base material as in Example 3 was added to Table 2.
A Cu vapor deposition film was formed by the ion beam assisted vapor deposition method under the conditions shown in. Example 5: An Ag vapor deposition film was formed on the aluminum alloy base material coated with the same electrodeposition coating as in Example 1 by the ion beam assisted vapor deposition method under the conditions shown in Table 2.

【0009】処理された各基材の防汚性能を、以下に説
明する方法で調査した。なお、イオン注入法及びイオン
ビーム支援蒸着法で処理した表面層の有効性を明らかに
するため、次の比較材を用意した。 比較例1:実施例1,2,5と同じ電着塗装を施したま
まのアルミニウム合金板 比較例2:実施例3,4と同じ無処理の塩化ビニル板 比較例3:実施例1,2,5と同じ電着塗装を施したア
ルミニウム合金板に真空蒸着法でCu蒸着膜を形成した
もの 比較例4:実施例3,4と塩化ビニル基板に真空蒸着法
でCuを蒸着させたもの
The antifouling performance of each treated substrate was investigated by the method described below. The following comparative materials were prepared to clarify the effectiveness of the surface layer treated by the ion implantation method and the ion beam assisted vapor deposition method. Comparative Example 1: An aluminum alloy plate which has been subjected to the same electrodeposition coating as in Examples 1, 2, 5 Comparative Example 2: Untreated vinyl chloride plate as in Examples 3 and 4 Comparative Example 3: Examples 1, 2 , An aluminum alloy plate on which the same electrodeposition coating as that of No. 5, 5 was formed with a Cu vapor deposition film by a vacuum vapor deposition method. Comparative Example 4: A vapor deposition of Cu by a vacuum vapor deposition method on Examples 3 and 4 and a vinyl chloride substrate.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】(防汚性能の評価)各処理材を清水市折戸
湾の海面下1.5mに浸漬して、周期的に引き上げ、試
験片表面に付着した生物の付着状況を観察した。観察結
果を示す表3にみられるように、本発明に従った実施例
1〜5では、水中生物の付着がほとんどみられず、長期
間にわたって試験当初の清浄な表面状態が維持されてい
た。これに対し、比較例1,2では、試験期間の経過と
共に多量の水中生物が付着するようになった。また、C
u蒸着膜を形成した比較例3,4では、当初の防汚性能
こそ実施例1〜5とほぼ同じレベルを呈したが、試験期
間が長期になるに従って水中生物の付着が急増した。こ
れは、真空蒸着で形成したCu蒸着膜が消耗したことを
示す。
(Evaluation of Antifouling Performance) Each treated material was immersed 1.5 m below the sea surface in Orido Bay, Shimizu City, and periodically pulled up to observe the adhesion state of organisms attached to the surface of the test piece. As can be seen from Table 3 showing the observation results, in Examples 1 to 5 according to the present invention, almost no aquatic organisms were observed to adhere and the clean surface condition at the beginning of the test was maintained for a long period of time. On the other hand, in Comparative Examples 1 and 2, a large amount of aquatic organisms became attached as the test period passed. Also, C
In Comparative Examples 3 and 4 in which the u vapor-deposited film was formed, the initial antifouling performance was almost the same level as in Examples 1 to 5, but the adhesion of aquatic organisms increased rapidly as the test period became longer. This indicates that the Cu vapor deposition film formed by vacuum vapor deposition has been consumed.

【0013】[0013]

【表3】 [Table 3]

【0014】[0014]

【発明の効果】以上に説明したように、本発明の防汚部
材は、金属,塗膜,プラスチックス,,ゴム,セラミッ
クス,繊維等の素材又は加工品の表面にイオン注入法又
はイオンビーム支援蒸着法で防汚作用を持つ表面層を形
成している。この表面層は、塗装,めっき,スパッタ,
真空蒸着法等で形成された皮膜に比較して基材に対する
密着性に優れ、長期間にわたって優れた防汚機能を持続
する。このようにして、防汚機能が付与された部材は、
淡水や海水に接する構造物,配管,船底等として広範な
用途に使用される。
As described above, the antifouling member of the present invention is an ion implantation method or an ion beam assisting method on the surface of a material such as metal, coating film, plastics, rubber, ceramics, fiber or processed product. A surface layer having an antifouling effect is formed by a vapor deposition method. This surface layer is coated, plated, sputtered,
Compared to a film formed by a vacuum deposition method or the like, it has excellent adhesion to a substrate and maintains an excellent antifouling function for a long period of time. In this way, the member with the antifouling function is
It is used in a wide range of applications such as structures in contact with fresh water and seawater, piping, and ship bottoms.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B05D 7/14 Z 7/24 303 B 7415−4F (72)発明者 堀 久司 静岡県庵原郡蒲原町蒲原1丁目34番1号 株式会社日軽技研内Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location B05D 7/14 Z 7/24 303 B 7415-4F (72) Inventor Kuji Hori 1 Kabahara, Kambara-cho, Anbara-gun, Shizuoka 34th-1st Nichiru Giken Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基材の表面にイオンビーム支援蒸着法又
はイオン注入法で防汚物質を含む機能層が形成されてい
る防汚部材。
1. An antifouling member in which a functional layer containing an antifouling substance is formed on the surface of a substrate by an ion beam assisted vapor deposition method or an ion implantation method.
【請求項2】 請求項1記載の基材が金属,塗膜,プラ
スチックス,ゴム,セラミックス又は繊維である防汚部
材。
2. An antifouling member, wherein the base material according to claim 1 is a metal, a coating film, plastics, rubber, ceramics or fibers.
【請求項3】 請求項1記載の防汚物質がCu,Ag,
Zn,Sn,Cr,Co及びこれらの合金から選ばれた
1種又は2種以上である防汚部材。
3. The antifouling substance according to claim 1 is Cu, Ag,
An antifouling member which is one or more selected from Zn, Sn, Cr, Co and alloys thereof.
【請求項4】 基材の表面にイオン化した防汚物質を注
入する防汚部材の製造方法。
4. A method for producing an antifouling member, which comprises injecting an ionized antifouling substance on the surface of a base material.
【請求項5】 Cu,Ag,Zn,Sn,Cr,Co,
H,F,Cl,B,He,Ne,Ar,O及びNから選
ばれた1種又は2種以上のイオンを使用する請求項4記
載の防汚部材の製造方法。
5. Cu, Ag, Zn, Sn, Cr, Co,
The method for producing an antifouling member according to claim 4, wherein one or more ions selected from H, F, Cl, B, He, Ne, Ar, O and N are used.
【請求項6】 基材表面をイオンビームで照射しなが
ら、前記基材表面に防汚物質を蒸着させる防汚部材の製
造方法。
6. A method for producing an antifouling member, which comprises depositing an antifouling substance on the surface of a base material while irradiating the surface of the base material with an ion beam.
【請求項7】 Cu,Ag,Zn,Sn,Cr,Co及
びこれらの合金から選ばれた1種又は2種以上を防汚物
質として使用する請求項6記載の防汚部材の製造方法。
7. The method for producing an antifouling member according to claim 6, wherein one or more selected from Cu, Ag, Zn, Sn, Cr, Co and alloys thereof are used as an antifouling substance.
JP33211894A 1994-12-12 1994-12-12 Antifouling member and production thereof Pending JPH08164359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33211894A JPH08164359A (en) 1994-12-12 1994-12-12 Antifouling member and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33211894A JPH08164359A (en) 1994-12-12 1994-12-12 Antifouling member and production thereof

Publications (1)

Publication Number Publication Date
JPH08164359A true JPH08164359A (en) 1996-06-25

Family

ID=18251360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33211894A Pending JPH08164359A (en) 1994-12-12 1994-12-12 Antifouling member and production thereof

Country Status (1)

Country Link
JP (1) JPH08164359A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1088650A1 (en) * 1998-06-17 2001-04-04 Showa Co., Ltd. Antifouling member and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1088650A1 (en) * 1998-06-17 2001-04-04 Showa Co., Ltd. Antifouling member and process for producing the same
EP1088650A4 (en) * 1998-06-17 2003-09-03 Showa Co Ltd Antifouling member and process for producing the same

Similar Documents

Publication Publication Date Title
Dempsey Colonisation of antifouling paints by marine bacteria
GB2063923A (en) Composition and process for chemically stripping metallic deposits
Sawant et al. Corrosion behaviour of metals and alloys in the waters of the Arabian Sea
Nakayama et al. Electrochemical prevention of marine biofouling on a novel titanium-nitride-coated plate formed by radio-frequency arc spraying
EP0196376A1 (en) Article coated with an antifouling composition for use in seawater
JPH08164359A (en) Antifouling member and production thereof
US5945171A (en) Aquatic organism and corrosion resistant coating and method for producing the coating
US4618513A (en) Tin plating immersion process
US4963237A (en) Method for electrochemical activation of IVD aluminum coatings
Chang et al. Assessment of corrosion resistant coatings for a depleted U-0.75 Ti alloy
JP2902396B1 (en) Marine organism adhesion preventing member and method for producing the same
US4017370A (en) Method for prevention of fouling by marine growth and corrosion utilizing technetium-99
US4123338A (en) Method for prevention of fouling and corrosion utilizing technetium-99
JPH0823052B2 (en) Antifouling structure and antifouling method
JP2787365B2 (en) Organic thin film coated Cr-containing zinc-based multi-layer rust-proof steel sheet having excellent long-term adhesion of organic thin film and cationic electrodeposition coating property, and method for producing the same
JPH11140677A (en) Method for preventing contamination and local corrosion of wire net made of copper or copper alloy and device therefor
JP3500593B2 (en) Alloyed galvanized steel sheet for painting
CA1126497A (en) Method for the prevention of fouling and corrosion utilizing technetium-99
RU2043256C1 (en) Method of protection of submersible object surface against fouling
AT350347B (en) METHOD FOR SIMULTANEOUSLY PREVENTION OF BIOLOGICAL GROWTH AND CHEMICAL CORROSION OF SUBSTRATES
JPS59145776A (en) Method for preventing corrosion and fouling of steel structure
KR0183041B1 (en) Antifouling structure and method thereof
JPH0444833A (en) Prevention of marine organism adhesion to frp product
JPS593961B2 (en) Antifouling and corrosion prevention method for structures exposed to fluid environments containing contaminant organisms and corrosive environments
Shen et al. A comparative study on the inhibition of microalgae attachment performance between Cu-based alloy laser cladding layer containing submicron Cr-rich precipitated phases and copper in simulated seawater