JPH08164338A - Exhaust gas purifying catalyst for internal combustion engine - Google Patents

Exhaust gas purifying catalyst for internal combustion engine

Info

Publication number
JPH08164338A
JPH08164338A JP6307831A JP30783194A JPH08164338A JP H08164338 A JPH08164338 A JP H08164338A JP 6307831 A JP6307831 A JP 6307831A JP 30783194 A JP30783194 A JP 30783194A JP H08164338 A JPH08164338 A JP H08164338A
Authority
JP
Japan
Prior art keywords
catalyst
layer
exhaust gas
adsorbent
ceo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6307831A
Other languages
Japanese (ja)
Inventor
Toshitsugu Kamioka
敏嗣 上岡
Tomoji Ichikawa
智士 市川
Takahiro Kurokawa
貴弘 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP6307831A priority Critical patent/JPH08164338A/en
Publication of JPH08164338A publication Critical patent/JPH08164338A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To provide a catalyst for preventing discharge of unpurified HC at a cold time of an internal combustion engine and enabling to efficiently decompose HC and NOx in the exhaust gas at the later time. CONSTITUTION: A first layer 2 in which Pd is a catalyst metal, a rare earth oxides layer 3 and a second catalyst layer 4 in which Pt, Rh are catalyst metals are successively formed on surfaces of each HC adsorbent particle 1 consisting of inorganic crystalline molecular sheaves on a carrier 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の排気ガス浄化
用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for an internal combustion engine.

【0002】[0002]

【従来の技術】内燃機関の排気ガス中のHC(炭化水
素)、CO(一酸化炭素)及びNOx(窒素酸化物)を
浄化する触媒として、モノリス担体の上にゼオライトを
主成分とする第1触媒層を設け、該第1触媒層の上に酸
化還元能を備えた貴金属触媒をを主成分とする第2触媒
層を設けてなるものが知られている(特開平2−562
47号公報参照)。上記第1触媒層には必要に応じてP
t、Pd、Rh等の貴金属やCeO2 (セリア)、La
2 3 (ランタナ)等の希土類酸化物が担持され、上記
第2触媒層はアルミナコート層にPt、Pd、Rh等の
貴金属が担持され、必要に応じて上記希土類酸化物や酸
化ジルコニウム等が担持される。
2. Description of the Related Art As a catalyst for purifying HC (hydrocarbons), CO (carbon monoxide) and NOx (nitrogen oxides) in exhaust gas of an internal combustion engine, a first catalyst containing zeolite as a main component on a monolith carrier. It is known that a catalyst layer is provided, and a second catalyst layer containing a noble metal catalyst having a redox ability as a main component is provided on the first catalyst layer (JP-A-2-562).
No. 47). If necessary, P may be added to the first catalyst layer.
Noble metals such as t, Pd, Rh, CeO 2 (ceria), La
A rare earth oxide such as 2 O 3 (lanthanum) is supported, and a noble metal such as Pt, Pd, or Rh is supported on the alumina coat layer of the second catalyst layer, and if necessary, the rare earth oxide or zirconium oxide is supported. Carried.

【0003】上記排気ガス浄化用触媒は、内燃機関の冷
間時で且つ空燃比がリッチの状態にあるときに排気ガス
中のHCを上記第1触媒層のゼオライトによって吸着
し、暖機によって排気ガス温度及び触媒温度が上昇した
ときに、上記第1触媒層から脱離するHC、排気ガス中
のHC及びCOの酸化とNOxの還元とを上記第2触媒
層によって行なうものである。
The exhaust gas purifying catalyst adsorbs HC in the exhaust gas by the zeolite of the first catalyst layer when the internal combustion engine is cold and the air-fuel ratio is in a rich state, and is exhausted by warming up. When the gas temperature and the catalyst temperature rise, the HC desorbed from the first catalyst layer, the HC and CO in the exhaust gas, and the NOx are reduced and oxidized by the second catalyst layer.

【0004】[0004]

【発明が解決しようとする課題】本発明者は、上記P
t、Pd及びRhの触媒金属としての機能に関し、Pt
及びPdは酸化能が高いが、それに比べてRhは酸化能
が低いこと、従って、Pt及びPdはHCの浄化に有効
であること、また、PtとRhとを組み合わせた場合に
はHCの酸化と共にNOxの分解が比較的効率良く進
む、という知見を得ていた。
DISCLOSURE OF THE INVENTION The present inventor
Regarding the function of t, Pd and Rh as the catalytic metal, Pt
Pd and Pd have a high oxidizing ability, but Rh has a lower oxidizing ability. Therefore, Pt and Pd are effective in purifying HC. Moreover, when Pt and Rh are combined, HC is oxidized. At the same time, it has been found that NOx decomposition proceeds relatively efficiently.

【0005】しかし、上記従来技術において、上記第1
触媒層の触媒金属又は第2触媒層の触媒金属として上記
Pt、Pd及びRhの三者を併用した場合には、Ptと
Rhとを併用した場合に比べてHC浄化率及びNOx浄
化率が共に低下するという問題がある。これはPt,R
hとPdとが互いの触媒機能を阻害するように干渉し合
うためと考えられる。これに対して、例えばPdを第1
触媒層に、PtやRhを第2触媒層にそれぞれ担持させ
ることにより、PdをPtやRhから離すことが考えら
れるが、第1触媒層と第2触媒層との界面においてPd
とPt,Rhとが接触し、必ずしも好結果が得られな
い。
However, in the above prior art, the first
When the above Pt, Pd, and Rh are used together as the catalyst metal of the catalyst layer or the catalyst metal of the second catalyst layer, both the HC purification rate and the NOx purification rate are higher than when Pt and Rh are used together. There is a problem of decrease. This is Pt, R
It is considered that h and Pd interfere with each other so as to inhibit their catalytic functions. On the other hand, for example, Pd is the first
It is possible to separate Pd from Pt and Rh by supporting Pt and Rh on the second catalyst layer in the catalyst layer, but Pd is separated from the interface between the first catalyst layer and the second catalyst layer.
And Pt and Rh come into contact with each other, and good results are not always obtained.

【0006】そこで、本発明は、上記Pdをその本来の
触媒機能が発揮されるように上記PtやRhと組み合わ
せ、内燃機関の冷間時及び暖機後のHC浄化率を高める
とともに、NOx浄化率を高めようとするものである。
Therefore, in the present invention, the above Pd is combined with the above Pt and Rh so that its original catalytic function is exhibited, and the HC purification rate during cold and after warm-up of the internal combustion engine is increased and NOx purification is performed. It tries to increase the rate.

【0007】[0007]

【課題を解決するための手段及びその作用】本発明者
は、上記課題に対して種々の実験及び検討を加えた結
果、Pdを触媒金属とする第1触媒層と、Pt又はRh
を触媒金属とする第2触媒層との間に希土類酸化物の層
を介在させたときに、これらの触媒金属及びHC吸着剤
の各々がその本来の有する機能を有効に発揮し、所期の
目的を達成することができること、特に上記第1触媒
層、希土類酸化物層及び第2触媒層をHC吸着剤粒子の
各々の表面に形成した場合に好結果が得られることを見
出だし、本発明を完成するに至ったものである。以下、
各請求項に係る発明を具体的に説明する。
Means for Solving the Problem and Its Action As a result of various experiments and studies on the above problems, the present inventor has found that the first catalyst layer containing Pd as a catalyst metal and Pt or Rh
When a layer of a rare earth oxide is interposed between the second catalyst layer containing C as a catalyst metal, each of the catalyst metal and the HC adsorbent effectively exhibits its original function, and It has been found that the object can be achieved, and particularly good results can be obtained when the first catalyst layer, the rare earth oxide layer and the second catalyst layer are formed on each surface of the HC adsorbent particles. Has been completed. Less than,
The invention according to each claim will be specifically described.

【0008】<請求項1に係る発明>この発明は、担体
の上に、排気ガス中の炭化水素を吸着する粉末状の無機
結晶性モレキュラーシーブよりなるHC吸着剤が担持さ
れていて、上記HC吸着剤粒子の各々の表面にPdを触
媒金属とする第1触媒層が形成され、上記第1触媒層の
上に、希土類酸化物を主成分とする希土類酸化物層が形
成され、上記希土類酸化物層の上に、Pt及びRhのう
ちの少なくとも一方を触媒金属とする第2触媒層が形成
されていることを特徴とする内燃機関の排気ガス浄化用
触媒である。
<Invention of Claim 1> According to the present invention, an HC adsorbent composed of a powdery inorganic crystalline molecular sieve for adsorbing hydrocarbons in exhaust gas is supported on a carrier, and the above HC A first catalyst layer containing Pd as a catalyst metal is formed on each surface of the adsorbent particles, and a rare earth oxide layer containing a rare earth oxide as a main component is formed on the first catalyst layer. A catalyst for purifying exhaust gas of an internal combustion engine, wherein a second catalyst layer having at least one of Pt and Rh as a catalyst metal is formed on the physical layer.

【0009】当該発明においては、内燃機関の冷間時に
は排気ガス中のHCがHC吸着剤に吸着されて、未浄化
HCの排出が防止される。暖機によって排気ガス温度及
び触媒温度が上昇してくると、各HC吸着剤に吸着され
ていたHCの脱離が始まるが、この各HC吸着剤粒子の
表面にはPdを触媒金属とする第1触媒層が形成されて
いるから、当該脱離HCはPdに接触し易く、このた
め、Pdが当該HCを酸化分解する触媒機能を効率良く
発揮する。また、第2触媒層においても、上記脱離する
HCがPt又はRhによって分解されるが、このPtや
Rhは排気ガス中のNOxの浄化に有効な触媒金属であ
り、上記脱離・分解するHCを還元剤としてNOxを還
元分解する触媒機能を発揮する。また、内燃機関から新
たに排出されるHCやCOも第1触媒層及び第2触媒層
の触媒金属によって酸化分解され、このような酸化反応
に伴ってNOxの還元分解反応が進行する。
In the present invention, when the internal combustion engine is cold, HC in the exhaust gas is adsorbed by the HC adsorbent to prevent discharge of unpurified HC. When the exhaust gas temperature and the catalyst temperature rise due to warm-up, desorption of HC adsorbed on each HC adsorbent begins, but on the surface of each HC adsorbent particle, Pd as a catalyst metal is used. Since one catalyst layer is formed, the desorbed HC easily comes into contact with Pd, and therefore Pd efficiently exhibits the catalytic function of oxidatively decomposing the HC. Also in the second catalyst layer, the desorbed HC is decomposed by Pt or Rh. These Pt and Rh are catalytic metals effective for purifying NOx in the exhaust gas, and are desorbed and decomposed. It exerts a catalytic function of reducing and decomposing NOx using HC as a reducing agent. In addition, HC and CO newly discharged from the internal combustion engine are also oxidatively decomposed by the catalytic metals of the first catalyst layer and the second catalyst layer, and the reduction decomposition reaction of NOx proceeds with such an oxidation reaction.

【0010】一方、上記第1触媒層と第2触媒層との間
に介在する希土類酸化物は、上記PtやRhとPdとが
干渉し合うことを妨げるバリアの機能を果たし、これら
の触媒金属間の相互作用による触媒機能の低下が防止さ
れる。一方、このようなバリアが排気ガス中のHCの拡
散をも妨げるものであるならば、第1触媒層がHCの吸
着・分解に有効に利用されないことになるが、当該発明
のバリアは希土類酸化物であり、この希土類酸化物はH
Cの拡散を若干妨げるとしてもその程度は低く、第1触
媒層のHC吸着剤による排気ガス中のHCの吸着の支障
にはならない。かえって、この希土類酸化物はO2 スト
レージ効果を有するから、第1触媒層及び第2触媒層に
おけるHCの酸化に有効に寄与することになる。
On the other hand, the rare earth oxide present between the first catalyst layer and the second catalyst layer functions as a barrier that prevents the Pt, Rh and Pd from interfering with each other, and these catalyst metals are used. It is possible to prevent deterioration of the catalytic function due to the interaction between the two. On the other hand, if such a barrier also prevents the diffusion of HC in the exhaust gas, the first catalyst layer will not be effectively used for the adsorption / decomposition of HC, but the barrier of the present invention is a rare earth oxide. This rare earth oxide is H
Even if the diffusion of C is slightly hindered, the degree thereof is low, and it does not hinder the adsorption of HC in the exhaust gas by the HC adsorbent in the first catalyst layer. On the contrary, since this rare earth oxide has an O 2 storage effect, it effectively contributes to the oxidation of HC in the first catalyst layer and the second catalyst layer.

【0011】しかして、当該発明の場合は、HC吸着剤
粒子の各々の表面に上記第1触媒層、希土類酸化物層及
び第2触媒層が形成されているから、個々のHC吸着剤
粒子の上でHCの酸化分解とNOxの還元分解を生じ各
々の浄化率が高くなる。
However, in the case of the present invention, since the first catalyst layer, the rare earth oxide layer and the second catalyst layer are formed on the surface of each HC adsorbent particle, Above, oxidative decomposition of HC and reductive decomposition of NOx occur, and the purification rate of each increases.

【0012】ここに、上記担体としては、モノリス担体
であっても、ペレット状の担体であってもよい。また、
上記HC吸着剤としての無機結晶性モレキュラーシーブ
としては、結晶の骨格(結晶格子)を形成する金属とし
てAlを用いたアルミノシリケート(Yゼオライト、モ
ルデナイト、ZSM5、ベータゼオライトなど各種のゼ
オライト)、Alに代えて或いはAlと共にGa、C
e、Mn、Tbなど他の金属を用いた他の結晶質多孔の
金属含有シリケート、さらには、ほとんどシリカだけか
らなるものや、Siを含まないものなど種々のものを採
用することができる。
Here, the carrier may be a monolith carrier or a pellet carrier. Also,
As the inorganic crystalline molecular sieve as the HC adsorbent, aluminosilicate (various zeolites such as Y zeolite, mordenite, ZSM5 and beta zeolite) using Al as a metal forming a crystal skeleton (crystal lattice), Al Alternatively, or together with Al, Ga, C
Other crystalline porous metal-containing silicates using other metals such as e, Mn, and Tb, as well as various materials such as those containing almost only silica and those not containing Si can be adopted.

【0013】<請求項2に係る発明>この発明は、上記
請求項1に記載されている内燃機関の排気ガス浄化用触
媒において、上記希土類酸化物がCeO2 であることを
特徴とする内燃機関の排気ガス浄化用触媒である。
<Invention of Claim 2> The present invention is the exhaust gas purifying catalyst for an internal combustion engine according to claim 1, wherein the rare earth oxide is CeO 2. Is a catalyst for purifying exhaust gas.

【0014】この発明において、希土類酸化物としてC
eO2 を用いるのは、該CeO2 のO2 ストレージ効果
が高く、HCの酸化分解に有利になるためである。
In the present invention, C is used as the rare earth oxide.
The reason why eO 2 is used is that the O 2 storage effect of CeO 2 is high and it is advantageous for the oxidative decomposition of HC.

【0015】<請求項3に係る発明>この発明は、上記
請求項3に記載されている内燃機関の排気ガス浄化用触
媒において、上記担体がモノリス担体であって、該担体
1リットル当たりの上記CeO2 の量が15〜100g
であることを特徴とする内燃機関の排気ガス浄化用触媒
である。
<Invention of Claim 3> According to the present invention, in the catalyst for purifying exhaust gas of an internal combustion engine according to claim 3, the carrier is a monolith carrier, and the carrier per liter of the carrier is the above. CeO 2 amount is 15-100g
Is a catalyst for purifying exhaust gas of an internal combustion engine.

【0016】当該発明において、モノリス担体を用いる
のは排気ガスと触媒層との接触に有利になるからであ
り、また、触媒の小型・軽量化が図れ、背圧の上昇も少
ないからである。また、担体1リットル当たりのCeO
2 量を15以上とするのは第1触媒層のPdと第2触媒
層のPt又はRhとを遮断する効果を確保するためであ
り、CeO2 量を100g以下とするのは、これよりも
その量が多くなると第2触媒層から第1触媒層へのHC
の拡散に不利になるためである。
In the invention, the reason why the monolith carrier is used is that it is advantageous for contact between the exhaust gas and the catalyst layer, and that the catalyst can be made smaller and lighter and the back pressure is less increased. Also, CeO per liter of carrier is
The amount of 2 is 15 or more in order to secure the effect of blocking Pd of the first catalyst layer and Pt or Rh of the second catalyst layer, and the CeO 2 amount is 100 g or less than that. When the amount increases, HC from the second catalyst layer to the first catalyst layer
This is because it is disadvantageous to the diffusion of.

【0017】<請求項4に係る発明>この発明は、上記
請求項1に記載されている内燃機関の排気ガス浄化用触
媒において、上記HC吸着剤が結晶性アルミノシリケー
トであることを特徴とする内燃機関の排気ガス浄化用触
媒である。
<Invention of Claim 4> This invention is characterized in that in the exhaust gas purifying catalyst for an internal combustion engine described in claim 1, the HC adsorbent is a crystalline aluminosilicate. It is a catalyst for purifying exhaust gas of an internal combustion engine.

【0018】当該発明において、HC吸着剤として上記
アルミノシリケートを用いるのは、これが耐熱性を有し
且つそのHC吸着能が高いためである。
In the present invention, the aluminosilicate is used as the HC adsorbent because it has heat resistance and has a high HC adsorbing ability.

【0019】[0019]

【発明の効果】請求項1に係る発明によれば、各HC吸
着剤粒子の上にPdを触媒金属とする第1触媒層と、P
t又はRhを触媒金属とする第2触媒層と、希土類酸化
物層とを形成し、且つ第1触媒層と第2触媒層との間に
希土類酸化物層を介在させたから、第2触媒層から第1
触媒層へのHCの拡散を許容しながら、Pt又はRhと
Pdとが干渉し合うことを避けてPdの触媒機能を充分
に発揮させることができ、冷間時における未浄化HCの
排出を防止しながら、該HC及びNOxを効率良く浄化
することができ、しかも各HC吸着剤粒子の上でHC及
びNOxの分解浄化が行なわれるから、高いHC浄化率
及び高いNOx浄化率が得られる。
According to the invention of claim 1, a first catalyst layer containing Pd as a catalyst metal is formed on each HC adsorbent particle,
Since the second catalyst layer having t or Rh as a catalyst metal and the rare earth oxide layer are formed, and the rare earth oxide layer is interposed between the first catalyst layer and the second catalyst layer, the second catalyst layer From first
While permitting the diffusion of HC into the catalyst layer, it is possible to fully exhibit the catalytic function of Pd while avoiding interference between Pd or Rh and Pd, and preventing the emission of unpurified HC during cold weather. However, the HC and NOx can be efficiently purified, and since the HC and NOx are decomposed and purified on each HC adsorbent particle, a high HC purification rate and a high NOx purification rate can be obtained.

【0020】請求項2に係る発明によれば、上記希土類
酸化物としてCeO2 を用いたから該CeO2 の高いO
2 ストレージ効果をHCの酸化分解に利用することがで
き、HC浄化率及びNOx浄化率の向上に有利になる。
According to the invention of claim 2, high the CeO 2 from using CeO 2 as the rare earth oxide O
2 storage effect can be utilized to oxidative decomposition of the HC, which is advantageous in improvement of the HC purification rate and the NOx purification rate.

【0021】請求項3に係る発明によれば、上記CeO
2 の量をモノリス担体1リットル当たり15〜100g
としたから、第2触媒層から第1触媒層へHCを拡散さ
せながら、第1触媒層のPdと第2触媒層のPt又はR
hとの接触を避ける上で有利になる。
According to the invention of claim 3, the CeO
2 to 15-100 g per liter of monolith carrier
Therefore, while diffusing HC from the second catalyst layer to the first catalyst layer, Pd of the first catalyst layer and Pt or R of the second catalyst layer are formed.
It is advantageous in avoiding contact with h.

【0022】請求項4に係る発明によれば、上記HC吸
着剤として結晶性アルミノシリケートを用いたから、触
媒のHC吸着能が高まり、HC浄化率及びNOx浄化率
の向上に有利になる。
According to the fourth aspect of the present invention, since the crystalline aluminosilicate is used as the HC adsorbent, the HC adsorbing ability of the catalyst is increased, which is advantageous for improving the HC purification rate and the NOx purification rate.

【0023】[0023]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0024】<実施例1> −触媒の調製− HC吸着剤としてプロトン型のYゼオライト(ケイバン
比80)粉末をコージェライト製のハニカム状のモノリ
ス担体(400セル/inch2 )にウォッシュコートし
た。このウォッシュコートは、上記Yゼオライトとバイ
ンダとしての水和アルミナとを100:20の重量比で
合わせ適量の純水を加えて撹拌混合することによりスラ
リーを作製し、該スラリーに上記担体を浸漬し引き上げ
て余分なスラリーを吹き飛ばし乾燥するという工程を繰
り返すことによって所定量のYゼオライトを上記担体に
担持させた後に、500℃×2時間の焼成を行なう、と
いうものである。
<Example 1> -Preparation of catalyst-Proton-type Y zeolite powder (Cayban ratio 80) as an HC adsorbent was wash-coated on a honeycomb-shaped monolithic carrier (400 cells / inch 2 ) made of cordierite. This wash coat was prepared by combining the Y zeolite and hydrated alumina as a binder at a weight ratio of 100: 20, adding an appropriate amount of pure water, and stirring and mixing to prepare a slurry, and immersing the carrier in the slurry. By repeating a process of pulling up, blowing out excess slurry, and drying, a predetermined amount of Y zeolite is supported on the carrier, and then firing at 500 ° C. for 2 hours is performed.

【0025】次に、上記ウォッシュコート層にPdを含
浸法によって担持させることによって第1触媒層を形成
した。この含浸担持は、所定濃度の硝酸パラジウム水溶
液を上記ウォッシュコート層に含浸させ乾燥及び焼成
(500℃×2時間)を行なう、というものである。
Next, the wash coat layer was loaded with Pd by an impregnation method to form a first catalyst layer. In this impregnation and loading, the washcoat layer is impregnated with an aqueous solution of palladium nitrate having a predetermined concentration, followed by drying and firing (500 ° C. × 2 hours).

【0026】次に、硝酸セリウムを純水に溶解して硝酸
セリウム水溶液を調製し、該硝酸セリウム水溶液を上記
ウォッシュコート層に含浸させ、乾燥・焼成を行なうこ
とによって上記第1触媒層の上に希土類酸化物層として
のCeO2 層を形成した。
Next, cerium nitrate is dissolved in pure water to prepare a cerium nitrate aqueous solution, the washcoat layer is impregnated with the cerium nitrate aqueous solution, and drying and firing are performed to form an aqueous solution on the first catalyst layer. A CeO 2 layer was formed as a rare earth oxide layer.

【0027】次に硝酸白金−Pソルト溶液(ジニトロジ
アミン白金(II)硝酸酸性水溶液)と硝酸ロジウム水溶液
とを混合し、該混合水溶液を上記ウォッシュコート層に
含浸させることによって、Pt及びRhを触媒金属とす
る第2触媒層を上記CeO2層の上に形成した。
Next, a platinum nitrate-P salt solution (dinitrodiamine platinum (II) nitric acid acidic aqueous solution) and an aqueous rhodium nitrate aqueous solution are mixed, and the mixed aqueous solution is impregnated into the washcoat layer to catalyze Pt and Rh. A second catalyst layer made of metal was formed on the CeO 2 layer.

【0028】従って、本例の触媒構造は図1に示すよう
に、担体の上の各HC吸着剤粒子1の表面に第1触媒層
2、CeO2 層3及び第2触媒層4が下から順に積層形
成されたものになっている。
Therefore, in the catalyst structure of this example, as shown in FIG. 1, the first catalyst layer 2, the CeO 2 layer 3 and the second catalyst layer 4 are arranged from the bottom on the surface of each HC adsorbent particle 1 on the carrier. The layers are formed in order.

【0029】−触媒の評価− [NOx浄化性能]上記触媒の調製法によって、担体1
リットル当たりの第1触媒層のHC吸着剤担持量を13
0g、Pd担持量を7g、CeO2 担持量を36gと
し、第2触媒層のPt及びRhを合わせた担持量を互い
に異なるものとした数種類の触媒を調製した。PtとR
hとの重量比率はいずれも5:1とした。そして、これ
らの触媒に加熱処理を施した後に各触媒を模擬排気ガス
流通装置に組み込み、各触媒の入口ガス温度が400℃
の時のNOx浄化率(NOx C400)を調べた。測
定条件は次の通りである。
-Evaluation of catalyst- [NOx purification performance] The carrier 1 was prepared by the above-mentioned catalyst preparation method.
The amount of HC adsorbent supported on the first catalyst layer per liter is 13
Several kinds of catalysts were prepared, in which the amount of Pd carried was 0 g, the amount of Pd carried was 7 g, the amount of CeO 2 carried was 36 g, and the carried amounts of Pt and Rh in the second catalyst layer were different from each other. Pt and R
The weight ratio with h was 5: 1 in all cases. Then, after subjecting these catalysts to heat treatment, each catalyst was incorporated into a simulated exhaust gas flow device, and the inlet gas temperature of each catalyst was 400 ° C.
The NOx purification rate (NOx C400) at that time was examined. The measurement conditions are as follows.

【0030】加熱処理;900℃×50時間(大気中) 模擬排気ガス;成分 N2 ,CO2 ,CO,C3 6
2 ,H2 ,NO但し、A/F=15.0であり、H2
Oを10%添加している。 空間速度;SV=60000h-1 模擬排気ガスの昇温速度;30度/分(室温から500
℃まで昇温)
Heat treatment: 900 ° C. × 50 hours (in air) Simulated exhaust gas: Components N 2 , CO 2 , CO, C 3 H 6 ,
O 2 , H 2 , NO, where A / F = 15.0 and H 2
10% of O is added. Space velocity; SV = 60000h -1 Temperature rise rate of simulated exhaust gas: 30 degrees / min (from room temperature to 500
(Up to ℃)

【0031】模擬排気ガスのA/F値を理論空燃比より
もリーン側に設定したのは、触媒によるNOxの浄化を
難しいものとして、各触媒に性能差が出やすいようにす
るためである。
The reason why the A / F value of the simulated exhaust gas is set to be leaner than the stoichiometric air-fuel ratio is to make purification of NOx by the catalyst difficult and to make the performance difference between the catalysts easy.

【0032】結果は図2に比較例1のものと併せて示さ
れている。比較例1は実施例と同じ担体にHC吸着剤の
ウォッシュコートを行なった後に、CeO2 →Pd→P
t,Rhの順で含浸担持を行なったものであり、含浸の
順序は異なるが、ウォッシュコート法及び含浸法、並び
に材料は実施例と同じである。また、比較例1のHC吸
着剤担持量は130g/L、Pd担持量は7g/L、C
eO2 担持量を36g/L、Pt及びRhを合わせた担
持量は1.6g/Lである。
The results are shown in FIG. 2 together with those of Comparative Example 1. In Comparative Example 1, after the same carrier as in Example 1 was washed with HC adsorbent, CeO 2 → Pd → P
The impregnation was carried out in the order of t and Rh, and the order of impregnation was different, but the washcoat method and impregnation method, and the materials were the same as in the examples. Further, in Comparative Example 1, the amount of HC adsorbent carried was 130 g / L, the amount of Pd carried was 7 g / L, C
The amount of eO 2 carried is 36 g / L, and the amount of Pt and Rh combined is 1.6 g / L.

【0033】同図によれば、実施例では高いNOx浄化
率が得られることがわかる。これはCeO2 層が第1触
媒層(Pd)と第2触媒層(Pt,Rh)との間にあっ
て、PdとPt及びRhとの干渉を妨げているためであ
る。そして、実施例をみるとNOx浄化率はPt及びR
hの担持量に支配されていることがわかる。また、Pt
及びRhの担持量の合計を0.8g/L以上にすれば、
高いNOx浄化率が得られることがわかる。また、Pt
及びRhの担持量の合計が1gを越えてもNOx浄化率
の向上はあまり見られないことから、該合計量を1.0
g/L以上にすればよいことがわかる。
From the figure, it can be seen that a high NOx purification rate is obtained in the example. This is because the CeO 2 layer is present between the first catalyst layer (Pd) and the second catalyst layer (Pt, Rh) and prevents interference between Pd and Pt and Rh. Then, looking at the examples, the NOx purification rates are Pt and R
It can be seen that it is governed by the carried amount of h. Also, Pt
And if the total amount of Rh carried is 0.8 g / L or more,
It can be seen that a high NOx purification rate can be obtained. Also, Pt
Even if the total amount of Rh and Rh carried exceeds 1 g, the NOx purification rate is not significantly improved, so the total amount is 1.0
It can be seen that it should be g / L or more.

【0034】[HCライトオフ性能]上記触媒の調製法
によって、担体1リットル当たりの第1触媒層のHC吸
着剤担持量を130g、Pd担持量を7g、第2触媒層
のPt及びRhを合わせた担持量を1.6g/Lとし、
CeO2 担持量を互いに異なるものとした数種類の触媒
を調製した。そして、これらの触媒に先の場合と同じ加
熱処理を施した後に各触媒を模擬排気ガス流通装置に組
み込み、HCのライトオフ温度、すなわち、HC浄化率
が50%になるときの排気ガス温度(HC T50)を
調べた。測定条件は模擬排気ガスの空燃比を除いて上記
NOx浄化性能の評価の場合と同じである。模擬排気ガ
スの空燃比に関しては、A/F=14.7を中心として
±0.9の幅で変動させた。この変動の周波数は1Hz
とした。
[HC light-off performance] According to the above-mentioned catalyst preparation method, the amount of HC adsorbent carried on the first catalyst layer per liter of carrier was 130 g, the amount of Pd carried was 7 g, and Pt and Rh of the second catalyst layer were combined. The carried amount is 1.6 g / L,
Several kinds of catalysts having different CeO 2 loadings were prepared. Then, after subjecting these catalysts to the same heat treatment as in the previous case, each catalyst is installed in a simulated exhaust gas flow device, and the light-off temperature of HC, that is, the exhaust gas temperature when the HC purification rate becomes 50% ( HCT50) was investigated. The measurement conditions are the same as in the case of the evaluation of the NOx purification performance except for the air-fuel ratio of the simulated exhaust gas. The air-fuel ratio of the simulated exhaust gas was varied within a range of ± 0.9 centering on A / F = 14.7. The frequency of this fluctuation is 1 Hz
And

【0035】結果は図3に上記比較例1のものと併せて
示されている。同図によれば、実施例は比較例1よりも
ライトオフ温度が低く、HC浄化性能が高いことがわか
る。そして、実施例をみるとCeO2 担持量が15g/
LのときのHCのライトオフ温度が最も低く、これより
も該担持量が少なくなる場合も多くなる場合もライトオ
フ温度が高くなっている。CeO2 担持量が少ない場合
にHCライトオフ温度が高くなっているのは、第1触媒
層のPdと第2触媒層のPt及びRhとが互いに干渉
し、それらの触媒機能が充分に発揮されなくなるためと
考えられ、CeO2 担持量が多くなった場合にHCライ
トオフ温度が高くなっているのは、第1触媒層へのHC
の拡散移動がCeO2 によって妨げられるためと考えら
れる。また、同図から、CeO2 担持量を15〜100
g/Lにすれば高いHC浄化率が得られることがわか
る。
The results are shown in FIG. 3 together with those of Comparative Example 1 above. According to the figure, it is understood that the example has a lower light-off temperature and a higher HC purification performance than the comparative example 1. Then, looking at the examples, the amount of CeO 2 supported is 15 g /
The light-off temperature of HC at the time of L is the lowest, and the light-off temperature is high when the carried amount is smaller or larger than that. When the amount of CeO 2 supported is small, the HC light-off temperature is high because Pd of the first catalyst layer and Pt and Rh of the second catalyst layer interfere with each other, and their catalytic functions are sufficiently exhibited. It is considered that the HC light-off temperature becomes high when the CeO 2 loading amount increases, because the HC to the first catalyst layer is
It is considered that this is because the CeO 2 hinders the diffusion and migration of Al. Also, from the figure, the amount of CeO 2 supported is 15 to 100.
It can be seen that a high HC purification rate can be obtained with g / L.

【0036】[Pd担持量とHCライトオフ性能等につ
いて]コージェライト製のハニカム状モノリス担体にプ
ロトン型のYゼオライト(ケイバン比80)粉末がウォ
ッシュコート法によって担持量が130g/Lとなるよ
うに担持され、このコート層にPdを含浸法によって種
々の担持量で担持されてなる複数種の触媒を調製した。
そして、これらの触媒を用いてPd担持量の変化に対す
るHCライトオフ温度の変化を調べた。上記ウォッシュ
コート法及び含浸法は先の触媒を調製するときの方法と
同じであり、また、HCライトオフ性能の測定条件及び
方法も先と同じである。
[Regarding Pd Carrying Amount and HC Light-Off Performance, etc.] Proton-type Y zeolite (Cayban ratio 80) powder was made to be 130 g / L by a wash coat method on a cordierite honeycomb monolithic carrier. A plurality of types of catalysts were prepared which were supported and on which the Pd was impregnated in the coating layer in various amounts.
Then, using these catalysts, changes in the HC light-off temperature with respect to changes in the amount of Pd carried were examined. The above washcoat method and impregnation method are the same as the above-mentioned methods for preparing the catalyst, and the measurement conditions and methods for the HC light-off performance are also the same as above.

【0037】結果は図4に示されている。同図によれ
ば、Pd担持量を多くすればHCライトオフ温度が低下
するが、ある量以上になるとHCライトオフ温度の低下
はそれほど進まなくなっている。このようなPd担持量
とHCライトオフ性能との関係は希土類酸化物層及び第
2触媒層を設けた場合も同じであり、従って、HCライ
トオフ性能の向上のためにはPd担持量を6g/L以上
にすることが適当である言うことができる。
The results are shown in FIG. According to the figure, the HC light-off temperature decreases as the amount of Pd carried increases, but the decrease of the HC light-off temperature does not proceed so much when the amount exceeds a certain amount. The relationship between the Pd loading amount and the HC light-off performance is the same when the rare earth oxide layer and the second catalyst layer are provided. Therefore, in order to improve the HC light-off performance, the Pd loading amount is 6 g. It can be said that it is appropriate to set it to be / L or more.

【0038】<実施例2> −実施例2の触媒の調製− HC吸着剤として超安定化Y型ゼオライト(ケイバン比
30)粉末500g、水和アルミナ粉末(バインダ)1
50g及び水1.5Lを合わせて撹拌混合することによ
ってスラリーを作製した。このスラリーを用いて実施例
1と同様の担体にウォッシュコートを行なうことによっ
て、該担体に所定量のHC吸着剤を担持させた。
<Example 2> -Preparation of catalyst of Example 2- 500 g of ultra-stabilized Y-zeolite (Cayban ratio 30) powder as HC adsorbent, hydrated alumina powder (binder) 1
A slurry was prepared by combining 50 g and 1.5 L of water with stirring and mixing. The same carrier as in Example 1 was wash-coated with this slurry to carry a predetermined amount of the HC adsorbent.

【0039】次に、Pd濃度4.4wt%の硝酸パラジ
ウム水溶液200gを調製し、これを上記担体のHC吸
着剤コート層に全て含浸させ、乾燥させた後、焼成(5
00℃×2時間)を行なうことによって、各HC吸着剤
粒子の表面に第1触媒層を形成した。
Next, 200 g of a palladium nitrate aqueous solution having a Pd concentration of 4.4 wt% was prepared, and the HC adsorbent coating layer of the above carrier was completely impregnated with it, dried, and then calcined (5
The first catalyst layer was formed on the surface of each HC adsorbent particle by performing the heating at 00 ° C. for 2 hours.

【0040】次に、硝酸セリウムを純水に溶解すること
によってCe濃度6.0wt%の硝酸セリウム水溶液6
40gを調製し、これを上記HC吸着剤層に全て含浸さ
せ、乾燥させた後、同様の焼成を行なうことによって、
各HC吸着剤粒子の第1触媒層の上にCeO2 層を形成
した。
Next, by dissolving cerium nitrate in pure water, an aqueous cerium nitrate solution 6 having a Ce concentration of 6.0 wt% 6 is obtained.
40 g was prepared, the above HC adsorbent layer was completely impregnated with it, dried, and then fired in the same manner,
A CeO 2 layer was formed on the first catalyst layer of each HC adsorbent particle.

【0041】次に、硝酸白金−Pソルト溶液と硝酸ロジ
ウム水溶液とを混合することによって、Pt濃度0.8
7wt%、Rh濃度0.17wt%の混合水溶液200
gを調製し、これを上記HC吸着剤層に全て含浸させ、
乾燥させた後、同様の焼成を行なうことによって、各H
C吸着剤粒子のCeO2 層の上にPt及びRhを触媒金
属とする第2触媒層を形成した。
Next, the platinum nitrate-P salt solution and the rhodium nitrate aqueous solution were mixed to give a Pt concentration of 0.8.
7 wt%, Rh concentration 0.17 wt% mixed aqueous solution 200
g, and impregnate all of the above with the HC adsorbent layer,
After drying, each H
A second catalyst layer having Pt and Rh as catalyst metals was formed on the CeO 2 layer of the C adsorbent particles.

【0042】得られた触媒は、上記担体が1.3L、H
C吸着剤の担持量が150g/L、Pd担持量が7g/
L、CeO2 担持量が36g/L、Pt及びRhを合わ
せた担持量が1.6g/L(但し、Pt:Rh=5:
1)であった。
The catalyst obtained has 1.3 L of the above carrier and H.
C adsorbent loading is 150 g / L, Pd loading is 7 g / L
L, CeO 2 supported amount is 36 g / L, Pt and Rh combined amount is 1.6 g / L (however, Pt: Rh = 5:
It was 1).

【0043】−比較例2の触媒の調製− 実施例2と同様に、担体にHC吸着剤コート層を形成
し、これにPdを含浸法によって担持させた。そして、
硝酸白金−Pソルト溶液と硝酸ロジウム水溶液とを混合
してなるPt濃度3.7wt%、Rh濃度0.74wt
%の混合水溶液100gにCeO2 粉末100gを投入
し、ホットプレート上で加熱しつつ混合撹拌を行なうこ
とによって水分を蒸発させ、焼成(500℃×2時間)
した。このPt及びRhが担持されたCeO2 粉末10
0gと水和アルミナ15gと純水300mLとを撹拌混
合することによってスラリーを得た。このスラリーを用
いて上記担体のHC吸着剤コート層の上にウォッシュコ
ートを行なった。
-Preparation of catalyst of Comparative Example 2-In the same manner as in Example 2, an HC adsorbent coat layer was formed on a carrier, and Pd was supported thereon by an impregnation method. And
Pt concentration 3.7 wt% and Rh concentration 0.74 wt which are formed by mixing platinum nitrate-P salt solution and rhodium nitrate aqueous solution.
% CeO 2 powder in 100 g of 100% mixed aqueous solution, water is evaporated by performing mixing and stirring while heating on a hot plate, and baking (500 ° C. × 2 hours).
did. This CeO 2 powder 10 carrying Pt and Rh
A slurry was obtained by stirring and mixing 0 g, 15 g of hydrated alumina and 300 mL of pure water. Using this slurry, wash coating was performed on the HC adsorbent coating layer of the above carrier.

【0044】従って、得られた比較例2の触媒は、担体
の上に上下2つの層が形成されていて、下層がPdを担
持したHC吸着剤層、上層がPt及びRhを担持したC
eO2 層になっている。また、担体は1.3L、HC吸
着剤担持量は150g/L、Pd担持量は7g/L、P
t及びRhを担持したCeO2 の担持量が38g/L
(但し、Pt:Rh=5:1)である。
Accordingly, in the obtained catalyst of Comparative Example 2, the upper and lower two layers were formed on the carrier, the lower layer was the HC adsorbent layer supporting Pd, and the upper layer was C supporting Pt and Rh.
It is an eO 2 layer. In addition, the carrier is 1.3 L, the HC adsorbent loading amount is 150 g / L, the Pd loading amount is 7 g / L, P
The amount of CeO 2 loaded with t and Rh is 38 g / L.
(However, Pt: Rh = 5: 1).

【0045】−比較例3の触媒の調製− 実施例2と同様に、担体にHC吸着剤コート層を形成
し、該コート層に硝酸セリウム水溶液を用いて同様の含
浸法によってCeO2 を同量担持させ、さらに、硝酸パ
ラジウム水溶液を用いて同様の含浸法によってPdを同
量担持させた。従って、得られた比較例3の触媒はPt
及びRhがない点が実施例2の触媒と相違することにな
る。
—Preparation of Catalyst of Comparative Example 3— As in Example 2, an HC adsorbent coating layer was formed on the carrier, and the same amount of CeO 2 was prepared by the same impregnation method using an aqueous cerium nitrate solution. Then, the same amount of Pd was carried by the same impregnation method using an aqueous palladium nitrate solution. Therefore, the obtained catalyst of Comparative Example 3 was Pt.
And Rh are different from the catalyst of Example 2.

【0046】−比較例4の触媒の調製− 実施例2と同様に、担体にHC吸着剤コート層を形成
し、該コート層に硝酸セリウム水溶液を用いて同様の含
浸法によってCeO2 を同量担持させ、さらに、硝酸白
金−Pソルト溶液と硝酸ロジウム水溶液との混合水溶液
を用いて同様の含浸法によってPt及びRhを同量担持
させた。従って、得られた比較例4の触媒はPdがない
点が実施例2の触媒と相違することになる。
—Preparation of Catalyst of Comparative Example 4— As in Example 2, an HC adsorbent coating layer was formed on a carrier, and the same amount of CeO 2 was used by the same impregnation method using an aqueous cerium nitrate solution for the coating layer. Then, the same amount of Pt and Rh was carried by the same impregnation method using a mixed aqueous solution of a platinum nitrate-P salt solution and a rhodium nitrate aqueous solution. Therefore, the obtained catalyst of Comparative Example 4 is different from the catalyst of Example 2 in that Pd is not contained.

【0047】−触媒の評価− 上記各触媒について、それぞれV型6気筒の3000c
cのエンジンを搭載した自動車の排気系に組み込み、走
行モードLA−4にて排気ガス浄化性能を評価した。結
果は表1に示す通りである。
-Evaluation of Catalyst- For each of the above catalysts, a V-type 6 cylinder 3000c was used.
It was incorporated into the exhaust system of an automobile equipped with the engine of c, and the exhaust gas purification performance was evaluated in the traveling mode LA-4. The results are shown in Table 1.

【0048】[0048]

【表1】 [Table 1]

【0049】同表によれば実施例2ではHC浄化率及び
NOx浄化率が共に高い。実施例2と比較例2とを比べ
た場合、HC浄化率は実施例2の方が高く、NOx浄化
率は比較例2の方が高いのは、実施例2では各HC吸着
剤粒子の第1触媒層(Pd)上にCeO2 層が形成され
ているのに対し、比較例2では層厚なCeO2 層がHC
吸着剤層全体を覆うように形成されているためである。
比較例3ではPt及びRhがないためにNOx浄化率が
低くなっており、比較例4ではPdがないためにHC浄
化率が低くなっている。
According to the table, in Example 2, both the HC purification rate and the NOx purification rate are high. When Example 2 and Comparative Example 2 are compared, the HC purification rate is higher in Example 2 and the NOx purification rate is higher in Comparative Example 2 because in Example 2, Whereas the CeO 2 layer is formed on one catalyst layer (Pd), in Comparative Example 2, the thick CeO 2 layer is HC
This is because it is formed so as to cover the entire adsorbent layer.
Comparative Example 3 has a low NOx purification rate because Pt and Rh are absent, and Comparative Example 4 has a low HC purification rate because Pd does not exist.

【0050】<実施例3> −実施例及び比較例の各触媒の調製− 実施例2と同様の方法によつて同様の構造の実施例3の
触媒を調製した。この実施例3の触媒は、HC吸着剤と
してケイバン比が80のH型超安定化Y型ゼオライトを
用い、CeO2 の担持量が35g/Lである点が実施例
2の触媒と相違する。また、以下の比較例5〜9の各触
媒を調製した。
Example 3 Preparation of Catalysts of Examples and Comparative Examples A catalyst of Example 3 having a similar structure was prepared by the same method as in Example 2. The catalyst of Example 3 is different from the catalyst of Example 2 in that H-type ultra-stabilized Y-type zeolite having a Caban ratio of 80 is used as the HC adsorbent and the amount of CeO 2 supported is 35 g / L. Moreover, each catalyst of the following comparative examples 5-9 was prepared.

【0051】比較例5は、先の比較例2と同じ構造の触
媒であるが、HC吸着剤の種類、CeO2 の担持量など
他の条件を実施例3と同じにした。
Comparative Example 5 is a catalyst having the same structure as that of Comparative Example 2 above, but the other conditions such as the type of HC adsorbent and the amount of CeO 2 supported were the same as in Example 3.

【0052】比較例6の触媒は、担体の上にHC吸着剤
層、Pdを担持したCeO2 層、並びにPt及びRhを
担持したCeO2 層が下から順に形成されたものであ
り、HC吸着剤の種類、CeO2 の担持量など他の条件
を実施例3と同じにした。
The catalyst of Comparative Example 6 is one in which an HC adsorbent layer, a Pd-supporting CeO 2 layer, and a Pt- and Rh-supporting CeO 2 layer are formed in this order from the bottom on the carrier. Other conditions such as the type of agent and the amount of CeO 2 supported were the same as in Example 3.

【0053】比較例7の触媒は、担体の上にHC吸着剤
層を形成し、該HC吸着剤層にPt及びRhを含浸法に
よって担持させ、その上にPdを担持したCeO2 層を
形成し、該CeO2 層にPt及びRhを含浸法によって
担持させたものであり、HC吸着剤の種類、CeO2
担持量など他の条件を実施例3と同じにした。
In the catalyst of Comparative Example 7, an HC adsorbent layer was formed on a carrier, Pt and Rh were supported on the HC adsorbent layer by an impregnation method, and a Pd-supported CeO 2 layer was formed thereon. Then, Pt and Rh were supported on the CeO 2 layer by an impregnation method, and other conditions such as the type of HC adsorbent and the amount of CeO 2 supported were the same as in Example 3.

【0054】比較例8の触媒は、担体の上にHC吸着剤
層を形成し、これにCeO2 →Pd→Pt及びRhの順
でこれらを含浸担持させたものであり、HC吸着剤の種
類、CeO2 の担持量など他の条件を実施例3と同じに
した。
The catalyst of Comparative Example 8 was prepared by forming an HC adsorbent layer on a carrier and impregnating and supporting CeO 2 → Pd → Pt and Rh in this order. Other conditions, such as the amount of CeO 2 supported, were the same as in Example 3.

【0055】比較例9の触媒は、担体の上にHC吸着剤
層を形成し、Pd、Pt及びRhを担持したCeO2
を上記HC吸着剤層の上にウォッシュコートによって形
成したものであり、HC吸着剤の種類、CeO2 の担持
量など他の条件を実施例3と同じにした。
The catalyst of Comparative Example 9 was obtained by forming an HC adsorbent layer on a carrier and forming a CeO 2 layer carrying Pd, Pt and Rh on the above HC adsorbent layer by washcoating. Other conditions such as the type of HC adsorbent and the amount of CeO 2 supported were the same as in Example 3.

【0056】−触媒の評価− 上記各触媒に加熱処理を施した後に各触媒を模擬排気ガ
ス流通装置に組み込み、各触媒の入口ガス温度が400
℃の時のNOx浄化率(NOx C400)と、HCの
ライトオフ温度(HC T50)を調べた。この場合の
加熱処理の条件並びに測定の条件及び方法は実施例1の
それと同じであり、結果は表2に示されている。
-Evaluation of Catalysts-Each of the above catalysts was heat-treated and then incorporated into a simulated exhaust gas flow device, and the inlet gas temperature of each catalyst was 400.
The NOx purification rate (NOx C400) and the light-off temperature of HC (HC T50) at 0 ° C. were examined. The conditions of heat treatment and the conditions and method of measurement in this case were the same as those in Example 1, and the results are shown in Table 2.

【0057】[0057]

【表2】 [Table 2]

【0058】同表によれば、実施例3はHCの浄化性能
及びNOxの浄化性能が共に高い。ここに、比較例5,
6は層厚なCeO2 層がHC吸着剤層全体を覆っている
ためにHC T50が高くなり、比較例7,8はPdと
HC吸着剤とが離れているためにHC T50が高くな
り、比較例8,9はPdとPt、Rhとが接近している
ためにNOx C400が低くなっているものと認めら
れる。
According to the table, in Example 3, both the purification performance of HC and the purification performance of NOx are high. Here, Comparative Example 5
6 has a high HC T50 because the thick CeO 2 layer covers the entire HC adsorbent layer, and Comparative Examples 7 and 8 have a high HC T50 because Pd and the HC adsorbent are separated. In Comparative Examples 8 and 9, it is recognized that NOx C400 is low because Pd is close to Pt and Rh.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の触媒構造を示す断面図FIG. 1 is a sectional view showing a catalyst structure of Example 1.

【図2】触媒入口ガス温度が400℃のときのNOx浄
化率とPt・Rh担持量との関係を示すグラフ図
FIG. 2 is a graph showing the relationship between the NOx purification rate and the Pt / Rh loading amount when the catalyst inlet gas temperature is 400 ° C.

【図3】CeO2 担持量とHC浄化におけるライトオフ
温度との関係を示すグラフ図
FIG. 3 is a graph showing the relationship between the amount of CeO 2 carried and the light-off temperature in HC purification.

【図4】Pd含浸担持量とHC浄化におけるライトオフ
温度との関係を示すグラフ図
FIG. 4 is a graph showing the relationship between the amount of impregnated Pd and the light-off temperature in HC purification.

【符号の説明】[Explanation of symbols]

1 HC吸着剤粒子 2 第1触媒層 3 CeO2 層(希土類酸化物層) 4 第2触媒層1 HC Adsorbent Particles 2 First Catalyst Layer 3 CeO 2 Layer (Rare Earth Oxide Layer) 4 Second Catalyst Layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/86 ZAB 53/94 B01J 29/12 ZAB A B01D 53/36 ZAB 102 B 104 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01D 53/86 ZAB 53/94 B01J 29/12 ZAB A B01D 53/36 ZAB 102 B 104 A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 担体の上に、排気ガス中の炭化水素を吸
着する粉末状の無機結晶性モレキュラーシーブよりなる
HC吸着剤が担持されていて、 上記HC吸着剤粒子の各々の表面にPdを触媒金属とす
る第1触媒層が形成され、 上記第1触媒層の上に、希土類酸化物を主成分とする希
土類酸化物層が形成され、 上記希土類酸化物層の上に、Pt及びRhのうちの少な
くとも一方を触媒金属とする第2触媒層が形成されてい
ることを特徴とする内燃機関の排気ガス浄化用触媒。
1. An HC adsorbent comprising a powdery inorganic crystalline molecular sieve that adsorbs hydrocarbons in exhaust gas is carried on a carrier, and Pd is adsorbed on each surface of the HC adsorbent particles. A first catalyst layer containing a catalytic metal is formed, a rare earth oxide layer containing a rare earth oxide as a main component is formed on the first catalyst layer, and Pt and Rh of Rh are formed on the rare earth oxide layer. A catalyst for purifying exhaust gas of an internal combustion engine, wherein a second catalyst layer having at least one of them as a catalyst metal is formed.
【請求項2】 請求項1に記載されている内燃機関の排
気ガス浄化用触媒において、 上記希土類酸化物がCeO2 であることを特徴とする内
燃機関の排気ガス浄化用触媒。
2. The exhaust gas purifying catalyst for an internal combustion engine according to claim 1, wherein the rare earth oxide is CeO 2 .
【請求項3】 請求項3に記載されている内燃機関の排
気ガス浄化用触媒において、 上記担体がモノリス担体であって、該担体1リットル当
たりの上記CeO2 の量が15〜100gであることを
特徴とする内燃機関の排気ガス浄化用触媒。
3. The exhaust gas purifying catalyst for an internal combustion engine according to claim 3, wherein the carrier is a monolith carrier, and the amount of CeO 2 per liter of the carrier is 15 to 100 g. A catalyst for purifying exhaust gas of an internal combustion engine, characterized by:
【請求項4】 請求項1に記載されている内燃機関の排
気ガス浄化用触媒において、 上記HC吸着剤が結晶性アルミノシリケートであること
を特徴とする内燃機関の排気ガス浄化用触媒。
4. The exhaust gas purifying catalyst for an internal combustion engine according to claim 1, wherein the HC adsorbent is a crystalline aluminosilicate.
JP6307831A 1994-12-12 1994-12-12 Exhaust gas purifying catalyst for internal combustion engine Withdrawn JPH08164338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6307831A JPH08164338A (en) 1994-12-12 1994-12-12 Exhaust gas purifying catalyst for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6307831A JPH08164338A (en) 1994-12-12 1994-12-12 Exhaust gas purifying catalyst for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH08164338A true JPH08164338A (en) 1996-06-25

Family

ID=17973732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6307831A Withdrawn JPH08164338A (en) 1994-12-12 1994-12-12 Exhaust gas purifying catalyst for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH08164338A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042797A (en) * 1997-07-02 2000-03-28 Tosoh Corporation Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
JP2003154274A (en) * 2001-11-21 2003-05-27 Hitachi Ltd Exhaust gas purifying catalyst, exhaust gas purifying method and its device
US6641788B1 (en) 1997-07-02 2003-11-04 Tosoh Corporation Absorbent for a hydrocarbon, and exhaust gas-purifying catalyst
NL1021116C2 (en) * 2002-07-19 2004-01-20 Stichting Energie Process for the removal of NOx and catalyst therefor.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309616B1 (en) 1977-11-26 2001-10-30 Tosoh Corporation Method for adsorbing and removing ethylene and method for purifying an exhaust gas
US6042797A (en) * 1997-07-02 2000-03-28 Tosoh Corporation Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
US6103208A (en) * 1997-07-02 2000-08-15 Tosoh Corporation Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
US6641788B1 (en) 1997-07-02 2003-11-04 Tosoh Corporation Absorbent for a hydrocarbon, and exhaust gas-purifying catalyst
JP2003154274A (en) * 2001-11-21 2003-05-27 Hitachi Ltd Exhaust gas purifying catalyst, exhaust gas purifying method and its device
NL1021116C2 (en) * 2002-07-19 2004-01-20 Stichting Energie Process for the removal of NOx and catalyst therefor.
WO2004009220A1 (en) * 2002-07-19 2004-01-29 Stichting Energieonderzoek Centrum Nederland Method for the removal of nox and catalyst therefor
US7459135B2 (en) * 2002-07-19 2008-12-02 Stichting Energieonderzoek Centrum Nederland Method for the removal of NOx and catalyst therefor

Similar Documents

Publication Publication Date Title
US6074973A (en) Catalyzed hydrocarbon trap material and method of making the same
JPH0910594A (en) Catalyst for purifying exhaust gas
EP0764460B1 (en) Nitrogen oxide traps
CN112041051B (en) Hydrocarbon trapping catalyst
JP3479980B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
CN112118906A (en) Hydrocarbon trapping catalyst
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JPH07124468A (en) Production of hydrocarbon adsorbent and adsorption catalyst
JP3282344B2 (en) Exhaust gas purification device
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JP2682404B2 (en) Method for producing hydrocarbon adsorbent and catalyst
JPH08164338A (en) Exhaust gas purifying catalyst for internal combustion engine
JP3695394B2 (en) Exhaust gas purification device and manufacturing method
JPH08141405A (en) Catalyst for purification of exhaust gas from internal-combustion engine
JP2849585B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH09225265A (en) Exhaust gas purifying device
JP3387417B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3300027B2 (en) Exhaust gas purification catalyst
JP3321831B2 (en) Exhaust gas purification catalyst
JPH10202107A (en) Catalyst for exhaust gas purification and exhaust-gas purification method
JP2004322022A (en) Catalyst for cleaning exhaust gas
JPH08229387A (en) Adsorbent integrated with hydrocarbon combustion catalytic function and purifying method of hydrocarbon in internal combustion engine exhaust gas
JP2000015104A (en) Catalyst for purification of exhaust gas and purification of exhaust gas
JP3291316B2 (en) Exhaust gas purification catalyst
JPH07328448A (en) Exhaust gas purification catalyst and device for purifying exhaust gas

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020305