JPH08162291A - Plasma apparatus - Google Patents

Plasma apparatus

Info

Publication number
JPH08162291A
JPH08162291A JP6304785A JP30478594A JPH08162291A JP H08162291 A JPH08162291 A JP H08162291A JP 6304785 A JP6304785 A JP 6304785A JP 30478594 A JP30478594 A JP 30478594A JP H08162291 A JPH08162291 A JP H08162291A
Authority
JP
Japan
Prior art keywords
power
frequency
voltage
high frequency
electric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6304785A
Other languages
Japanese (ja)
Inventor
Koji Oku
康二 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6304785A priority Critical patent/JPH08162291A/en
Publication of JPH08162291A publication Critical patent/JPH08162291A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)

Abstract

PURPOSE: To compensate the difference of loss differing based on the difference of length of electricity supplying cables and the types of rectifying circuits and provide stable plasma by detecting effective transmitted electric power supplied to a plasma chamber by an electric power detecting circuit and carrying out negative feedback of the detected value as an electric power detected value to a high frequency electric power source. CONSTITUTION: An electric power detecting circuit 40 to detect effective transmitted electric power to a plasma chamber 20 detects high frequency electric current flowing through a rectifying circuit 30 by a current transformer 41. The detected current is transformed into voltage through a terminal resistor 42 and the voltage of a high frequency output sent out through the rectifying circuit 30 is detected by dividing the voltage by voltage dividing resistors 43, 44. Detected current of the high frequency output detected by the current transformer 41 and current of a local electric power source 45 are multiplied by a double balanced mixer 46a to carry out frequency mixing and the divided voltage and the voltage of the electric power source 45 are multiplied by a mixer 46b to carry out mixing. After passing a high band interfereing filter 47, the outputs of the mixer 46a, 46b are multiplied by a multiplier 48 and converted into low frequency by a low ban filter 49 and thus high frequency electric power can be detected. As effective transmitted electric power value, the detected value is turned back to the electric power source 3 side by negative feedback.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高周波電源からプラ
ズマ放電するプラズマチャンバーに伝送する供給電力を
制御して安定したプラズマを発生させるためのプラズマ
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma apparatus for controlling a power supplied from a high frequency power source to a plasma chamber for plasma discharge to generate stable plasma.

【0002】[0002]

【従来の技術】図5に従来のプラズマ装置を示す構成図
である。図5において、1は高周波(以下RFとも称
す)大電力を発生する高周波電源、20はこの高周波電
源1から整合回路を介して高周波電力が供給されてプラ
ズマを発生するプラズマ発生部としてのプラズマチャン
バー、30は上記高周波電源1と上記プラズマチャンバ
ー20との間に設けられて電源のインピーダンスとプラ
ズマ放電インピーダンスとの整合を取るための整合回路
である。
2. Description of the Related Art FIG. 5 is a block diagram showing a conventional plasma device. In FIG. 5, reference numeral 1 is a high frequency power source that generates a high frequency (hereinafter also referred to as RF) large power, and 20 is a plasma chamber as a plasma generation unit that is supplied with high frequency power from the high frequency power source 1 through a matching circuit to generate plasma. , 30 are matching circuits provided between the high frequency power supply 1 and the plasma chamber 20 for matching the impedance of the power supply with the plasma discharge impedance.

【0003】ここで、上記高周波電源1としては、発振
源としての水晶発振子2、水晶発振子2に基づく高周波
出力を送出する発振回路3、発振回路3から出力される
高周波出力の利得を調整する利得調整回路4、利得調整
回路4を介した高周波出力を増幅する電力増幅回路5、
入射電力及び反射電力を検出する電力検出回路6、電力
検出回路6により検出されるプラズマチャンバー20に
対する入射電力と高周波電力設定値(RF電力設定値)
との比較差を求める減算器7、この減算器7から出力さ
れる比較差に基づいて上記利得調整回路4の利得を制御
する利得制御回路8を備えている。
Here, as the high frequency power source 1, a crystal oscillator 2 as an oscillation source, an oscillation circuit 3 for transmitting a high frequency output based on the crystal oscillator 2, and a gain of a high frequency output output from the oscillation circuit 3 are adjusted. A gain adjusting circuit 4, a power amplifier circuit 5 for amplifying a high frequency output via the gain adjusting circuit 4,
Power detection circuit 6 for detecting incident power and reflected power, incident power to the plasma chamber 20 detected by the power detection circuit 6 and high frequency power set value (RF power set value)
And a gain control circuit 8 for controlling the gain of the gain adjustment circuit 4 based on the comparison difference output from the subtractor 7.

【0004】また、上記整合回路30としては、可変コ
ンデンサ30a、チョーク30b、このチョーク30b
と組み合せてインダクタンス分を調整するための可変コ
ンデンサ30cを備えており、50a、50bは高周波
電源と整合回路30との間と整合回路30とプラズマチ
ャンバー20との間にそれぞれ設けられた給電ケーブル
(同軸ケーブル)である。
The matching circuit 30 includes a variable capacitor 30a, a choke 30b, and the choke 30b.
And a variable capacitor 30c for adjusting the inductance component in combination with 50a and 50b, which are provided between the high frequency power source and the matching circuit 30 and between the matching circuit 30 and the plasma chamber 20, respectively. Coaxial cable).

【0005】さらに、上記高周波電源1内の電力検出回
路6としては図6に示す構成を備えている。図6におい
て、6aはパワー増幅器5と整合回路30との間に流れ
る電流を検出する電流変成器、6b、6cは終端抵抗、
6d、6eは入射波と反射波を検波するためのダイオー
ド、6fは電圧を検出するための電圧結合回路、6g、
6hはフィルタ、6i、6jは2乗回路、6kと6lは
高周波入力端子と出力端子である。
Further, the power detection circuit 6 in the high frequency power source 1 has the configuration shown in FIG. In FIG. 6, 6a is a current transformer that detects a current flowing between the power amplifier 5 and the matching circuit 30, 6b and 6c are terminating resistors,
6d and 6e are diodes for detecting incident waves and reflected waves, 6f is a voltage coupling circuit for detecting voltage, 6g,
6h is a filter, 6i and 6j are squaring circuits, and 6k and 6l are high frequency input terminals and output terminals.

【0006】次に動作について説明する。高周波電源1
の出力パワーは、高周波電源1の出力部に設置されてい
る電力検出回路6により入射パワーとして検出される。
この信号とRF電力設定値との比較差に応じて利得制御
回路8により利得調整回路4の利得が制御されて、この
利得調整回路4を経た出力は電力増幅器5によりパワー
増幅される。この電力制御のループにより、高周波電源
1の出力は、RF電力設定値に応じた出力を発振するこ
とができる。
Next, the operation will be described. High frequency power supply 1
The output power of 1 is detected as the incident power by the power detection circuit 6 installed in the output part of the high frequency power supply 1.
The gain of the gain adjusting circuit 4 is controlled by the gain control circuit 8 according to the comparison difference between this signal and the RF power setting value, and the output from the gain adjusting circuit 4 is power-amplified by the power amplifier 5. With this power control loop, the output of the high frequency power supply 1 can oscillate according to the RF power setting value.

【0007】上記高周波電源1の電源出力は給電ケーブ
ル50aを介して整合回路30へ送られる。この整合回
路30の機能は電源インピーダンス(通常50Ωが多
い)とプラズマ放電インピーダンスの整合をとるための
もので、内蔵されている可変コンデンサ30a、30c
を調整することにより、整合回路30の入力側は給電ケ
ーブル及び電源側をみたインピーダンス(50Ω)にな
り、出力側はプラズマ側をみたインピーダンスがR−j
xの時、整合回路30の出力側から電源側をみた時のイ
ンピーダンスがR+jx、すなわち、この点において、
左右をみたインピーダンスは複素共役インピーダンスの
関係になり、最大電力伝送の条件が成り立ち、プラズマ
チャンバー20へ高周波電力のパワーを伝送させプラズ
マ放電ができる。
The power output of the high frequency power source 1 is sent to the matching circuit 30 via a power feeding cable 50a. The function of the matching circuit 30 is to match the impedance of the power supply (usually 50Ω is common) and the impedance of the plasma discharge, and the built-in variable capacitors 30a and 30c.
The impedance of the matching circuit 30 on the input side is 50 (Ω) as viewed from the power supply cable and the power source side, and the impedance on the output side is R-j as viewed from the plasma side.
When x, the impedance when the power supply side is viewed from the output side of the matching circuit 30 is R + jx, that is, at this point,
The impedance viewed from the left and right has a complex conjugate impedance relationship, and the condition for maximum power transmission is established, so that high frequency power is transmitted to the plasma chamber 20 and plasma discharge can be performed.

【0008】ここで、高周波電源1の出力部に設置され
ている電力検出回路6において、電流変成器6aで検出
された電流は終端抵抗6b、6cにより電圧Vi に変換
される。また、電圧結合回路6fにより検出される電圧
をVV とすれば、次式に基づいて入射電力及び反射電力
が検出される。 Vi =K(IF+IR)=VF1+VR1 (1) Vu =VF −VR (2) IR とVR は反射波による電流及び電圧成分、IF とV
F は入射波による電流及び電圧成分、Kは比例定数を示
し、電流と電圧は反射が逆相になるため、符号が異な
る。VF1とVF が等しくなるように設定すると、
(1)、(2)より VF =1/2(Vi +VV) (4) VR =1/2(Vi −VV) (5) 上式に示す関係が成り立つ。そして、上式を2乗回路6
i、6jを通すことにより電力を検出している。ただ
し、この時の負荷インピーダンスは50Ωの抵抗と限定
されている。
Here, in the power detection circuit 6 installed at the output of the high frequency power supply 1, the current detected by the current transformer 6a is converted into the voltage V i by the terminating resistors 6b and 6c. When the voltage detected by the voltage coupling circuit 6f is V V , the incident power and the reflected power are detected based on the following equation. V i = K (I F + I R ) = V F1 + V R1 (1) V u = V F −V R (2) I R and V R are current and voltage components due to reflected waves, and I F and V
F is a current and voltage component due to an incident wave, K is a proportional constant, and current and voltage have different signs because reflections are in opposite phases. If V F1 and V F are set to be equal,
From (1) and (2), V F = 1/2 (V i + V V ) (4) V R = 1/2 (V i −V V ) (5) The relationship shown in the above equation holds. Then, the above equation is used as the squaring circuit 6
The electric power is detected by passing through i and 6j. However, the load impedance at this time is limited to a resistance of 50Ω.

【0009】[0009]

【発明が解決しようとする課題】ところで、上述した従
来のプラズマ装置における給電方式は、高周波電源1の
出力端の高周波電力がRF電力設定値になるように制御
しているため、給電ケーブル50a、50b、及び整合
回路30でのロスが発生し、このロスも10数%の値の
となり、プラズマチャンバー20に伝送される真の有効
伝送電力が不正確となり、給電ケーブル長さの違い、整
合回路の機種等により装置間に機差が生じるという問題
点があった。
By the way, in the above-mentioned conventional power supply method in the plasma device, since the high frequency power at the output end of the high frequency power supply 1 is controlled to be the RF power set value, the power supply cable 50a, A loss occurs in 50b and the matching circuit 30, and this loss also becomes a value of 10% or more, the true effective transmission power transmitted to the plasma chamber 20 becomes inaccurate, the difference in the length of the power supply cable, the matching circuit. However, there was a problem that there was a machine difference between the devices depending on the model etc.

【0010】この発明は上記のような問題点を解消する
ためになされたもので、給電ケーブル長さの違い、整合
回路の機種による損失の差が補正され、プラズマチャン
バーに確実に指定有効パワーを伝送でき、より安定なプ
ラズマを発生することができるプラズマ装置を得ること
を目的とする。
The present invention has been made in order to solve the above problems, and corrects the difference in the length of the power feeding cable and the difference in the loss due to the model of the matching circuit, so that the specified effective power can be reliably supplied to the plasma chamber. An object of the present invention is to obtain a plasma device that can transmit and generate more stable plasma.

【0011】[0011]

【課題を解決するための手段】この発明に係るプラズマ
装置は、高周波電力設定値と電力検出値との比較差に応
じて利得が制御されて上記高周波電力設定値に応じた高
周波出力を送出する高周波電源と、この高周波電源から
の高周波出力が伝送されてプラズマ放電するプラズマチ
ャンバーと、上記高周波電源と上記プラズマチャンバー
との間に設けられて電源インピーダンスとプラズマ放電
インピーダンスとの整合を取る整合回路と、上記プラズ
マチャンバーへ供給される有効伝送電力を検出し、その
検出値を上記高周波電源に電力検出値として負帰還をか
ける電力検出回路とを備え、給電系の損失を補償してプ
ラズマ放電を安定化させることを特徴とするものであ
る。
In the plasma device according to the present invention, the gain is controlled according to the comparison difference between the high frequency power set value and the detected power value, and the high frequency output according to the high frequency power set value is sent out. A high-frequency power source, a plasma chamber in which a high-frequency output from the high-frequency power source is transmitted for plasma discharge, and a matching circuit provided between the high-frequency power source and the plasma chamber for matching power source impedance and plasma discharge impedance , And a power detection circuit that detects the effective transmission power supplied to the plasma chamber and negatively feeds back the detected value to the high frequency power supply as the power detection value to stabilize the plasma discharge by compensating for the loss of the power supply system. It is characterized by making it.

【0012】また、上記電力検出回路として、上記プラ
ズマチャンバーに伝送される高周波出力の電圧と電流を
検出する検出手段と、検出された高周波出力の電圧及び
電流を異なる周波数成分と乗算して周波数混合する混合
器と、この混合器から出力される電圧及び電流の高周波
成分を除去する高域阻止フィルタと、この高域阻止フィ
ルタを介した電圧と電流の乗算を行う集積回路でなる乗
算器と、この乗算器の出力の直流分のみを分離する低域
フィルタとを備えたことを特徴とするものである。
Further, as the power detection circuit, detection means for detecting the voltage and current of the high frequency output transmitted to the plasma chamber, and the frequency mixing by multiplying the detected high frequency output voltage and current with different frequency components. A mixer, a high-frequency blocking filter that removes high-frequency components of the voltage and current output from the mixer, and a multiplier that is an integrated circuit that multiplies the voltage and current through the high-frequency blocking filter, A low-pass filter that separates only the DC component of the output of the multiplier is provided.

【0013】[0013]

【作用】この発明に係るプラズマ装置においては、電力
検出回路により、プラズマチャンバーへ供給される有効
伝送電力を検出し、その検出値を高周波電源に電力検出
値として負帰還をかけることにより、給電系の損失を補
償してプラズマ放電を安定化させることができ、給電ケ
ーブル長さの違い、整合回路の機種による損失の差が補
正され、プラズマチャンバーに確実に指定有効パワーを
伝送でき、より安定なプラズマを発生することができ
る。
In the plasma apparatus according to the present invention, the power detection circuit detects the effective transmission power supplied to the plasma chamber, and the detected value is negatively fed back to the high frequency power supply as the power detection value, whereby the power feeding system is provided. It is possible to stabilize the plasma discharge by compensating for the loss of the power, the difference in the length of the power supply cable and the difference in the loss due to the model of the matching circuit are corrected, and the specified effective power can be reliably transmitted to the plasma chamber, making it more stable. Plasma can be generated.

【0014】また、上記電力検出回路として、上記プラ
ズマチャンバーに伝送される高周波出力の電圧と電流を
検出する検出手段と、検出された高周波出力の電圧及び
電流を異なる周波数成分と乗算して周波数混合する混合
器と、この混合器から出力される電圧及び電流の高周波
成分を除去する高域阻止フィルタと、この高域阻止フィ
ルタを介した電圧と電流の乗算を行う集積回路でなる乗
算器と、この乗算器の出力の直流分のみを分離する低域
フィルタとを備えたことにより、高周波を低周波に変換
し、低周波での電圧及び電流の位相関係を保持しつつ高
周波での電力演算を低周波の演算に置き換え、集積回路
でなる電圧及び電流の乗算器が充分安定的に動作できる
周波数帯域で高周波電力を演算することができ、伝送路
の特性インピーダンスに関係無く正確な電力が検出可能
で、電圧及び電流の乗算結果に基づく有効電力値を高周
波電源に対して負帰還をかけることにより、正確な伝送
有効電力の制御を行うことができる。
Further, as the power detection circuit, detection means for detecting the voltage and current of the high frequency output transmitted to the plasma chamber, and the detected high frequency output voltage and current are multiplied by different frequency components to mix the frequencies. A mixer, a high-frequency blocking filter that removes high-frequency components of the voltage and current output from the mixer, and a multiplier that is an integrated circuit that multiplies the voltage and current through the high-frequency blocking filter, By including a low-pass filter that separates only the DC component of the output of this multiplier, high frequency is converted to low frequency, and power calculation at high frequency is performed while maintaining the phase relationship of voltage and current at low frequency. Replacing with low-frequency operation, it is possible to calculate high-frequency power in the frequency band in which the voltage and current multiplier composed of an integrated circuit can operate in a sufficiently stable manner. Without accurate power related to the scan can be detected, by applying the negative feedback active power value based on the multiplication result of the voltage and current to a high frequency power source, it is possible to control the correct transmission active power.

【0015】[0015]

【実施例】【Example】

実施例1.以下、この発明を図示実施例に基づいて説明
する。図1は実施例1に係るプラズマ装置を示す概念的
なブロック構成図、図2と図3は図1の高周波電源10
及び整合回路30の内部構成を示す部分詳細構成図と図
1の電力検出回路40の内部構成図をそれぞれ示す。こ
れらの図において、図5に示す従来例と同一部分は同一
符号を示し、20はプラズマチャンバー、30は整合回
路であり、この整合回路30は、図5に示す従来例と同
様に、可変コンデンサ30a、チョーク30b、このチ
ョーク30bと組み合せてインダクタンス分を調整する
ための可変コンデンサ30cを備えている。
Example 1. Hereinafter, the present invention will be described based on illustrated embodiments. FIG. 1 is a conceptual block diagram showing the plasma device according to the first embodiment, and FIGS. 2 and 3 are the high frequency power source 10 shown in FIG.
2 is a partial detailed configuration diagram showing the internal configuration of the matching circuit 30 and the internal configuration diagram of the power detection circuit 40 in FIG. In these figures, the same parts as those in the conventional example shown in FIG. 5 are designated by the same reference numerals, 20 is a plasma chamber, and 30 is a matching circuit. This matching circuit 30 is similar to the conventional example shown in FIG. 30a, a choke 30b, and a variable capacitor 30c for adjusting the inductance component in combination with the choke 30b.

【0016】新たな符号として、10は図2に詳述する
構成を有する本実施例1に係る高周波電源を示し、この
高周波電源10としては、図5に示す従来例と同様に、
発振源としての水晶発振子2、水晶発振子2に基づく高
周波出力を送出する発振回路3、発振回路3から出力さ
れる高周波出力の利得を調整する利得調整回路4、利得
調整回路4を介した高周波出力を増幅する電力増幅回路
5、後述する電力検出回路40により検出される有効電
力値を負帰還してその有効電力値と高周波電力設定値
(RF電力設定値)との比較差を求める減算器7、この
減算器7から出力される比較差に基づいて上記利得調整
回路4の利得を制御する利得制御回路8を備えており、
従来例のような電力検出回路は内蔵していない。
As a new reference numeral, 10 indicates the high frequency power source according to the first embodiment having the configuration described in detail in FIG. 2, and this high frequency power source 10 is similar to the conventional example shown in FIG.
Through a crystal oscillator 2 as an oscillation source, an oscillator circuit 3 for sending out a high frequency output based on the crystal oscillator 2, a gain adjusting circuit 4 for adjusting the gain of the high frequency output output from the oscillator circuit 3, and a gain adjusting circuit 4. Subtraction for negatively feeding back the active power value detected by the power amplification circuit 5 for amplifying the high frequency output and the power detection circuit 40 described later to obtain the comparison difference between the active power value and the high frequency power setting value (RF power setting value). And a gain control circuit 8 for controlling the gain of the gain adjustment circuit 4 based on the comparison difference output from the subtractor 7.
It does not have a built-in power detection circuit as in the conventional example.

【0017】また、40は図3に詳述する構成を有する
本実施例1に係る電力検出回路を示し、この電力検出回
路40としては、整合回路30を介して流れる高周波出
力の電流を検出する電流変成器41、その検出電流を電
圧へ変換するための終端抵抗42、整合回路30を介し
て出力される高周波出力の電圧を分圧して検出するため
の分圧抵抗43及び44、ローカル電源45、上記電流
変成器41により検出される高周波出力の検出電流と上
記ローカル電源45の電流とを乗算して周波数混合する
混合器としてのダブルバランスドミキサー46aと上記
分圧抵抗43及び44により分圧された電圧と上記ロー
カル電源45の電圧とを乗算して周波数混合する混合器
としてのダブルバランスドミキサー46b、上記ダブル
バランスドミキサー46aと46bの出力の高周波成分
を除去するための高域阻止フィルタ47、この高域阻止
フィルタ47を介して高周波成分が除去されて出力され
る上記ダブルバランスドミキサー46a及び46bの電
圧と電流の乗算を行い電力を演算する集積回路でなる乗
算器48、この乗算器48の出力の直流分のみを分離す
る低域フィルタを構成する抵抗49a及びコンデンサ4
9bを備えており、この回路は、高周波電力の電圧及び
電流の位相関係を保ちながら周波数混合して低周波に変
換し、電圧と電流の乗算を行い電力を求めることによ
り、給電系の有効電力値を得るようになされている。な
お、40aと40bはそれぞれ電力検出回路40の整合
回路30側の高周波入力端子とプラズマチャンバー20
側の高周波出力端子である。
Reference numeral 40 denotes the power detection circuit according to the first embodiment having the configuration described in detail in FIG. 3, and this power detection circuit 40 detects the current of the high frequency output flowing through the matching circuit 30. A current transformer 41, a terminating resistor 42 for converting the detected current into a voltage, voltage dividing resistors 43 and 44 for dividing and detecting the voltage of the high frequency output output through the matching circuit 30, and a local power supply 45. , A double balanced mixer 46a as a mixer for multiplying the detected current of the high frequency output detected by the current transformer 41 and the current of the local power supply 45 to mix the frequency, and the voltage dividing resistors 43 and 44 to divide the voltage. A double balanced mixer 46b as a mixer for multiplying the generated voltage by the voltage of the local power supply 45 to mix the frequencies, and the double balanced mixer A high-frequency blocking filter 47 for removing high-frequency components of the outputs of 46a and 46b, and a voltage and current of the double-balanced mixers 46a and 46b output after the high-frequency components are removed via the high-frequency blocking filter 47. A multiplier 48, which is an integrated circuit that performs multiplication to calculate electric power, a resistor 49a and a capacitor 4 that form a low-pass filter that separates only the DC component of the output of the multiplier 48.
This circuit is provided with 9b, and this circuit mixes the frequencies of the high frequency power while maintaining the phase relationship of the voltage and the current, converts the high frequency power into a low frequency, and multiplies the voltage and the current to obtain the power, thereby obtaining the effective power It is designed to get value. Reference numerals 40a and 40b respectively denote a high frequency input terminal on the matching circuit 30 side of the power detection circuit 40 and the plasma chamber 20.
Side high frequency output terminal.

【0018】ここで、上記整合回路30を介して高周波
入力端子40aに入力される高周波出力の周波数をω
R 、ローカル電源45の信号の定数及び周波数をK及び
ωL とし、高周波出力の電圧及び電流をV及びIとし
て、その間の位相差をθとすれば、混合器としての上記
ダブルバランスドミキサー46a及び46bにより乗算
された出力結果V0 及びI0 は三角の加法定理を用いて
下式で示される。 I0 =Isin(ωRt+θ)・Ksin(ωLt) =IK/2{cos[(ωRL)t+θ]-cos[(ωRL)t+θ]} (6) V0 =VsinωRt・KsinωLt =VK/2[cos(ωRL)t-cos(ωRL)t] (7)
Here, the frequency of the high frequency output input to the high frequency input terminal 40a via the matching circuit 30 is set to ω.
R , the constant and frequency of the signal of the local power source 45 are K and ω L , the voltages and currents of the high frequency outputs are V and I, and the phase difference between them is θ, and the double balanced mixer 46a as a mixer. And the output results V 0 and I 0 multiplied by 46b are expressed by the following equations using the triangular addition theorem. I 0 = Isin (ω R t + θ) · Ksin (ω L t) = IK / 2 {cos [(ω R -ω L) t + θ] -cos [(ω R + ω L) t + θ]} ( 6) V 0 = Vsin ω R t · Ksin ω L t = VK / 2 [cos (ω R −ω L ) t-cos (ω R + ω L ) t] (7)

【0019】(6)及び(7)式の第2項は高周波領域
のため、高域阻止フィルタ47にて除外し、第1項の
(ωR−ωL)の差の周波数が乗算器48としての乗算用
集積回路が充分安定的に動作する領域、例えば100K
Hz以下になるようにローカル電源45の周波数ωL
決定するようにすれば、高周波を低周波に変換し、低周
波での電圧及び電流の位相関係を保持しつつ、高周波で
の電力演算を低周波での電力演算に置き換えることがで
き、乗算用集積回路の動作周波数で高周波電力を演算す
ることができる。
Since the second term of the equations (6) and (7) is in the high frequency region, it is excluded by the high-frequency blocking filter 47, and the frequency of the difference of (ω R −ω L ) of the first term is multiplied by the multiplier 48. Where the integrated circuit for multiplication as shown in the figure operates sufficiently stably, for example, 100K
If the frequency ω L of the local power supply 45 is determined to be equal to or lower than Hz, the high frequency is converted into the low frequency, and the power calculation at the high frequency is performed while maintaining the phase relationship between the voltage and the current at the low frequency. It can be replaced with power calculation at low frequency, and high frequency power can be calculated at the operating frequency of the integrated circuit for multiplication.

【0020】上記高域阻止フィルタ47を介して乗算器
48に入力される電圧と電流の入力信号IiとViは次式
で表わされる。 Ii =IK/2cos[(ωR−ωL)t+θ] (8) Vi =VK/2cos(ωR−ωL)t (9) 乗算器48はこの両者を乗算することにより、図4に示
す如く波形の電力Pを得ることができる。なお、図4に
おいて、(a)は電圧Viと電流Iiが同相の時の電力
P、(b)はπ/4電流遅れの時の電力P、(c)はπ
/2電流遅れの時の電力Pをそれぞれ示している。
The voltage and current input signals I i and V i input to the multiplier 48 via the high-frequency blocking filter 47 are expressed by the following equations. I i = IK / 2cos [(ω R −ω L ) t + θ] (8) V i = VK / 2 cos (ω R −ω L ) t (9) The multiplier 48 multiplies the two to obtain FIG. The electric power P having a waveform can be obtained as shown in FIG. In FIG. 4, (a) is the power P when the voltage V i and the current I i are in phase, (b) is the power P when the current is delayed by π / 4, and (c) is π.
The electric power P when the current is delayed by 1/2 is shown.

【0021】上記乗算器48により演算される電力Pの
演算式は、低周波をωb とすれば、 P=I・V・K2/4・(cosωbt+θ)・cosωbt (10) となり、平均の電力は図4の斜線部分の平均値となり、
一周期の平均として次式に示す高周波電力の伝送電力を
得る。 P=k′VIcosθ (11) この値は、図4の斜線部分の面積であり、抵抗49a及
びコンデンサ49bでなる低域フィルタを通すことによ
り、この値の平均値、すなわち直流分として取り出すこ
とができる。従って、この値を伝送有効電力値として負
帰還を電源側に帰還させるように制御ループを構成する
ことにより、伝送有効電力の安定した制御が可能とな
る。
The arithmetic expression of the electric power P that is calculated by the multiplier 48, the low if frequency of the ω b, P = I · V · K 2/4 · (cosω b t + θ) · cosω b t (10) And the average power is the average value in the shaded area in Figure 4,
The transmission power of the high frequency power shown in the following equation is obtained as the average of one cycle. P = k′VIcos θ (11) This value is the area of the shaded area in FIG. 4, and can be taken out as the average value of this value, that is, the DC component by passing it through a low-pass filter consisting of a resistor 49a and a capacitor 49b. it can. Therefore, by configuring the control loop so that the negative feedback is fed back to the power supply side using this value as the transmission active power value, stable control of the transmission active power becomes possible.

【0022】従って、上記実施例1によれば、プラズマ
チャンバー20への有効伝送電力を検出する電力検出回
路40に、周波数混合器としてダブルバランスドミキサ
ー46a及び46bを用いて、高周波を低周波に変換
し、低周波での電圧及び電流の位相関係を保持しつつ高
周波での電力演算を低周波の演算に置き換えるようにし
たことにより、集積回路でなる電圧及び電流の乗算器4
8が充分安定的に動作できる周波数帯域で高周波電力を
演算することができる。また、従来、整合回路30の出
力端以後は、複素共役インピーダンス整合のため、電圧
定在波が立ち、プラズマインピーダンスの影響で、通
常、特性インピーダンスが50Ωの伝送路では電力検出
に誤差が大きかったが、上記実施例では、電圧及び電流
の位相関係を保持しつつ両者の乗算によって電力を検出
するようにしたので、伝送路の特性インピーダンスに関
係無く正確な電力が検出可能であり、電圧及び電流の乗
算結果に基づく有効電力値を高周波電源10の利得調整
回路4に対して負帰還をかけることにより、伝送有効電
力を制御できる。
Therefore, according to the first embodiment, the power detection circuit 40 for detecting the effective transmission power to the plasma chamber 20 uses the double balanced mixers 46a and 46b as frequency mixers to reduce high frequencies to low frequencies. By performing the conversion and replacing the high-frequency power calculation with the low-frequency calculation while maintaining the phase relationship of the low-frequency voltage and current, the voltage and current multiplier 4 formed of an integrated circuit is obtained.
The high frequency power can be calculated in the frequency band in which 8 can operate sufficiently stably. Further, conventionally, after the output end of the matching circuit 30, due to the complex conjugate impedance matching, a voltage standing wave is generated, and due to the influence of plasma impedance, there is usually a large error in power detection in a transmission line having a characteristic impedance of 50Ω. However, in the above embodiment, since the power is detected by multiplying the voltage and the current while maintaining the phase relationship between the voltage and the current, accurate power can be detected regardless of the characteristic impedance of the transmission path, and the voltage and the current can be detected. By applying negative feedback to the gain adjusting circuit 4 of the high frequency power supply 10 based on the active power value based on the multiplication result of, the transmission active power can be controlled.

【0023】実施例2.上述した実施例1では、電力検
出回路40を整合回路30とプラズマチャンバー20間
の伝送路に設けたが、上記電力検出回路40を、プラズ
マチャンバー20内の放電電極の近くに設置することも
できる。また、整合回路30に内蔵させることもでき
る。この手法のように、ダブルバランスドミキサー46
a及び46bを周波数混合器として用い、高周波電力の
周波数を低周波に変換することにより、高周波電圧及び
電流の位相、振幅等のモニターが安価にできる。
Embodiment 2 FIG. Although the power detection circuit 40 is provided in the transmission line between the matching circuit 30 and the plasma chamber 20 in the above-described first embodiment, the power detection circuit 40 may be installed in the plasma chamber 20 near the discharge electrode. . It can also be built in the matching circuit 30. Double balanced mixer 46
By using a and 46b as a frequency mixer and converting the frequency of the high frequency power into the low frequency, it is possible to inexpensively monitor the phase and amplitude of the high frequency voltage and current.

【0024】また、整合回路30の入力端におけるイン
ビーダンスは、電圧及び電流が同相で、抵抗値は50Ω
になるように自動的に制御されるが、この時の位相差検
出にも、図3のローカル電源45を用いることなく、ロ
ーカル周波数を入力するかわりに、高周波電圧を入力す
ることにより、電流、電圧の位相差を知ることができ
る。インビーダンスの絶対値は、図3と同様にダブルバ
ランスドミキサー及び除算器を用いて低周波域で演算さ
せ、この値と前述の位相差を用いて整合回路の制御信号
とすることができる。
The impedance at the input end of the matching circuit 30 has the same phase in voltage and current and a resistance value of 50Ω.
However, for the phase difference detection at this time as well, the high frequency voltage is input instead of the local frequency input without using the local power supply 45 of FIG. It is possible to know the phase difference between the voltages. The absolute value of the impedance can be calculated in the low frequency range by using the double balanced mixer and the divider as in FIG. 3, and can be used as the control signal of the matching circuit by using this value and the phase difference described above. .

【0025】この発明は次のような態様に従って実施で
きる。 ・高周波電源10に電力検出回路40を内蔵させる。 ・整合回路30に電力検出回路40を内蔵させる。 ・プラズマチャンバー20に電力検出回路40を付帯さ
せる。
The present invention can be carried out according to the following modes. The power detection circuit 40 is built in the high frequency power supply 10. The power detection circuit 40 is built in the matching circuit 30. The power detection circuit 40 is attached to the plasma chamber 20.

【0026】[0026]

【発明の効果】以上のように、この発明によれば、電力
検出回路により、プラズマチャンバーへ供給される有効
伝送電力を検出し、その検出値を高周波電源に電力検出
値として負帰還をかけることにより、給電系の損失を補
償してプラズマ放電を安定化させることができ、給電ケ
ーブルの種別、長さの違いによる損失の差、整合回路内
部の熱損失の差及び機種による損失の差がすべて補償さ
れプラズマチャンバーに確実に指定有効パワーを伝送で
き、プラズマの安定化が計れると、ともに装置間の機差
をなくすことができき、生産現場のプラズマプロセスの
均一化が計れる。
As described above, according to the present invention, the power detection circuit detects the effective transmission power supplied to the plasma chamber, and the detected value is negatively fed back to the high frequency power supply as the power detection value. This makes it possible to stabilize the plasma discharge by compensating for the loss in the power supply system.The difference in the loss due to the type of power supply cable, the difference in length, the difference in heat loss inside the matching circuit, and the difference in loss due to the model are all If it is compensated and the designated effective power can be reliably transmitted to the plasma chamber and the plasma can be stabilized, it is possible to eliminate the machine difference between the devices, and it is possible to make the plasma process uniform at the production site.

【0027】また、上記電力検出回路として、上記プラ
ズマチャンバーに伝送される高周波出力の電圧と電流を
検出する検出手段と、検出された高周波出力の電圧及び
電流を異なる周波数成分と乗算して周波数混合する混合
器と、この混合器から出力される電圧及び電流の高周波
成分を除去する高域阻止フィルタと、この高域阻止フィ
ルタを介した電圧と電流の乗算を行う集積回路でなる乗
算器と、この乗算器の出力の直流分のみを分離する低域
フィルタとを備えたことにより、高周波を低周波に変換
し、低周波での電圧及び電流の位相関係を保持しつつ高
周波での電力演算を低周波の演算に置き換え、集積回路
でなる電圧及び電流の乗算器が充分安定的に動作できる
周波数帯域で高周波電力を演算することができ、伝送路
の特性インピーダンスに関係無く正確な電力が検出可能
で、電圧及び電流の乗算結果に基づく有効電力値を高周
波電源に対して負帰還をかけることにより、正確な伝送
有効電力の制御を行うことができる。
Further, as the power detection circuit, detection means for detecting the voltage and current of the high frequency output transmitted to the plasma chamber, and the detected high frequency output voltage and current are multiplied by different frequency components to mix the frequencies. A mixer, a high-frequency blocking filter that removes high-frequency components of the voltage and current output from the mixer, and a multiplier that is an integrated circuit that multiplies the voltage and current through the high-frequency blocking filter, By including a low-pass filter that separates only the DC component of the output of this multiplier, high frequency is converted to low frequency, and power calculation at high frequency is performed while maintaining the phase relationship of voltage and current at low frequency. Replacing with low-frequency operation, it is possible to calculate high-frequency power in the frequency band in which the voltage and current multiplier composed of an integrated circuit can operate in a sufficiently stable manner. Without accurate power related to the scan can be detected, by applying the negative feedback active power value based on the multiplication result of the voltage and current to a high frequency power source, it is possible to control the correct transmission active power.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施例1に係るプラズマ装置を示
す概念的なブロック構成図である。
FIG. 1 is a conceptual block diagram showing a plasma device according to a first embodiment of the present invention.

【図2】 図1の高周波電源及び整合回路の内部構成を
示す部分詳細構成図である。
FIG. 2 is a partial detailed configuration diagram showing an internal configuration of a high frequency power supply and a matching circuit of FIG.

【図3】 図1の電力検出回路の内部構成を示す回路図
である。
3 is a circuit diagram showing an internal configuration of the power detection circuit of FIG.

【図4】 電力演算の説明に供する波形図である。FIG. 4 is a waveform diagram for explaining power calculation.

【図5】 従来例に係るプラズマ装置を示す構成図であ
る。
FIG. 5 is a configuration diagram showing a plasma device according to a conventional example.

【図6】 図5の電力検出回路の内部構成を示す回路図
である。
6 is a circuit diagram showing an internal configuration of the power detection circuit of FIG.

【符号の説明】[Explanation of symbols]

10 高周波電源、20 プラズマチャンバー、30
整合回路、40 電力検出回路、41 電流変成器、4
3、44 分圧抵抗、45 ローカル電源、46a、4
6b ダブルバランスドミキサー(混合器)、47 高
周波阻止フィルター、48 乗算器、49a、49b
フィルタを構成する抵抗とコンデンサ。
10 high frequency power supply, 20 plasma chamber, 30
Matching circuit, 40 Power detection circuit, 41 Current transformer, 4
3, 44 voltage divider, 45 local power supply, 46a, 4
6b Double balanced mixer (mixer), 47 high frequency blocking filter, 48 multiplier, 49a, 49b
Resistors and capacitors that make up the filter.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高周波電力設定値と電力検出値との比較
差に応じて利得が制御されて上記高周波電力設定値に応
じた高周波出力を送出する高周波電源と、この高周波電
源からの高周波出力が伝送されてプラズマ放電するプラ
ズマチャンバーと、上記高周波電源と上記プラズマチャ
ンバーとの間に設けられて電源インピーダンスとプラズ
マ放電インピーダンスとの整合を取る整合回路と、上記
プラズマチャンバーへ供給される有効伝送電力を検出
し、その検出値を上記高周波電源に電力検出値として負
帰還をかける電力検出回路とを備え、給電系の損失を補
償してプラズマ放電を安定化させることを特徴とするプ
ラズマ装置。
1. A high-frequency power source, the gain of which is controlled according to a comparison difference between a high-frequency power set value and a detected power value, and which outputs a high-frequency output according to the high-frequency power set value, and a high-frequency output from the high-frequency power source. A plasma chamber for transmitting and plasma discharging, a matching circuit provided between the high frequency power source and the plasma chamber for matching the power source impedance and the plasma discharge impedance, and the effective transmission power supplied to the plasma chamber. A plasma device, comprising: a power detection circuit that detects the detected value and applies negative feedback to the high-frequency power source as a power detected value to compensate the loss of the power supply system to stabilize the plasma discharge.
【請求項2】 上記電力検出回路は、上記プラズマチャ
ンバーに伝送される高周波出力の電圧と電流を検出する
検出手段と、検出された高周波出力の電圧及び電流を異
なる周波数成分と乗算して周波数混合する混合器と、こ
の混合器から出力される電圧及び電流の高周波成分を除
去する高域阻止フィルタと、この高域阻止フィルタを介
した電圧と電流の乗算を行う集積回路でなる乗算器と、
この乗算器の出力の直流分のみを分離する低域フィルタ
とを備えたことを特徴とする請求項1記載のプラズマ装
置。
2. The power detecting circuit detects the high frequency output voltage and current transmitted to the plasma chamber, and the detected high frequency output voltage and current are multiplied by different frequency components to mix frequencies. A mixer, a high-frequency blocking filter that removes high-frequency components of the voltage and current output from the mixer, and a multiplier that is an integrated circuit that multiplies the voltage and current through the high-frequency blocking filter,
The plasma apparatus according to claim 1, further comprising a low-pass filter that separates only the DC component of the output of the multiplier.
JP6304785A 1994-12-08 1994-12-08 Plasma apparatus Pending JPH08162291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6304785A JPH08162291A (en) 1994-12-08 1994-12-08 Plasma apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6304785A JPH08162291A (en) 1994-12-08 1994-12-08 Plasma apparatus

Publications (1)

Publication Number Publication Date
JPH08162291A true JPH08162291A (en) 1996-06-21

Family

ID=17937207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6304785A Pending JPH08162291A (en) 1994-12-08 1994-12-08 Plasma apparatus

Country Status (1)

Country Link
JP (1) JPH08162291A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001520457A (en) * 1997-10-09 2001-10-30 エーケーティー株式会社 Two-frequency excitation of plasma for film deposition
JP2007143009A (en) * 2005-11-22 2007-06-07 Shindengen Electric Mfg Co Ltd High-frequency detection circuit
US7785441B2 (en) * 2002-12-16 2010-08-31 Japan Science And Technology Agency Plasma generator, plasma control method, and method of producing substrate
JP2010238493A (en) * 2009-03-31 2010-10-21 Daihen Corp High-frequency power source device and the high-frequency power detecting device of the high-frequency power source device
US8073646B2 (en) 2007-03-30 2011-12-06 Tokyo Electron Limited Plasma processing apparatus, radio frequency generator and correction method therefor
US8286581B2 (en) * 2001-12-10 2012-10-16 Tokyo Electron Limited High frequency power source and its control method, and plasma processing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001520457A (en) * 1997-10-09 2001-10-30 エーケーティー株式会社 Two-frequency excitation of plasma for film deposition
US8286581B2 (en) * 2001-12-10 2012-10-16 Tokyo Electron Limited High frequency power source and its control method, and plasma processing apparatus
US7785441B2 (en) * 2002-12-16 2010-08-31 Japan Science And Technology Agency Plasma generator, plasma control method, and method of producing substrate
US8444806B2 (en) 2002-12-16 2013-05-21 Japan Science And Technology Agency Plasma generator, plasma control method and method of producing substrate
JP2007143009A (en) * 2005-11-22 2007-06-07 Shindengen Electric Mfg Co Ltd High-frequency detection circuit
US8073646B2 (en) 2007-03-30 2011-12-06 Tokyo Electron Limited Plasma processing apparatus, radio frequency generator and correction method therefor
JP2010238493A (en) * 2009-03-31 2010-10-21 Daihen Corp High-frequency power source device and the high-frequency power detecting device of the high-frequency power source device

Similar Documents

Publication Publication Date Title
JP2929284B2 (en) Impedance matching and power control system for high frequency plasma processing equipment
US7615983B2 (en) High frequency power device for protecting an amplifying element therein
US9225299B2 (en) Variable-class amplifier, system, and method
JP4807850B2 (en) Improved RF power control device for RF plasma application
US10432248B1 (en) RF metrology system for a substrate processing apparatus incorporating RF sensors with corresponding lock-in amplifiers
JP3865289B2 (en) Microwave plasma generator
US8018243B2 (en) Measurement signal processing
JP3850448B2 (en) Circuit device with Cartesian amplifier
WO2009024051A1 (en) Method of realizing the impedance matching of rf and rf impedance matching system
JP2008005552A (en) Tunable phase shifter and its application
KR20000035042A (en) Multichannel amplification system using mask detection
JP4719383B2 (en) Local oscillator and method of using the same
US10896810B2 (en) RF generating apparatus and plasma treatment apparatus
JPH08162291A (en) Plasma apparatus
KR101128768B1 (en) High frequency power supply
JP2023098299A (en) High frequency power unit
Sabah et al. Design and calibration of IQ-mixers
JP2003204237A (en) Impedance matching device
US6456092B1 (en) Network vector channel analyzer
JPH08125447A (en) Image suppression mixer circuit
EP0965159B1 (en) An active filter device
KR101863891B1 (en) Transmitter device for a magnetic resonance scanner
KR0155943B1 (en) Supersonic oscillating control circuit
JP2002033074A (en) Quadrupole electrode application voltage generation circuit for quadrupole mass spectrometer
JPH10224238A (en) Power synthesized transmitter