JPH08160359A - Optical isolator and its production - Google Patents

Optical isolator and its production

Info

Publication number
JPH08160359A
JPH08160359A JP32136094A JP32136094A JPH08160359A JP H08160359 A JPH08160359 A JP H08160359A JP 32136094 A JP32136094 A JP 32136094A JP 32136094 A JP32136094 A JP 32136094A JP H08160359 A JPH08160359 A JP H08160359A
Authority
JP
Japan
Prior art keywords
optical isolator
light
faraday rotator
reference plane
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32136094A
Other languages
Japanese (ja)
Inventor
Shigeaki Aoki
茂明 青木
Takashi Mikami
孝 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP32136094A priority Critical patent/JPH08160359A/en
Publication of JPH08160359A publication Critical patent/JPH08160359A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To facilitate adjustment and to improve an extinction ratio characteristic by providing a case enclosing a Faraday rotator with a reference plane and adjusting the polarization direction of incident light past this Faraday rotator in such a manner this direction is made perpendicular to this reference plane. CONSTITUTION: The case 8 consisting of the metal enclosing the Faraday rotator 6 of the optical isolator 10 consisting of the 45 deg. Faraday rotator 6 and an analyzer 4 arranged on one side thereof is provided with the reference plane A. The polarization direction of the light made incident from the analyzer 4 side and past the Faraday rotator 6 is so adjusted that the direction is made perpendicular to the reference plane A. The polarization direction of the light made incident from the analyzer 4 side and past the Faraday rotator 6 is preferably so adjusted that the direction is kept within 0±1.8 deg. when the axial direction perpendicular to the reference plane A is assumed to be 0 deg.. Then, the polarization directions of the return light to a semiconductor laser diode(LD) 1 and the exit light of LD 1 are intersected orthogonally with high accuracy if the reference plane A and the front surface of the substrate 11 are fixed in tight contact with each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザなどを用
いた光通信、光情報処理、光計測システムなどにおいて
使用される光アイソレータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical isolator used in optical communication using a semiconductor laser or the like, optical information processing, an optical measurement system and the like.

【0002】[0002]

【従来の技術および課題】半導体レーザを用いた光シス
テムは、ファイバ等の光学部品による反射による戻り光
のため、半導体レーザの発振パワー変動、波長変動、雑
音増加等の問題が生じる。このため、戻り光が半導体レ
ーザに戻らないように光アイソレータが用いられる。現
在、光アイソレータとしては、図5に示すようなバルク
型光アイソレータが実用化されている。
2. Description of the Related Art An optical system using a semiconductor laser has problems such as fluctuations in oscillation power of the semiconductor laser, fluctuations in wavelength, increase in noise, etc., due to returning light due to reflection from optical components such as fibers. Therefore, an optical isolator is used so that the returning light does not return to the semiconductor laser. At present, a bulk type optical isolator as shown in FIG. 5 has been put into practical use as an optical isolator.

【0003】図5において、1は半導体レーザダイオー
ド(以下LDという)、2は結合用レンズ、3は偏光子
で、入射光S1を直線偏光にする。6はファラデー回転子
で、ファラデー効果を有する磁気光学結晶で形成され、
円筒マグネット5と組み合わせることによって入射光S
1、戻り光S3の偏波面をそれぞれ非相反的に45度回転さ
せる。4は検光子で、偏光子3に対して透過偏光面が45
度の角度をなすように配置されている。
In FIG. 5, 1 is a semiconductor laser diode (hereinafter referred to as LD), 2 is a coupling lens, 3 is a polarizer, and the incident light S1 is linearly polarized. 6 is a Faraday rotator, which is formed of a magneto-optical crystal having a Faraday effect,
Incident light S when combined with cylindrical magnet 5
1. The polarization plane of the return light S3 is rotated non-reciprocally by 45 degrees. Reference numeral 4 is an analyzer, which has a transmission polarization plane of 45 with respect to the polarizer 3.
It is arranged to form an angle of degrees.

【0004】入射光S1は、偏光子3によって直線偏光さ
れ、ファラデー回転子6によって偏光面が45度の回転を
受け、検光子4を通過する。一方、戻り光S3の内検光子
4を透過した成分は、ファラデー回転子6によってさら
に45度の回転を受けて、偏光子3とは垂直の偏光となる
ため、LD1側に光が戻らない。
The incident light S1 is linearly polarized by the polarizer 3, the plane of polarization of which is rotated by 45 degrees by the Faraday rotator 6, and passes through the analyzer 4. On the other hand, the component of the return light S3 that has passed through the internal analyzer 4 is further rotated by 45 degrees by the Faraday rotator 6 and becomes polarized light perpendicular to the polarizer 3, so that the light does not return to the LD1 side.

【0005】ここで、通常のLDの出射光は、TEモー
ドの場合X軸方向に直線偏光しており、このため偏光子
3の透過軸方向はX軸と平行で、偏光子3に逆方向から
入射する戻り光はY軸方向に偏光している。
Here, the light emitted from a normal LD is linearly polarized in the X-axis direction in the TE mode. Therefore, the transmission axis direction of the polarizer 3 is parallel to the X-axis and is opposite to the polarizer 3. The return light incident from is polarized in the Y-axis direction.

【0006】そこで、偏光子3を取り除いても、LDへ
の戻り光はY軸方向に偏光した光だけであり、TEモー
ドで発振しているLDの安定発振には影響しない。よっ
て、偏光子3を省いてコスト低減を図った光アイソレー
タ(以下0.5段型光アイソレータという)が考えられ
る。
Therefore, even if the polarizer 3 is removed, the return light to the LD is only the light polarized in the Y-axis direction and does not affect the stable oscillation of the LD oscillating in the TE mode. Therefore, an optical isolator (hereinafter referred to as 0.5-stage type optical isolator) in which the polarizer 3 is omitted and the cost is reduced can be considered.

【0007】0.5段型光アイソレータをLDモジュール
内に組み込むためには、図6に示すように、LD1の光
を順方向で光アイソレータ10に入射させ、光アイソレー
タ10を光軸(Z軸)まわりに回転させ、光アイソレータ
10からの出射光が最大になる角度で光アイソレータ10を
固定する。
In order to incorporate the 0.5-stage type optical isolator into the LD module, as shown in FIG. 6, the light from the LD 1 is made incident on the optical isolator 10 in the forward direction, and the optical isolator 10 is rotated around the optical axis (Z axis). Optical isolator
The optical isolator 10 is fixed at an angle at which the light emitted from 10 becomes maximum.

【0008】この回転調整時の光アイソレータ10からの
出射光量の変化は、図7に示すグラフのようになるの
で、出射光量が最大になる角度(このグラフの場合は0
度または180度の位置)で光アイソレータを固定すれば
良い。
The change in the amount of light emitted from the optical isolator 10 during this rotation adjustment is as shown in the graph of FIG. 7, so that the angle at which the amount of light emitted is maximum (0 in the case of this graph).
The optical isolator may be fixed at a position of 180 degrees or 180 degrees.

【0009】しかし、この位置は光量変化が非常に少な
く、精度良く組立てることは困難である。図8は、図7
中の0度近くでの光量変化を拡大したものであるが、仮
に組立時の光量変化の許容範囲を0.03dB以内におさめて
も光アイソレータの固定位置は±4.8度の範囲でばらつ
くことにつながり、この角度ずれは、逆方向からLDに
戻る光の偏光方向が、Y軸方向から±4.8度の範囲でば
らつくことになる。
However, at this position, the change in the amount of light is very small, and it is difficult to assemble it accurately. 8 is shown in FIG.
This is an expansion of the light intensity change near 0 degrees in the middle, but even if the allowable range of light intensity change during assembly is kept within 0.03 dB, the fixed position of the optical isolator will vary within ± 4.8 degrees. As for this angle deviation, the polarization direction of the light returning to the LD from the opposite direction varies within ± 4.8 degrees from the Y-axis direction.

【0010】図9は、戻り光の偏光方向がY軸方向から
ずれた場合のX軸方向の成分比を示すが、この図より光
アイソレータの固定位置が4.8度ずれると、戻り光のX
軸方向成分の消光比が21dBになることが解る。
FIG. 9 shows the component ratio in the X-axis direction when the polarization direction of the return light is deviated from the Y-axis direction. From this figure, when the fixed position of the optical isolator is deviated by 4.8 degrees, the X-axis of the return light is shown.
It can be seen that the extinction ratio of the axial component is 21 dB.

【0011】一般に、ファラデー素子の回転角度はその
厚さに比例する。通常のファラデー素子(LP法による
ビスマス置換ガーネット)の場合、ファラデー回転角1
度当たりのファラデー素子の厚さは概ね5μm程度であ
り、ファラデー回転角度を45度相当の厚さに精度よく仕
上げることは困難なので、通常±2度くらいのばらつき
がある。さらにこの2度のずれは、図6に示すような組
立方をした場合は、LDへの戻り光の偏光方向とY軸方
向とのずれは4度となる。
Generally, the rotation angle of a Faraday element is proportional to its thickness. In the case of a normal Faraday element (bismuth substitution garnet by the LP method), the Faraday rotation angle is 1
The thickness of the Faraday element per degree is about 5 μm, and it is difficult to accurately finish the Faraday rotation angle to a thickness equivalent to 45 degrees, so there is usually a variation of about ± 2 degrees. Further, when the assembling method shown in FIG. 6 is used, the deviation of 2 degrees is 4 degrees between the polarization direction of the return light to the LD and the Y-axis direction.

【0012】結局、組立時の光量変化の許容範囲を0.03
dB以下におさえても戻り光の偏光方向は、Y軸に対して
±8.8度までばらつくので、0.5段型光アイソレータとし
て期待できる消光比特性は、最悪の場合を想定すると図
9から16dB程度であり、通常の1段型光アイソレータの
消光比特性(40dB以上)に比べて著しく低く、実用にな
らないという問題があった。
After all, the permissible range of the light amount change at the time of assembly is 0.03.
The polarization direction of the return light varies up to ± 8.8 degrees with respect to the Y-axis even if it is kept below dB, so the extinction ratio characteristic that can be expected as a 0.5-stage optical isolator is about 16 dB from Fig. 9 assuming the worst case. However, there is a problem that the extinction ratio characteristic (40 dB or more) of an ordinary one-stage type optical isolator is remarkably low and it is not practical.

【0013】〔目的〕上記問題点に鑑み、本発明は、簡
単な構成で調整もしやすい、消光比特性(30dB以上)の
よい0.5段型光アイソレータを提供することを目的とす
る。
[Object] In view of the above problems, an object of the present invention is to provide a 0.5-stage type optical isolator which has a simple structure and is easy to adjust and has an excellent extinction ratio characteristic (30 dB or more).

【0014】[0014]

【課題を解決するための手段】本発明は、前記従来技術
の課題を解決する為になされたもので、本発明による光
アイソレータは、45度ファラデー回転子6と、その片側
に配置された検光子4よりなる光アイソレータ10におい
て、ファラデー回転子4を内包する金属よりなるケース
8に基準面Aを設け、検光子4側から入射されファラデ
ー回転子6を通過した光の偏光方向が、基準面Aと垂直
になるように調整して固定したものである。
The present invention has been made to solve the above-mentioned problems of the prior art. An optical isolator according to the present invention comprises a 45 degree Faraday rotator 6 and a detector arranged on one side thereof. In the optical isolator 10 composed of the photons 4, the reference plane A is provided in the case 8 made of metal that encloses the Faraday rotator 4, and the polarization direction of the light incident from the analyzer 4 side and passing through the Faraday rotator 6 is the reference plane. It is fixed so that it is perpendicular to A.

【0015】また、上記光アイソレータ10において、基
準面Aに対して垂直な軸方向を0度とした場合、検光子
側から入射されファラデー回転子を通過した光の偏光方
向が0度±1.8度以内、に調整して固定したものであ
る。
In the optical isolator 10, when the axial direction perpendicular to the reference plane A is set to 0 degree, the polarization direction of the light incident from the analyzer side and passing through the Faraday rotator is 0 degree ± 1.8 degree. It is adjusted and fixed within.

【0016】また、上記光アイソレータを、TEモード
のLD1と結合用レンズ2が設置され、LD1の出射光
の偏光方向と平行な台基板11上面に基準面Aを接触させ
て固定したものである。
Further, the optical isolator has a TE mode LD 1 and a coupling lens 2 installed, and is fixed by bringing a reference plane A into contact with the upper surface of a base substrate 11 parallel to the polarization direction of the emitted light of the LD 1. .

【0017】[0017]

【作用】本発明の光アイソレータ及びその製造方法にお
いては、上記のとおり構成したので、検光子側から入射
されファラデー回転子を通過した光の偏光方向を、基準
面Aに対して高精度で垂直とする0.5段型光アイソレー
タを製作提供できるので、この基準面Aと基板上面を密
着させて固定すれば、LDへの戻り光の偏光方向とLD
からの出射光の偏光方向を高精度で直交させることがで
き、LDの安定発振が可能となり、1段型の光アイソレ
ータと同程度の特性を偏光子が1枚少ない低コストの0.
5段型光アイソレータで提供できる。
In the optical isolator and the method of manufacturing the same according to the present invention, since it is configured as described above, the polarization direction of the light incident from the analyzer side and passing through the Faraday rotator is perpendicular to the reference plane A with high accuracy. Since it is possible to manufacture and provide a 0.5-stage type optical isolator, if the reference plane A and the upper surface of the substrate are closely attached and fixed, the polarization direction of the return light to the LD and the LD
The polarization direction of the light emitted from the can be made orthogonal to each other with high precision, stable oscillation of the LD is possible, and the same level of characteristics as the one-stage optical isolator, with one polarizer less one less cost.
It can be provided with a 5-stage optical isolator.

【0018】[0018]

【実施例】以下、本発明の実施例について、図面を参照
して説明する。図1は本発明の実施例を示す0.5段型光
アイソレータ説明する図である。図2は本発明の実施例
を示す光アイソレータの調整法を示す図である。図3,
図4は本発明の実施例を示す光アイソレータの特性を示
す検光子の調整角度とディテクター出力(逆方向の消光
比dB)を説明する図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram for explaining a 0.5-stage optical isolator showing an embodiment of the present invention. FIG. 2 is a diagram showing a method for adjusting an optical isolator showing an embodiment of the present invention. Figure 3,
FIG. 4 is a diagram for explaining the adjustment angle of the analyzer showing the characteristics of the optical isolator showing the embodiment of the present invention and the detector output (extinction ratio dB in the reverse direction).

【0019】本発明による光アイソレータは、LDへの
戻り光の偏光方向と、LDからの出射光の偏光方向と
を、精度良く直交するように工夫したものであり、TE
モードで発振するLDの場合は、戻り光の偏波方向をY
軸方向と精度良く平行にすることで達成できる。これに
より、LDへの戻り光の偏光成分のうち、LDからの出
射光と同方向の偏光成分比を最小にできるので、LD発
振の安定化が可能となる。
The optical isolator according to the present invention is devised so that the polarization direction of the light returning to the LD and the polarization direction of the light emitted from the LD are orthogonal to each other with high precision.
In the case of an LD that oscillates in the mode, the polarization direction of the return light is Y
This can be achieved by accurately paralleling the axial direction. This makes it possible to minimize the polarization component ratio in the same direction as the light emitted from the LD among the polarization components of the light returned to the LD, and thus it is possible to stabilize the LD oscillation.

【0020】通常のLDモジュールは、基板とよばれる
台上にLDモジュールや光アイソレータを乗せる構造に
なっている。図1で説明すると、LD1からの出射光の
偏光方向は、基板11の上面に平行であり、これは図のY
軸に対して直角な面である。
An ordinary LD module has a structure in which an LD module and an optical isolator are placed on a table called a substrate. Referring to FIG. 1, the polarization direction of the light emitted from the LD1 is parallel to the upper surface of the substrate 11, which is indicated by Y in the figure.
It is a plane perpendicular to the axis.

【0021】まず、ファラデー回転子6を内包する金属
ケース8等に基準面Aを設ける。次に、ファラデー回転
子6,マグネット5,金属ケース8,検光子4よりなる
0.5段型光アイソレータ10をLDモジュールに組み込む
とき、この基準面AがY軸と直角となるようにする。こ
うすると、基準面Aと基板11上面を接触させて光アイソ
レータ10と基板11を固定できるので、作業性がよくな
る。
First, the reference plane A is provided on the metal case 8 or the like which contains the Faraday rotator 6. Next, it consists of Faraday rotator 6, magnet 5, metal case 8 and analyzer 4.
When the 0.5-stage optical isolator 10 is incorporated in the LD module, the reference plane A is set to be perpendicular to the Y axis. In this case, the optical isolator 10 and the substrate 11 can be fixed by bringing the reference surface A and the upper surface of the substrate 11 into contact with each other, and workability is improved.

【0022】次に、図2に示すようなシステムで、基準
面Aに対して検光子4を調整し、0.5段型光アイソレー
タ10を完成させる。以下詳細に説明すると、偏光子3の
透過軸方向Cは、基準面Aと平行つまり図のX軸と平行
である。また、ファラデー回転は矢印F方向に45度とす
る。
Next, in the system as shown in FIG. 2, the analyzer 4 is adjusted with respect to the reference plane A to complete the 0.5-stage type optical isolator 10. Described in detail below, the transmission axis direction C of the polarizer 3 is parallel to the reference plane A, that is, the X axis in the drawing. The Faraday rotation is 45 degrees in the direction of arrow F.

【0023】ここで、調整用のビーム光は、2種類の偏
光状態、つまり、円偏光と直線偏光が使用可能である。
検光子4の回転調整角度は、その透過軸方向とY軸との
成す角度で表し、ファラデー回転方向をプラス方向とし
た。
Here, the adjusting beam light can use two kinds of polarization states, that is, circular polarization and linear polarization.
The rotation adjustment angle of the analyzer 4 is represented by the angle between the transmission axis direction and the Y axis, and the Faraday rotation direction is defined as the plus direction.

【0024】円偏光の場合、図2において検光子4を光
軸(Z軸)中心に回転し、フォトディテクター7の出力
が極小になったところでファラデー回転子6の部組と検
光子4を固定する。この時、ファラデー回転子6を出射
したビームの偏光方向は、Y軸と一致することは明かで
ある。
In the case of circularly polarized light, the analyzer 4 is rotated about the optical axis (Z axis) in FIG. 2, and when the output of the photodetector 7 becomes the minimum, the Faraday rotator 6 subassembly and the analyzer 4 are fixed. To do. At this time, it is apparent that the polarization direction of the beam emitted from the Faraday rotator 6 matches the Y axis.

【0025】図3は、検光子4の調整角度を横軸,フォ
トディテクター7の出力を縦軸として表したものである
が、図より-45度または135度で光量が極小となる。よっ
て、-45度または135度でファラデー回転子6の部組と検
光子4を固定すればよい。さらに、-45度±1.8度以内ま
たは135度±1.8度以内に固定すれば、簡単に逆方向挿入
損失30dB以上が達成される。
FIG. 3 shows the adjustment angle of the analyzer 4 on the horizontal axis and the output of the photodetector 7 on the vertical axis. From the figure, the light amount becomes minimum at -45 degrees or 135 degrees. Therefore, the subassembly of the Faraday rotator 6 and the analyzer 4 may be fixed at -45 degrees or 135 degrees. Furthermore, if it is fixed within -45 degrees ± 1.8 degrees or within 135 degrees ± 1.8 degrees, reverse insertion loss of 30 dB or more can be easily achieved.

【0026】直線偏光の場合、調整用ビーム光Lの偏光
方向はY軸から概ね-45度方向とする。検光子4を光軸
中心に回転すると、フォトディテクター7の出力が極小
となる位置は、1回転当たり4ヶ所出現する。このとき
の様子を図4に示す。この4ヶ所の極小値の内で、-45
度または135度の位置で、ファラデー回転子6の部組と
検光子4を固定すれば良い。このようにすると、ファラ
デー回転子6を出射したビーム光の偏光方向はY軸と一
致する。さらに、-45度±1.8度以内または135度±1.8度
以内に固定すれば、簡単に逆方向挿入損失30dB以上が達
成される。
In the case of linearly polarized light, the polarization direction of the adjusting beam light L is approximately -45 degrees from the Y axis. When the analyzer 4 is rotated about the optical axis, four positions where the output of the photodetector 7 is minimum appear per rotation. The state at this time is shown in FIG. -45 out of the four minimum values
The Faraday rotator 6 and the analyzer 4 may be fixed at a position of 135 degrees or 135 degrees. By doing so, the polarization direction of the light beam emitted from the Faraday rotator 6 coincides with the Y axis. Furthermore, if it is fixed within -45 degrees ± 1.8 degrees or within 135 degrees ± 1.8 degrees, reverse insertion loss of 30 dB or more can be easily achieved.

【0027】以上説明したとおり、図2の組立方法によ
れば、図3,図4で示されるように、検光子4の固定位
置での光量変化は急峻であるので、高い精度で容易に調
整でき、しかもファラデー回転子6の厚さのばらつきの
影響をうけない。
As described above, according to the assembling method of FIG. 2, as shown in FIGS. 3 and 4, the change in the light amount at the fixed position of the analyzer 4 is steep, and therefore the adjustment can be easily performed with high accuracy. It is possible and is not affected by the variation in the thickness of the Faraday rotator 6.

【0028】[0028]

【発明の効果】本発明の光アイソレータにおいては、上
記のとおり構成したので、基準面Aに対する検光子4の
角度調整がディテクター出力の光量変化が急峻な角度で
行うので、高い精度で容易に行うことができ、ファラデ
ー回転子を出射した光の偏光方向を基準面Aに対して高
精度で垂直とする0.5段型光アイソレータを製作提供で
きるので、この基準面Aと基板上面を密着させて固定す
れば、LDへの戻り光の偏光方向とLDからの出射光の
偏光方向を高精度で直交させることができ、LDの安定
発振が可能となり、1段型の光アイソレータと同程度の
特性を偏光子が1枚少ない低コストの0.5段型光アイソ
レータで提供できる。
Since the optical isolator of the present invention is configured as described above, the angle adjustment of the analyzer 4 with respect to the reference plane A is easily performed with high accuracy because the light output of the detector changes sharply. It is possible to manufacture and provide a 0.5-step type optical isolator that makes the polarization direction of the light emitted from the Faraday rotator perpendicular to the reference plane A with high accuracy. By doing so, the polarization direction of the return light to the LD and the polarization direction of the light emitted from the LD can be orthogonalized with high accuracy, stable oscillation of the LD becomes possible, and the characteristics similar to those of the one-stage type optical isolator can be obtained. It can be provided by a low-cost 0.5-stage optical isolator with one polarizer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す0.5段型光アイソレータ
説明する図。
FIG. 1 is a diagram illustrating a 0.5-stage optical isolator showing an embodiment of the present invention.

【図2】本発明の実施例を示す光アイソレータの調整法
を示す図。
FIG. 2 is a diagram showing a method of adjusting an optical isolator showing an embodiment of the present invention.

【図3】本発明の実施例を示す光アイソレータの特性を
示す検光子の調整角度とディテクター出力(逆方向の消
光比dB)を説明する図。
FIG. 3 is a diagram for explaining an adjustment angle of an analyzer and a detector output (extinction ratio in the reverse direction dB) showing characteristics of an optical isolator showing an embodiment of the present invention.

【図4】本発明の実施例を示す光アイソレータの特性を
示す検光子の調整角度とディテクター出力(逆方向の消
光比dB)を説明する図。
FIG. 4 is a diagram for explaining an adjustment angle of an analyzer and a detector output (extinction ratio in the reverse direction dB) showing characteristics of an optical isolator showing an embodiment of the present invention.

【図5】従来の光アイソレータを示す図。FIG. 5 is a diagram showing a conventional optical isolator.

【図6】従来の0.5段型光アイソレータを示す図。FIG. 6 is a diagram showing a conventional 0.5-stage type optical isolator.

【図7】従来の0.5段型光アイソレータの特性を示すア
イソレータの自転角度とアイソレータからの出射光量
(順方向の損失dB)を説明する図。
FIG. 7 is a diagram for explaining the rotation angle of an isolator showing the characteristics of a conventional 0.5-stage optical isolator and the amount of light emitted from the isolator (forward loss dB).

【図8】従来の0.5段型光アイソレータの特性を示すア
イソレータの自転角度とアイソレータからの出射光量
(順方向の損失dB)を説明する図。
FIG. 8 is a diagram for explaining the rotation angle of an isolator showing the characteristics of a conventional 0.5-stage optical isolator and the amount of light emitted from the isolator (forward loss dB).

【図9】従来の0.5段型光アイソレータの特性を示す戻
り光の偏光角度(Y軸基準)と戻り光量のX軸成分(逆
方向の消光比dB)を説明する図。
FIG. 9 is a diagram for explaining the polarization angle of return light (Y-axis reference) and the X-axis component (reverse extinction ratio dB) of the amount of return light showing the characteristics of the conventional 0.5-stage type optical isolator.

【符号の説明】[Explanation of symbols]

1 LD 2 結合用レンズ 3 偏光子 4 検光子 5 マグネット 6 ファラデー回転子 7 フォトディテクター 8 金属ケース 10 0.5段型光アイソレータ 11 基板 A 基準面 1 LD 2 Coupling lens 3 Polarizer 4 Analyzer 5 Magnet 6 Faraday rotator 7 Photodetector 8 Metal case 10 0.5 step optical isolator 11 Substrate A Reference plane

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 45度ファラデー回転子と、その片側に配
置された検光子よりなる光アイソレータにおいて、ファ
ラデー回転子を内包する樹脂または金属よりなるケース
に基準面を設け、検光子側から入射されファラデー回転
子を通過した光の偏光方向が、該基準面と垂直となるよ
うに調整して固定したことを特徴とする光アイソレー
タ。
1. An optical isolator comprising a 45 ° Faraday rotator and an analyzer arranged on one side of the Faraday rotator, wherein a reference surface is provided in a case made of resin or metal enclosing the Faraday rotator, and the light is incident from the analyzer side. An optical isolator, which is adjusted and fixed so that the polarization direction of light passing through a Faraday rotator is perpendicular to the reference plane.
【請求項2】 請求項1記載の光アイソレータにおい
て、該基準面に対して垂直な軸方向を0度とした場合、
検光子側から入射されファラデー回転子を通過した光の
偏光方向が0度±1.8度以内、に調整して固定したこと
を特徴とする光アイソレータ。
2. The optical isolator according to claim 1, wherein an axial direction perpendicular to the reference plane is 0 degree,
An optical isolator characterized in that the polarization direction of the light incident from the analyzer side and passing through the Faraday rotator is adjusted and fixed within 0 ° ± 1.8 °.
【請求項3】 請求項1または2記載の光アイソレータ
を、TEモードのLDと結合用レンズが設置され該LD
の出射光の偏光方向と平行な台基板上面に、該基準面を
接触させて固定したことを特徴とする光アイソレータの
製造方法。
3. The optical isolator according to claim 1, wherein a TE mode LD and a coupling lens are installed.
A method for manufacturing an optical isolator, characterized in that the reference plane is brought into contact with and fixed to the upper surface of the base substrate parallel to the polarization direction of the outgoing light.
JP32136094A 1994-11-30 1994-11-30 Optical isolator and its production Pending JPH08160359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32136094A JPH08160359A (en) 1994-11-30 1994-11-30 Optical isolator and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32136094A JPH08160359A (en) 1994-11-30 1994-11-30 Optical isolator and its production

Publications (1)

Publication Number Publication Date
JPH08160359A true JPH08160359A (en) 1996-06-21

Family

ID=18131707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32136094A Pending JPH08160359A (en) 1994-11-30 1994-11-30 Optical isolator and its production

Country Status (1)

Country Link
JP (1) JPH08160359A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074117A1 (en) * 2009-12-18 2011-06-23 三菱電機株式会社 Optical module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074117A1 (en) * 2009-12-18 2011-06-23 三菱電機株式会社 Optical module
JP5318226B2 (en) * 2009-12-18 2013-10-16 三菱電機株式会社 Optical module
KR101386325B1 (en) * 2009-12-18 2014-04-17 미쓰비시덴키 가부시키가이샤 Optical module
US8915602B2 (en) 2009-12-18 2014-12-23 Mitsubishi Electric Corporation Optical module
CN102656502B (en) * 2009-12-18 2015-02-04 三菱电机株式会社 Optical module

Similar Documents

Publication Publication Date Title
US5692082A (en) Laser diode module and depolarizer
KR100287596B1 (en) Photo Isolator
JPH02136819A (en) Method for adjusting rotating directional position of optical isolator in optical isolator incorporating type semiconductor laser module
JP2000510965A (en) Opto-isolator
US5471306A (en) Method for assembling optical isolator and method for measuring isolation
JPH08160359A (en) Optical isolator and its production
CA2355159A1 (en) Optical module
JP2989979B2 (en) Optical isolator
JPH03282413A (en) Optical isolator
JP2001013379A (en) Optical module
JPH1172635A (en) Optical device and its production
JP2001044553A (en) Fiber stub optical device and optical module using the same
JPH10221014A (en) Optical wave guide path displacement sensor
JPS6257012B2 (en)
JP2004093153A (en) Optical loss measuring method for optical fiber pigtail with optical isolator
US20030002128A1 (en) Optical isolator
JP4812342B2 (en) Optical connector
JPH0990247A (en) Narrow-band optical filter module
JPH09211239A (en) Polarization maintaining fiber and polarization maintaining fiber semiconductor laser module
JP2008003189A (en) Optical fiber integrated optical isolator
JP2832839B2 (en) Optical isolator
JP4227558B2 (en) Inline type optical component and method for manufacturing the same
JPH0544811Y2 (en)
JPH0225241Y2 (en)
JP2004061996A (en) Polarization-preserving optical fiber pigtail with optical isolator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041217