JPH08159903A - Differential-pressure detector for conductive fluid - Google Patents

Differential-pressure detector for conductive fluid

Info

Publication number
JPH08159903A
JPH08159903A JP29972494A JP29972494A JPH08159903A JP H08159903 A JPH08159903 A JP H08159903A JP 29972494 A JP29972494 A JP 29972494A JP 29972494 A JP29972494 A JP 29972494A JP H08159903 A JPH08159903 A JP H08159903A
Authority
JP
Japan
Prior art keywords
pressure
differential pressure
diaphragm
detector
conductive fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29972494A
Other languages
Japanese (ja)
Inventor
Hiroji Suyama
博治 須山
Atsuhiko Hattori
篤彦 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP29972494A priority Critical patent/JPH08159903A/en
Publication of JPH08159903A publication Critical patent/JPH08159903A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a differential-pressure detector in which a zero point is not drifted and which comprises a metal diaphragm used to detect the differential-pressure of a conductive fluid by forming an electrically insulating substance layer on the pressure-receiving face of the metal diaphragm for differential-pressure detection. CONSTITUTION: Electrically insulating substance layers 10, 10a are applied on sides of pressure-receiving faces of diaphragms 7, 7a. When the electrically insulating substance layers 10, 10a are formed on the pressure-receiving faces of the diaphragms 7, 7a, a galvanic cell is not constituted, a corrosive action is not generated on surfaces of the diaphragms 7, 7a, and hydrogen does not permeate. Then, a fluid pressure which is applied to the high-pressure side and to the low-pressure side is applied to both sides of the pressure-sensitive diaphragm of a pressure sensor 9. The pressure-sensitive diaphragm is displaced in proportion to the differential pressure, between the high-pressure side and the low-pressure side, which is applied to both sides, its displacement is output as a differential-pressure signal in such a way that a change in a capacitance generated across two fixed electrodes opposed on both sides is converted and amplified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種プロセス流体の差
圧・圧力等を計測する際に用いられる差圧検出器であっ
て、詳しくは、導電性流体の差圧・圧力を金属製のダイ
ヤフラム等の膜を用いて検出する方式の差圧検出器(伝
送器)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential pressure detector used when measuring the differential pressure / pressure of various process fluids. More specifically, the differential pressure / pressure of a conductive fluid is made of metal. The present invention relates to a differential pressure detector (transmitter) that uses a membrane such as a diaphragm for detection.

【0002】[0002]

【従来の技術】従来の差圧検出器であって、海水等の導
電性流体を用いるプロセス用の差圧検出器(伝送器)の
例を図20に示す。1は海水等の導電性流体ライン、2
は高圧側検出端、2aは低圧側検出端、3、3aは炭素
鋼系材料等で作られた導圧管、4、4aは継手、5は継
手4、4aを用いて導圧管3、3aに結ばれた検出器で
あって、この検出器5はカバーフランジ6、6a内にス
テンレス系の材料で作られたダイヤフラム7、7aを組
み込み、このダイヤフラム7、7a間に封入液(シリコ
ン油)8、8aを介して圧力センサー9を組み込み、導
電性流体の圧力は導圧管3、3aを経由して直接ダイヤ
フラム7、7aの受圧面に夫々かかる構成である。
FIG. 20 shows an example of a conventional differential pressure detector, which is a differential pressure detector (transmitter) for a process using a conductive fluid such as seawater. 1 is a conductive fluid line such as seawater, 2
Is a high pressure side detection end, 2a is a low pressure side detection end, 3 and 3a are pressure guiding pipes made of carbon steel material, 4 and 4a are joints, 5 are joints 4 and 4a, and are used as pressure guiding pipes 3 and 3a. This detector 5 is a detector connected to the cover flanges 6 and 6a. The diaphragms 7 and 7a made of a stainless steel material are incorporated in the cover flanges 6 and 6a, and a filling liquid (silicon oil) 8 is placed between the diaphragms 7 and 7a. , 8a, and the pressure of the conductive fluid is directly applied to the pressure receiving surfaces of the diaphragms 7 and 7a via the pressure guiding tubes 3 and 3a.

【0003】[0003]

【発明が解決しようとする課題】上記構成の差圧検出器
の場合、稼働初期においては問題を発生しないが、経時
的にゼロ点がドリフトするという問題がある。この原因
は、導電性流体である例えば海水(電解質)中における
異種金属間に形成されるガルバニック電池腐食作用(電
気化学反応)によって、ダイヤフラム7、7aを経由し
てダイヤフラム7、7a内に水素が透過し、この水素が
封入液8、8a中に混入して体積変化を起こし、ダイヤ
フラム7、7aが膨らむためである。この水素透過のメ
カニズムを次に説明する。
In the differential pressure detector having the above construction, no problem occurs in the initial stage of operation, but there is a problem that the zero point drifts with time. This is because hydrogen is introduced into the diaphragms 7 and 7a via the diaphragms 7 and 7a by a galvanic cell corrosion action (electrochemical reaction) formed between different metals in a conductive fluid such as seawater (electrolyte). This is because the hydrogen permeates and mixes with the filled liquids 8 and 8a to cause a volume change, and the diaphragms 7 and 7a swell. The mechanism of this hydrogen permeation will be described below.

【0004】海水中に含まれる水分によって、水素イオ
ンが生成される。この水素イオンの生成式を数1に示
す。
Hydrogen ions are produced by the water contained in seawater. The formula for generating this hydrogen ion is shown in Equation 1.

【数1】 [Equation 1]

【0005】ダイヤフラム自身、または周囲の金属が腐
食し、数2のように海水中に溶けだし、電子を放出す
る。同時に、この電子を水素イオンが数3に従って受け
取り、金属材料の表面に原子状水素として吸着する。特
に、ダイヤフラムにステンレス等の高耐食材を使用し、
カバーフランジや導圧管に軟鋼等の耐食性が劣る材料を
使用した場合、ガルバニック電池(Galvanic corrosio
n)が発生し、ダイヤフラム側がカソード、カバーフラ
ンジや導圧管側がアノードとなり、ダイヤフラム表面に
おいて、数3の反応が傾斜的に起こる。
The diaphragm itself or the surrounding metal is corroded and melts into seawater as shown by the equation 2, and emits electrons. At the same time, the hydrogen ions receive the electrons according to Equation 3 and adsorb as atomic hydrogen on the surface of the metal material. Especially, the diaphragm is made of high-resistant materials such as stainless steel,
If a material with poor corrosion resistance such as mild steel is used for the cover flange and pressure guiding tube, the galvanic battery (Galvanic corrosio
n) occurs, the diaphragm side becomes the cathode, the cover flange and the pressure guiding tube side become the anode, and the reaction of several 3 occurs in an inclined manner on the surface of the diaphragm.

【数2】 [Equation 2]

【数3】 (Equation 3)

【0006】この吸着水素原子の大部分は、数4または
数5に従い、分子状の水素ガスとなる。
Most of the adsorbed hydrogen atoms become molecular hydrogen gas according to the equation (4) or (5).

【数4】 [Equation 4]

【数5】 (Equation 5)

【0007】吸着水素原子の一部は、原子状水素のまま
ダイヤフラム中を吸着→溶解→拡散→透過し、ダイヤフ
ラムの内部(封入液)に到達した後、水素ガスとなっ
て、溜る。上記の現象(水素ガスの発生)は海水以外の
導電性流体を検出するダイヤフラムにおいても発生す
る。したがって、差圧検出器においてゼロ点がドリフト
するのを防止するためには、ガルバニック電池が発生し
ない構造とすることが必要である。
Some of the adsorbed hydrogen atoms are adsorbed → dissolved → diffused → permeated through the diaphragm as atomic hydrogen, reach the inside of the diaphragm (filled liquid), and then become hydrogen gas and accumulate. The above phenomenon (generation of hydrogen gas) also occurs in the diaphragm that detects a conductive fluid other than seawater. Therefore, in order to prevent the zero point from drifting in the differential pressure detector, it is necessary to have a structure in which no galvanic battery is generated.

【0008】本発明の目的は、ゼロ点がドリフトしない
導電性流体の差圧を検出するための金属製ダイヤフラム
を有する差圧検出器を提案することである。
It is an object of the present invention to propose a differential pressure detector having a metal diaphragm for detecting the differential pressure of a conductive fluid in which the zero point does not drift.

【0009】[0009]

【課題を解決するための手段】本発明に係る導電性流体
の差圧検出器の構成は次のとおりである。 1.差圧検出用金属製ダイヤフラムの受圧面に、電気的
絶縁物質層を形成して成る導電性流体の差圧検出器。 2.差圧検出用金属製ダイヤフラムの受圧面側カバーケ
ーシング内に、非電解質シール液を充填し、差圧をこの
シール液を仲介してダイヤフラム面に伝達するように構
成して成る導電性流体の差圧検出器。 3.差圧検出用導圧管と検出器を接続する部分に電気的
絶縁物質で造られた継手等の接続機構を介在させて成る
導電性流体の差圧検出器。 4.差圧検出用金属製ダイヤフラムの受圧面に、前記ダ
イヤフラムより貴な金属層を形成して成る導電性流体の
差圧検出器。 5.カバーフランジ等差圧検出用金属製ダイヤフラム近
傍の内面に、ダイヤフラムより貴な金属層を形成して成
る導電性流体の差圧検出器。 6.差圧検出用導圧管の全部又は一部に、ダイヤフラム
と同一の金属材料を用いて成る導電性流体の差圧検出
器。 7.前記1又は2又は3又は4又は5又は6において、
差圧検出器がリモートシール方式であるところの導電性
流体の差圧検出器。 8.前記1又は2又は3又は4又は5又は6において、
差圧検出器がフランジ直付け方式から成る導電性流体の
差圧検出器。
The structure of the differential pressure detector for the conductive fluid according to the present invention is as follows. 1. A differential pressure detector for a conductive fluid, in which an electrically insulating material layer is formed on the pressure receiving surface of a metal diaphragm for detecting a differential pressure. 2. The non-electrolyte sealing liquid is filled in the pressure receiving surface side cover casing of the metal diaphragm for detecting the differential pressure, and the differential pressure is transmitted to the diaphragm surface via this sealing liquid. Pressure detector. 3. A differential pressure detector for a conductive fluid, wherein a connecting mechanism such as a joint made of an electrically insulating material is interposed in a portion connecting the differential pressure detecting pressure guiding tube and the detector. 4. A differential pressure detector for a conductive fluid, which is formed by forming a metal layer, which is nobler than the diaphragm, on a pressure receiving surface of a metal diaphragm for detecting a differential pressure. 5. A differential pressure detector for conductive fluid, which is formed by forming a metal layer, which is more precious than the diaphragm, on the inner surface near the metal diaphragm for detecting the differential pressure such as a cover flange. 6. A differential pressure detector for a conductive fluid, in which the same metal material as the diaphragm is used for all or part of the differential pressure detecting pressure guiding tube. 7. In the above 1 or 2 or 3 or 4 or 5 or 6,
A differential pressure detector for conductive fluid where the differential pressure detector is a remote seal type. 8. In the above 1 or 2 or 3 or 4 or 5 or 6,
Differential pressure detector for conductive fluid, which is a direct flange type.

【0010】[0010]

【作用】高圧及び低圧側に加えられる流体圧は封入液を
介して圧力センサーの感圧ダイヤフラム(可動電極)の
両側に加えられる。感圧ダイヤフラムは、両側に加えら
れる高圧側と低圧側との差圧に比例して変位し、この変
位を例えば、両側に対向している2つの固定電極との間
に生じた静電容量の変化を、電気回路によって変換・増
幅するなどして、4〜20mADCの電流信号などに変
換して、差圧信号として出力するものである。この差圧
検出時に、前記1、2、3に記載の発明は、ガルバニッ
ク電池を形成しないために水素ガスの発生がなく、4に
記載の発明は、電子をダイヤフラムまで移動させない。
又、5に記載の発明は、吸着水素原子の発生を抑制する
ことにより、又、6に記載の発明は、ダイヤフラムの表
面において吸着水素原子を化学的に吸着させないという
作用で、水素のダイヤフラム透過を防止する。
The fluid pressure applied to the high pressure side and the low pressure side is applied to both sides of the pressure sensitive diaphragm (movable electrode) of the pressure sensor through the filled liquid. The pressure-sensitive diaphragm is displaced in proportion to the pressure difference between the high pressure side and the low pressure side applied to both sides, and this displacement is caused by, for example, the capacitance generated between the two fixed electrodes facing each other on both sides. The change is converted / amplified by an electric circuit to be converted into a current signal of 4 to 20 mA DC and output as a differential pressure signal. When detecting the differential pressure, the inventions described in 1, 2, and 3 above do not generate a hydrogen gas because a galvanic battery is not formed, and the invention described in 4 does not move electrons to the diaphragm.
Further, the invention described in 5 is by suppressing generation of adsorbed hydrogen atoms, and the invention described in 6 is by the action of not chemically adsorbing adsorbed hydrogen atoms on the surface of the diaphragm. Prevent.

【0011】[0011]

【実施例】【Example】

実施例1(図1) この実施例は、請求項1に記載の発明に対応するもので
あって、1は海水ライン、2は高圧側検出端、2aは低
圧側検出端、3、3aは導圧管、4、4aは継手、5は
継手4、4aを用いて導圧管3、3aに結ばれた差圧検
出器である。6、6aは検出器5を構成するカバーフラ
ンジ、7、7aはSUS316製のダイヤフラム、8、
8aはシリコン油を用いた封入液、9は圧力センサーで
ある。10、10aはダイヤフラム7、7aの受圧面側
にコーティングした電気的絶縁物質層であって、実施例
の場合、セラミックである。なお、セラミック以外に、
同等の性質を有する物質を用いることができる。実施例
の場合、コーティングにより電気的絶縁物質層10、1
0aを形成しているが、吹きつけ、蒸着、張り合わせ法
等により電気的絶縁物質層10、10aを形成してもよ
く、この層10、10aの形成手段は、本発明において
は限定されない。上記のように、ダイヤフラム7、7a
の受圧面に電気的絶縁物質層10、10aを形成した場
合、ガルバニック電池を構成しないため、ダイヤフラム
7、7aの表面において腐食作用つまり電気化学反応が
発生せず、水素の透過はない。
Embodiment 1 (FIG. 1) This embodiment corresponds to the invention described in claim 1, 1 is a seawater line, 2 is a high-pressure side detection end, 2a is a low-pressure side detection end, and 3 and 3a are The pressure guiding tubes 4, 4a are joints, and 5 is a differential pressure detector connected to the pressure guiding tubes 3, 3a using the joints 4, 4a. 6, 6a are cover flanges that constitute the detector 5, 7 and 7a are SUS316 diaphragms, 8,
Reference numeral 8a is a fill liquid using silicone oil, and 9 is a pressure sensor. Reference numerals 10 and 10a denote electrically insulating material layers coated on the pressure receiving surfaces of the diaphragms 7 and 7a, which are ceramics in the embodiment. In addition to ceramics,
Materials having equivalent properties can be used. In the case of the embodiment, the electrically insulating material layers 10 and 1 are formed by coating.
Although 0a is formed, the electrically insulating material layers 10 and 10a may be formed by a spraying method, a vapor deposition method, a laminating method or the like, and the formation means of the layers 10 and 10a is not limited in the present invention. As described above, the diaphragm 7, 7a
When the electrically insulating substance layers 10 and 10a are formed on the pressure receiving surface, the galvanic battery is not formed, and therefore, the corrosive action, that is, the electrochemical reaction does not occur on the surfaces of the diaphragms 7 and 7a, and hydrogen is not permeated.

【0012】実施例2(図2) この実施例は、請求項2に記載の発明に対応するもので
あって、符号の1〜9は実施例1と同一構造を示してい
るので、その説明は省略する。11、11aは検出器5
内に封入された電気的絶縁物質である非電解質シール液
であって、このシール液11、11aの作用により、検
出器5内には導電性流体である海水が入り込まないの
で、検出器5内においては金属の腐食による電子の放出
がなく、よって、ダイヤフラム7、7aを透過する水素
の発生もない。
Embodiment 2 (FIG. 2) This embodiment corresponds to the invention described in claim 2, and the reference numerals 1 to 9 indicate the same structure as that of the embodiment 1, so that the description thereof will be omitted. Is omitted. 11 and 11a are detectors 5
It is a non-electrolyte sealing liquid which is an electrically insulating substance sealed inside, and the seawater which is a conductive fluid does not enter the inside of the detector 5 due to the action of these sealing liquids 11 and 11a. In this case, no electrons are emitted due to the corrosion of the metal, and therefore, hydrogen that permeates the diaphragms 7 and 7a is not generated.

【0013】実施例3(図3) この実施例は、請求項3に記載の発明に対応するもので
あって、符号の1〜9は実施例1と同一構造を示してい
るので、その説明は省略する。但し、継手4、4aには
テフロン等を用いた電気的絶縁物質継手が用いられてお
り、この絶縁継手4、4aの作用により、導圧管3、3
a側と検出器5側との絶縁を図り、これによりガルバニ
ック電池の発生を阻止する。
Embodiment 3 (FIG. 3) This embodiment corresponds to the invention described in claim 3, and the reference numerals 1 to 9 indicate the same structure as that of the embodiment 1, so that the description thereof will be omitted. Is omitted. However, an electrically insulating material joint using Teflon or the like is used for the joints 4 and 4a.
The a side and the detector 5 side are insulated from each other to prevent generation of galvanic cells.

【0014】実施例4(図4) この実施例は、請求項4に記載の発明に対応するもので
あって、符号の1〜9は実施例1と同一構造を示してい
るので、その説明は省略する。14、14aはダイヤフ
ラム7、7aの受圧面に形成したダイヤフラム7、7a
の材料であるSUS316より貴な金属層であって、こ
の金属層14、14aにより、ダイヤフラム7、7aに
水素原子を吸着させず、この結果、水素のダイヤフラム
7、7a内への透過を夫々防ぐものである。
Embodiment 4 (FIG. 4) This embodiment corresponds to the invention described in claim 4, and the reference numerals 1 to 9 indicate the same structure as that of the embodiment 1, so that the description thereof will be omitted. Is omitted. Reference numerals 14 and 14a are diaphragms 7 and 7a formed on the pressure receiving surfaces of the diaphragms 7 and 7a.
Which is a noble metal layer than SUS316, which is a material of the above, does not adsorb hydrogen atoms to the diaphragms 7 and 7a by the metal layers 14 and 14a, and as a result, prevents permeation of hydrogen into the diaphragms 7 and 7a, respectively. It is a thing.

【0015】実施例5(図5) この実施例は、請求項5に記載の発明に対応するもので
あって、符号の1〜9は実施例1と同一構造を示してい
るので、その説明は省略する。13、13aはダイヤフ
ラム7、7aの受圧面と対向するカバーフランジ6、6
a側の面にダイヤフラム7、7aより貴な金属(SUS
316より貴な金属)例えば金をコーティング又は張り
合わせ又は塗布又は蒸着することにより形成した金属層
であって、この貴な金属層13、13aの作用により、
ダイヤフラム7、7a間において夫々ガルバニック電池
の発生を阻止する。
Embodiment 5 (FIG. 5) This embodiment corresponds to the invention described in claim 5, and the reference numerals 1 to 9 indicate the same structure as that of the embodiment 1, so that the description thereof will be omitted. Is omitted. 13, 13a are cover flanges 6, 6 facing the pressure receiving surface of the diaphragm 7, 7a.
Noble metal (SUS) than the diaphragms 7 and 7a on the a-side surface
A metal more precious than 316), for example, a metal layer formed by coating or laminating or applying or vapor depositing gold, and by the action of the noble metal layers 13 and 13a,
The generation of galvanic cells is prevented between the diaphragms 7 and 7a, respectively.

【0016】実施例6(図6) この実施例は、請求項6に記載の発明に対応するもので
あって、符号の1〜9は実施例1と同一構造を示してい
るので、その説明は省略する。但し、導圧管3、3aと
継手4、4aは、ダイヤフラム7、7aと同一材質であ
るSUS316を使用しており、これにより、ガルバニ
ック電池の発生を阻止している。
Embodiment 6 (FIG. 6) This embodiment corresponds to the invention described in claim 6, and the reference numerals 1 to 9 indicate the same structure as that of the embodiment 1, so that the description thereof will be omitted. Is omitted. However, the pressure guiding tubes 3 and 3a and the joints 4 and 4a use SUS316 which is the same material as the diaphragms 7 and 7a, thereby preventing generation of galvanic cells.

【0017】実施例7(図7、図8) この実施例は請求項7に記載の発明に対応したリモート
シール方式の差圧検出器の実施例であって、差圧導管1
5、15a内には実施例2において説明したと同様の非
電解質シール液11、11aが封入してあり、タンク1
7の圧力検出口17aに取り付けたフランジ18内にダ
イヤフラム7、7aが組み込まれており、このダイヤフ
ラム7、7aの受圧面には実施例1と同様に電気的絶縁
物質10、10aがコーティングされている。
Embodiment 7 (FIGS. 7 and 8) This embodiment is an embodiment of a remote seal type differential pressure detector corresponding to the invention described in claim 7, and is a differential pressure conduit 1
Non-electrolyte sealing liquids 11 and 11a similar to those described in the second embodiment are sealed in the tanks 5 and 15a, and the tank 1
The diaphragms 7 and 7a are incorporated in the flange 18 attached to the pressure detecting port 17a of No. 7, and the pressure receiving surfaces of the diaphragms 7 and 7a are coated with the electrically insulating substances 10 and 10a as in the first embodiment. There is.

【0018】図9はリモートシール方式において、封入
液8、8aと導電性流体間に非電解質シール液11、1
1a間に装入すると共に、この間にダイヤフラム7、7
aを装入した実施例、図10は圧力検出部に電気絶縁フ
ランジ19を用いた実施例、図11は電気絶縁パッキン
20(或いはガスケット、継手)と電気絶縁ボルト21
を用いた実施例、図12は検出部にダイヤフラムより貴
な金属のパッキン22(或いはガスケット、継手)を使
用した実施例、図13はダイヤフラムより貴な金属のフ
ランジ23を用いた実施例、図14は電気的な絶縁物に
よるダイヤフラムカバー24を用いた実施例、図15は
ノズル25にダイヤフラムと同材質のものを利用した実
施例、図16はフランジ26にダイヤフラムと同材質の
ものを使用した実施例、図17はダイヤフラム7の表面
にダイヤフラムよりも貴な金属27をメッキした実施例
である。なお、上記実施例は、高圧側のみを説明してい
るが、低圧側においても夫々同一の構造がとられること
は勿論である。
FIG. 9 shows the non-electrolyte sealing liquids 11 and 1 between the filled liquids 8 and 8a and the conductive fluid in the remote seal system.
1a and the diaphragm 7,7
FIG. 10 shows an embodiment in which an electric insulating flange 19 is used for the pressure detecting portion, and FIG. 11 shows an electric insulating packing 20 (or gasket, joint) and an electric insulating bolt 21.
12 is an example in which a packing 22 (or a gasket, a joint) made of a metal nobler than the diaphragm is used in the detection part, and FIG. 13 is an example in which a flange 23 made of a metal nobler than the diaphragm is used. 14 is an embodiment in which a diaphragm cover 24 made of an electrically insulating material is used, FIG. 15 is an embodiment in which the nozzle 25 is made of the same material as the diaphragm, and FIG. 16 is used in the flange 26 is made of the same material as the diaphragm. 17 shows an embodiment in which the surface of the diaphragm 7 is plated with a metal 27 which is more precious than the diaphragm. Although the above embodiment describes only the high voltage side, it goes without saying that the same structure can be taken on the low voltage side.

【0019】図18は、リモートシール方式に対して、
圧力検出部を、フランジ直付け方式に変更した実施例で
あって、この直付け方式も、図8及び図10〜図17に
示したリモートシール方式のガルバニック化防止手段を
利用することができる。例えば、図19は直付けフラン
ジ間に電気絶縁フランジ19を使用した例である。
FIG. 18 shows a remote seal method.
This is an embodiment in which the pressure detection unit is changed to the flange direct mounting method, and this direct mounting method can also utilize the galvanic prevention means of the remote seal method shown in FIGS. 8 and 10 to 17. For example, FIG. 19 shows an example in which an electrically insulating flange 19 is used between the direct mounting flanges.

【0020】[0020]

【発明の効果】本発明は以上のように、導電性流体の差
圧・圧力等を検出する検出器において、ガルバニック電
池腐食作用の発生を防止してダイヤフラム内に水素が透
過すること、或いは水素の発生自体を防止することによ
り、ゼロ点がドリフトするのを防止した。この結果、海
水を含む導電性流体の差圧検出器において、長期に亙り
差圧や圧力を正確に検出することができると共に、ゼロ
点補正の繁雑さがなくなる。なお、本発明は、差圧検出
器以外に、導電性流体をダイヤフラムによりシール又は
区画する場合のダイヤフラムを透過する水素の発生防止
にも適用できる。
As described above, according to the present invention, in the detector for detecting the differential pressure, pressure, etc. of the conductive fluid, hydrogen permeation in the diaphragm is prevented by preventing occurrence of galvanic cell corrosion action, or hydrogen. By preventing the occurrence itself of, the zero point was prevented from drifting. As a result, the differential pressure detector for the conductive fluid containing seawater can accurately detect the differential pressure and the pressure for a long period of time, and the complexity of zero point correction is eliminated. In addition to the differential pressure detector, the present invention can be applied to prevention of generation of hydrogen that permeates the diaphragm when the conductive fluid is sealed or partitioned by the diaphragm.

【図面の簡単な説明】[Brief description of drawings]

【図1】ダイヤフラムの表面に電気的絶縁物質をコーテ
ィングした実施例の説明図。
FIG. 1 is an explanatory view of an embodiment in which the surface of a diaphragm is coated with an electrically insulating material.

【図2】非電解質シール液を充填した実施例の説明図。FIG. 2 is an explanatory diagram of an example in which a non-electrolyte sealing liquid is filled.

【図3】電気的絶縁物質継手を用いて導圧管と差圧検出
器を結んだ実施例の説明図。
FIG. 3 is an explanatory diagram of an embodiment in which a pressure guiding tube and a differential pressure detector are connected by using an electrically insulating material joint.

【図4】ダイヤフラムの受圧面にダイヤフラムより貴な
金属層を施した実施例の説明図。
FIG. 4 is an explanatory view of an embodiment in which a pressure receiving surface of the diaphragm is provided with a metal layer which is more precious than the diaphragm.

【図5】ダイヤフラムと対向するカバーケーシング面に
ダイヤフラムより貴な金属層を形成した実施例の説明
図。
FIG. 5 is an explanatory diagram of an embodiment in which a metal layer that is more precious than the diaphragm is formed on the surface of the cover casing that faces the diaphragm.

【図6】導圧管及び継手をダイヤフラムと同一金属とし
た実施例の説明図。
FIG. 6 is an explanatory view of an embodiment in which the pressure guiding tube and the joint are made of the same metal as the diaphragm.

【図7】リモートシール方式の検出器に本発明を実施し
た実施例の説明図。
FIG. 7 is an explanatory diagram of an embodiment in which the present invention is applied to a remote seal type detector.

【図8】リモートシール方式の検出器に本発明を実施し
た実施例の説明図。
FIG. 8 is an explanatory diagram of an embodiment in which the present invention is applied to a remote seal type detector.

【図9】リモートシール方式の検出器に本発明を実施し
た実施例の説明図。
FIG. 9 is an explanatory diagram of an embodiment in which the present invention is applied to a remote seal type detector.

【図10】リモートシール方式の検出器に本発明を実施
した実施例の説明図。
FIG. 10 is an explanatory diagram of an embodiment in which the present invention is applied to a remote seal type detector.

【図11】リモートシール方式の検出器に本発明を実施
した実施例の説明図。
FIG. 11 is an explanatory diagram of an embodiment in which the present invention is applied to a remote seal type detector.

【図12】リモートシール方式の検出器に本発明を実施
した実施例の説明図。
FIG. 12 is an explanatory diagram of an embodiment in which the present invention is applied to a remote seal type detector.

【図13】リモートシール方式の検出器に本発明を実施
した実施例の説明図。
FIG. 13 is an explanatory diagram of an embodiment in which the present invention is applied to a remote seal type detector.

【図14】リモートシール方式の検出器に本発明を実施
した実施例の説明図。
FIG. 14 is an explanatory diagram of an embodiment in which the present invention is applied to a remote seal type detector.

【図15】リモートシール方式の検出器に本発明を実施
した実施例の説明図。
FIG. 15 is an explanatory diagram of an embodiment in which the present invention is applied to a remote seal type detector.

【図16】リモートシール方式の検出器に本発明を実施
した実施例の説明図。
FIG. 16 is an explanatory diagram of an embodiment in which the present invention is applied to a remote seal type detector.

【図17】リモートシール方式の検出器に本発明を実施
した実施例の説明図。
FIG. 17 is an explanatory diagram of an embodiment in which the present invention is applied to a remote seal type detector.

【図18】フランジ直付け方式の検出器に本発明を実施
した実施例の説明図。
FIG. 18 is an explanatory diagram of an embodiment in which the present invention is applied to a flange direct-attaching type detector.

【図19】フランジ直付け方式の検出器に本発明を実施
した実施例の説明図。
FIG. 19 is an explanatory diagram of an embodiment in which the present invention is applied to a detector of a flange direct mounting type.

【図20】従来の海水ラインの差圧検出に用いられてい
る差圧検出器の説明図。
FIG. 20 is an explanatory diagram of a differential pressure detector used for detecting a differential pressure of a conventional seawater line.

【符号の説明】[Explanation of symbols]

1 海水ライン 2 高圧側検出端 2a 低圧側検出端 3、3a 導圧管 4、4a 継手 5 検出器 6、6a カバーフランジ 7、7a ダイヤフラム 8、8a 封入液 9 圧力センサー 10、10a 電気的絶縁物質層 11、11a シール液 13、13a 金属層 14、14a 金属層 15、15a 差圧導管 17 タンク 17a 圧力検出口 18 フランジ 19 電気絶縁フランジ 20 電気絶縁パッキン 21 電気絶縁ボルト 22 パッキン 23 フランジ 24 ダイヤフラムカバー 25 ノズル 26 フランジ 27 金属 1 Sea Water Line 2 High Pressure Side Detection End 2a Low Pressure Side Detection End 3, 3a Pressure Guide Tube 4, 4a Joint 5 Detector 6, 6a Cover Flange 7, 7a Diaphragm 8, 8a Enclosed Liquid 9 Pressure Sensor 10, 10a Electrical Insulation Material Layer 11, 11a Seal liquid 13, 13a Metal layer 14, 14a Metal layer 15, 15a Differential pressure conduit 17 Tank 17a Pressure detection port 18 Flange 19 Electrical insulating flange 20 Electrical insulating packing 21 Electrical insulating bolt 22 Packing 23 Flange 24 Diaphragm cover 25 Nozzle 26 Flange 27 Metal

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 差圧検出用金属製ダイヤフラムの受圧面
に、電気的絶縁物質層を形成して成る導電性流体の差圧
検出器。
1. A differential pressure detector for a conductive fluid, which is formed by forming an electrically insulating material layer on the pressure receiving surface of a metal diaphragm for differential pressure detection.
【請求項2】 差圧検出用金属製ダイヤフラムの受圧面
側カバーケーシング内に、非電解質シール液を充填し、
差圧をこのシール液を仲介してダイヤフラム面に伝達す
るように構成して成る導電性流体の差圧検出器。
2. A non-electrolyte sealing liquid is filled in the pressure-receiving-side cover casing of the metal diaphragm for differential pressure detection,
A differential pressure detector for a conductive fluid, which is configured to transmit the differential pressure to the diaphragm surface via the sealing liquid.
【請求項3】 差圧検出用導圧管と検出器を接続する部
分に電気的絶縁物質で造られた継手等の接続機構を介在
させて成る導電性流体の差圧検出器。
3. A differential pressure detector for a conductive fluid, wherein a connecting mechanism such as a joint made of an electrically insulating material is interposed in a portion connecting the differential pressure detecting pressure guiding tube and the detector.
【請求項4】 差圧検出用金属製ダイヤフラムの受圧面
に、前記ダイヤフラムより貴な金属層を形成して成る導
電性流体の差圧検出器。
4. A differential pressure detector for a conductive fluid, comprising a pressure-sensitive surface of a metal diaphragm for differential pressure detection, on which a metal layer nobler than the diaphragm is formed.
【請求項5】 カバーフランジ等差圧検出用金属製ダイ
ヤフラム近傍の内面に、ダイヤフラムより貴な金属層を
形成して成る導電性流体の差圧検出器。
5. A differential pressure detector for a conductive fluid, which is formed by forming a metal layer, which is nobler than the diaphragm, on an inner surface near a metal diaphragm for detecting a differential pressure such as a cover flange.
【請求項6】 差圧検出用導圧管の全部又は一部に、ダ
イヤフラムと同一の金属材料を用いて成る導電性流体の
差圧検出器。
6. A differential pressure detector for a conductive fluid, which is formed by using the same metal material as the diaphragm for all or part of the differential pressure detecting pressure guiding tube.
【請求項7】 請求項1又は2又は3又は4又は5又は
6において、差圧検出器がリモートシール方式であると
ころの導電性流体の差圧検出器。
7. The differential pressure detector for a conductive fluid according to claim 1, 2 or 3 or 4 or 5 or 6, wherein the differential pressure detector is a remote seal type.
【請求項8】 請求項1又は2又は3又は4又は5又は
6において、差圧検出器がフランジ直付け方式から成る
導電性流体の差圧検出器。
8. The differential pressure detector for a conductive fluid according to claim 1, 2 or 3 or 4 or 5 or 6, wherein the differential pressure detector is a flange direct mounting type.
JP29972494A 1994-12-02 1994-12-02 Differential-pressure detector for conductive fluid Pending JPH08159903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29972494A JPH08159903A (en) 1994-12-02 1994-12-02 Differential-pressure detector for conductive fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29972494A JPH08159903A (en) 1994-12-02 1994-12-02 Differential-pressure detector for conductive fluid

Publications (1)

Publication Number Publication Date
JPH08159903A true JPH08159903A (en) 1996-06-21

Family

ID=17876201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29972494A Pending JPH08159903A (en) 1994-12-02 1994-12-02 Differential-pressure detector for conductive fluid

Country Status (1)

Country Link
JP (1) JPH08159903A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065091A2 (en) * 2006-11-27 2008-06-05 Endress+Hauser Gmbh+Co.Kg Separating membrane for hydraulic pressure transmitters and pressure transmitters and manometers comprising said separating membranes
JP2011185758A (en) * 2010-03-09 2011-09-22 Yokogawa Electric Corp Pressure measurement instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065091A2 (en) * 2006-11-27 2008-06-05 Endress+Hauser Gmbh+Co.Kg Separating membrane for hydraulic pressure transmitters and pressure transmitters and manometers comprising said separating membranes
WO2008065091A3 (en) * 2006-11-27 2008-07-17 Endress & Hauser Gmbh & Co Kg Separating membrane for hydraulic pressure transmitters and pressure transmitters and manometers comprising said separating membranes
JP2011185758A (en) * 2010-03-09 2011-09-22 Yokogawa Electric Corp Pressure measurement instrument

Similar Documents

Publication Publication Date Title
KR0163443B1 (en) Pressure measuring apparatus
TW591221B (en) Improved hydrogen permeation probe
GB2235050A (en) Electrochemical gas sensor
Disteche Electrochemical measurements at high pressures
US6537824B1 (en) Process for metering hydrogen permeated in a metallurgical structure, and apparatus thereof
KR0158764B1 (en) Seal diaphragm structure for pressure measuring device
JPH08159903A (en) Differential-pressure detector for conductive fluid
EP0190566A2 (en) Electrochemical gas sensor
US20070227908A1 (en) Electrochemical cell sensor
US3836449A (en) Electrolytic cell for use with vapor phase detectors
JP4278569B2 (en) Pressure measuring instrument
GB2299863A (en) Electrochemical measuring sensor
JP2009276188A (en) Hydrogen gas sensor
NO833886L (en) METHOD AND DEVICE FOR DETERMINING HYDROGEN FLOW.
JPS5838746B2 (en) Measuring device and reference electrode for measuring the amount of dissolved oxygen in liquid
JP6394575B2 (en) Differential pressure transmitter
JP6588806B2 (en) Hydrogen permeation prevention membrane
EP0152636B1 (en) Electrode assembly for measuring the concentration of an electro-chemical active species
RU2229325C1 (en) Electric dialysis elutriator generator for carrying out ion chromatography study
US4290872A (en) High temperature reference electrode
JPH0843230A (en) Pressure measuring instrument
JPH0570787B2 (en)
JP2002216820A (en) Fuel cell by supercritical hydroxilation reaction
US6517694B1 (en) Yttria-stabilized zirconia membrane electrode
JP2001099736A (en) Pressure measuring device