JPH08158089A - Production of porous forming die and porous forming die - Google Patents

Production of porous forming die and porous forming die

Info

Publication number
JPH08158089A
JPH08158089A JP33060694A JP33060694A JPH08158089A JP H08158089 A JPH08158089 A JP H08158089A JP 33060694 A JP33060694 A JP 33060694A JP 33060694 A JP33060694 A JP 33060694A JP H08158089 A JPH08158089 A JP H08158089A
Authority
JP
Japan
Prior art keywords
grid
mold
conductive
porous
spherical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33060694A
Other languages
Japanese (ja)
Inventor
Shuichi Yokoyama
周市 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP33060694A priority Critical patent/JPH08158089A/en
Publication of JPH08158089A publication Critical patent/JPH08158089A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To produce a porous forming die wherein plural air holes are regularly arranged while reducing the internal stress for a short time. CONSTITUTION: A grid-like member 26 is mounted on a conductive coating material 21 applied on a pattern 20 in a first stage, a non-conductive spherical body 30 is fixed on each intersection 28 of the member 26 in a second stage, and an electrocast layer is formed on the member in a third stage. The die consisting of one or N electrocast layers formed in the first and third stages is released from the pattern 20, the remaining member 26 and spherical body 30 are removed, and the plural air holes piercing the intersection 28 of the grid-like communicating groove or grid-like communicating hole and opened on the die surface at a specified interval from one another are formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラスチック成形体を
製造するための中空成形型や射出成形型、繊維質成形層
体を製造するためのプレス型に用いられる多孔性成形型
の製造方法及び多孔性成形型であって、特に、電鋳処理
により形成される複数の通気孔を規則的に配置すること
を可能にした多孔性成形型の製造方法及び多孔性形成型
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous molding die used as a hollow molding die or an injection molding die for producing a plastic molding, and a press die for producing a fibrous molding layer body. More specifically, the present invention relates to a method for producing a porous molding die and a porous molding die, which are capable of regularly arranging a plurality of vent holes formed by electroforming.

【0002】[0002]

【従来の技術】まず、この種の多孔性成形型の構造とそ
の使用例を図7で説明する。図7において、この多孔性
成形型50は微小な径である多数の通気孔50aを有し
ており、真空ンプ51、ヒータ52、クランプ53が配
設された真空成形機54内のシボ模様等に形成された成
形面を上側にして装備されている。この多孔性成形型5
0を用いて自動車内装部品であるドアトリム外皮、クラ
ッシュパッド外皮等を真空成形する場合には、まず、ヒ
ータ52によりシート材55を加熱・軟化させ、このシ
ート材55を成形型の上方にクランプ53で固定する。
そして、真空ポンプ51を作動させることにより通気孔
50aを通してシート材55と成形型50の間の空気を
吸引し、シート材55と成形型50の間を真空状態にし
た後、シート材55を成形型に引きつけて成形型50の
成形面に密着させ、シート材55を成形型55と同一形
状に成形するものである。
2. Description of the Related Art First, the structure of a porous mold of this type and an example of its use will be described with reference to FIG. In FIG. 7, the porous molding die 50 has a large number of ventilation holes 50a having a minute diameter, and a texture pattern in a vacuum molding machine 54 in which a vacuum pump 51, a heater 52, and a clamp 53 are arranged. It is equipped with the molding surface formed on the upper side. This porous mold 5
When vacuum-molding an automobile interior part such as a door trim skin and a crash pad skin using 0, first, the sheet material 55 is heated and softened by the heater 52, and the sheet material 55 is clamped above the molding die 53. Fix with.
Then, by operating the vacuum pump 51, the air between the sheet material 55 and the molding die 50 is sucked through the ventilation hole 50a to make a vacuum state between the sheet material 55 and the molding die 50, and then the sheet material 55 is molded. The sheet material 55 is molded into the same shape as the molding die 55 by being attracted to the mold and brought into close contact with the molding surface of the molding die 50.

【0003】ところで、シボ模様等の緻密な反転性を得
ようとすると、成形型の通気孔は小さいものが多数開口
していることが望ましく、この小さな通気孔を多数、機
械加工又は放電加工で形成することは現実的でない。そ
こで、従来、次に述べるような製造方法により多孔性成
形型を製造している。
By the way, in order to obtain a dense reversibility such as a texture pattern, it is desirable that a large number of small vent holes are formed in the mold, and many small vent holes can be formed by machining or electric discharge machining. Forming is not realistic. Therefore, conventionally, a porous mold is manufactured by the manufacturing method described below.

【0004】まず、特開昭64−17888号公報、及
び特開平1−309990号公報に記載されているよう
に、模型の表面に導電層を形成し、この導電層上に所定
肉厚を有する溶剤層を形成する。そして、この溶剤層の
所望の位置に複数のポリスチレン等の粒子を配置して、
溶剤層を蒸発させて導電層上に複数の粒子を所定の配置
状態で溶着する。その後、模型を電鋳槽のニッケル、銅
等を含有する電解液中に浸漬し、電鋳処理を施して導電
層の表面部に各粒子の間隔を埋めるようにニッケル、銅
等の金属を析出・積層させて電鋳殻を成形する。次い
で、模型を電鋳槽から取り出し、この電鋳殻を模型から
剥離するとともに、この電鋳殻を溶剤中に浸漬して粒子
を電鋳殻から溶出除去することにより、多数の通気孔を
有する電鋳体(多孔性形成型)を製造するものである。
First, as described in JP-A-64-17888 and JP-A-1-309990, a conductive layer is formed on the surface of a model, and the conductive layer has a predetermined thickness. Form a solvent layer. Then, by placing a plurality of particles such as polystyrene at a desired position of this solvent layer,
The solvent layer is evaporated to deposit a plurality of particles on the conductive layer in a predetermined arrangement state. After that, the model is immersed in an electrolytic solution containing nickel, copper, etc. in an electroforming tank, and an electroforming treatment is performed to deposit metal such as nickel, copper, etc. so as to fill the intervals between the particles on the surface part of the conductive layer. -Laminate to form an electroformed shell. Next, the model is taken out of the electroforming tank, the electroformed shell is peeled from the model, and the electroformed shell is immersed in a solvent to elute and remove particles from the electroformed shell, thereby having a large number of vent holes. An electroformed body (porosity forming type) is manufactured.

【0005】また、特開平6−25885号公報に記載
されるように、電鋳加工により多数の吐き出し孔を電鋳
マスターに形成し、この電鋳マスターに可燃性の網目状
部材を取着する。その後、電鋳マスターを電鋳槽のニッ
ケル、銅等を含有する電解液中に漬け込み、電鋳マスタ
ーの吐き出し口からガスを吐き出しながら電鋳処理を施
して電鋳マスターの表面部に網目状部材の間隔を埋める
ようにニッケル、銅等の金属を析出・積層させて電鋳層
を成形せしめ、これらの工程を繰り返し行うことにより
積層体である成形型を成形する。次いで、電鋳マスター
を電鋳槽から取り出し、成形型を電鋳マスターから剥離
するとともに、この成形型をオーブン内で加熱して各電
鋳層に挟まれた網目状部分を除去することにより、多数
の通気孔とこの多数の通気孔を横切って実質的に連通さ
せる網目状連通孔を有するポーラス状電鋳成形型(多孔
性成形型)を製造するものである。
Further, as described in JP-A-6-25885, a large number of discharge holes are formed in an electroformed master by electroforming, and a flammable mesh member is attached to the electroformed master. . After that, the electroforming master is immersed in an electrolytic solution containing nickel, copper, etc. in an electroforming tank, and the electroforming treatment is performed while discharging gas from the discharge port of the electroforming master to form a mesh member on the surface of the electroforming master. A metal such as nickel or copper is deposited and laminated so as to fill the space of (1) to form an electroformed layer, and these steps are repeated to form a forming die that is a laminated body. Then, the electroforming master is taken out of the electroforming tank, the mold is separated from the electroforming master, and the mold is heated in an oven to remove the mesh portion sandwiched between the electroformed layers. (EN) A porous electroformed mold (a porous mold) having a large number of ventilation holes and a mesh-shaped communication hole which communicates across the large numbers of ventilation holes.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来技
術の多孔性成形型を製造方法においては、まず、特開昭
64−17888号公報、及び特開平1−309990
号公報に記載されているものでは、模型の導電層上に溶
剤層を形成した後、この溶剤層の所望の位置に複数のポ
リスチレン等の粒子を配置しているが、多数の粒子は、
通気孔の微小な径を確保するため、微小なものが用いら
れているのが通常であるので、その配置が困難で複数の
粒子間の相互間隔が密接し電鋳処理による金属析出がで
きなくなり、有効な多孔性成形型を製造することが困難
であるという問題があった。
However, in the prior art method for producing a porous mold, firstly, JP-A-64-17888 and JP-A-1-309990.
In the one described in the publication, after forming a solvent layer on the conductive layer of the model, a plurality of particles such as polystyrene are arranged at desired positions of the solvent layer, but a large number of particles are
Since a small size is usually used to secure a small diameter of the ventilation holes, it is difficult to arrange them and the mutual spacing between multiple particles is close and metal deposition by electroforming cannot be performed. However, there is a problem that it is difficult to produce an effective porous mold.

【0007】また、特開平6−25885号公報に記載
されるようものでは、多孔性成形型に複数の通気孔を形
成するために、複数の吐き出し口からガスを吐き出しな
がら電鋳処理を行っているため、そのガス吐き出しで金
属析出が阻害されるので、各電鋳層の成形に長時間かか
り、また、各電鋳層で塞がれた多数の通気孔にガス吐き
出しによる力がかかるので、この力により内部応力が発
生し各電鋳層の歪みが増大されることから網目状部材と
各電鋳層が密接にし難いたいという問題があるととも
に、更に、各電鋳層で多数の通気孔が塞がれることか
ら、多孔性成形型に規則的に通気孔を配置することがで
きないという問題があった。
Further, in the one disclosed in Japanese Patent Laid-Open No. 6-25885, in order to form a plurality of ventilation holes in the porous molding die, electroforming treatment is performed while discharging gas from a plurality of discharge ports. Therefore, since the metal discharge is hindered by the gas discharge, it takes a long time to mold each electroformed layer, and the gas discharge force is applied to the many vent holes blocked by each electroformed layer. Internal stress is generated by this force and the strain of each electroformed layer is increased. Therefore, there is a problem that it is difficult to make the mesh member and each electroformed layer in close contact with each other. However, there is a problem in that it is not possible to regularly arrange air holes in the porous mold because the holes are blocked.

【0008】本発明は、このような問題を解決するため
になされたもので、短時間で、且つ内部応力を減少しつ
つ規則的に多数の通気孔を配置することのできる多孔性
成形型及びその製造方法を提供することを目的とする。
The present invention has been made to solve such a problem, and has a porous mold capable of regularly arranging a large number of ventilation holes in a short time while reducing the internal stress. It is an object to provide a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】上記問題を解決するた
め、本発明の多孔性成形型の製造方法及び多孔性成形型
では、請求項1では、多孔性成形型の製造方法であっ
て、模型の表面上に通電性塗料を塗布し、この通電性塗
料上に格子状部材を取り付ける第1工程と、前記格子状
部材の各交差点部上に不導性球状体を取り付ける第2工
程と、前記格子状部材上に電鋳層を形成する第3工程と
を含み、必要に応じて、前記不導性球状体上に、更に前
記不導性球状体を取り付けられる工程と、前記第1〜3
工程とが繰り返えされて、前記模型上に1又はNの電鋳
層からなる型を成形するとともに、この型を前記模型か
ら離座させ、残存する前記格子状部材及び前記不導性球
状体を除去して、前記型の表面に格子状連通溝とこの格
子状連通溝の各交差点部を通って前記型を貫通し、且つ
この表面に相互に所定間隔を保って開口する複数の通気
孔を形成させるものである。
In order to solve the above problems, in the method for manufacturing a porous molding die and the porous molding die according to the present invention, the method for manufacturing a porous molding die according to claim 1 comprises a model. A first step of applying a conductive coating on the surface of the conductive coating and attaching a grid member on the conductive coating; and a second step of mounting a non-conductive spherical body on each intersection of the grid member, A third step of forming an electroformed layer on the grid-shaped member, and if necessary, further mounting the non-conductive spherical body on the non-conductive spherical body;
The process is repeated to form a mold made of an electroformed layer of 1 or N on the model, and the mold is separated from the model, and the remaining lattice-like member and the non-conductive spherical shape are left. The body is removed, and a plurality of through holes are formed on the surface of the mold through the grid-like communication grooves and the intersections of the grid-like communication grooves to penetrate the mold and to open on the surface at predetermined intervals. It forms pores.

【0010】請求項2では、請求項1の製造方法のも
に、必要に応じて前記不導性球状体上に前記格子状部材
が取り付けられ、及び更にこの格子状部材の各交差点部
に前記不導性球状体が取り付けられる工程と、前記第3
工程とが繰り返されて、前記模型上に1又はNの電鋳造
から型を成形するとともに、この型を前記模型から離座
させ、残存する前記格子状部材及び前記不導性球状体を
除去して、前記型の表面に格子状溝と内部に格子状連通
孔、及びこの格子状溝及び格子状連通孔の各交差点部を
通って貫通し、且つ前記型の表面に相互に所定間隔を保
って開口する複数の通気孔を形成させるものである。
According to a second aspect of the present invention, in the manufacturing method of the first aspect, the grid-like member is attached on the non-conductive spherical body as necessary, and further, at each intersection of the grid-like member, the grid-like member is provided. Attaching a non-conductive spherical body, and the third step
The process is repeated to form a mold on the model from electroforming of 1 or N, and the mold is separated from the model to remove the remaining lattice-like member and the non-conductive spherical body. Through the grid-shaped grooves on the surface of the mold, the grid-shaped communication holes inside, and the intersections of the grid-shaped grooves and the grid-shaped communication holes, and keep a predetermined distance from each other on the surface of the mold. A plurality of vent holes that open as a result are formed.

【0011】請求項3では、請求項1又は請求項2それ
ぞれの製造方法のものに、前記格子状部材の各交差点部
上に不導性球状体を取り付ける第2工程が、前記格子状
部材に接着剤を塗布して、前記複数の不導性球状体を当
該格子状部材上に満遍なく拡散して付着させた後、当該
格子状部材に付着された前記複数の不導性球状体のう
ち、この格子状部材の各交点部に付着されている不導性
球状体を残して除去するこてにより行われるものであ
る。
According to a third aspect of the present invention, in the manufacturing method according to the first aspect or the second aspect, the second step of attaching the non-conductive spherical body on each intersection of the lattice-shaped member is performed on the lattice-shaped member. After applying an adhesive, the plurality of non-conductive spheres are evenly diffused and adhered onto the lattice-shaped member, and among the plurality of non-conductive spheres attached to the lattice-shaped member, This is performed by removing the non-conductive spheres attached to the intersections of the grid-like member, leaving the non-conductive spheres.

【0012】請求項4では、請求項1から請求項3それ
ぞれの製造方法のものに、前記格子状部材が、1方向に
並列して複数配置された第1線形部と当該第1線形部に
直交する方向に並列して複数配置された第2線形部とで
格子状に構成され、この各第1線形部の相互間、及び各
第2線形部の相互間の間隔を変動することにより、前記
複数の通気孔の相互の間隔を変更させるものである。
According to a fourth aspect of the present invention, in the manufacturing method according to each of the first to third aspects, a plurality of the lattice-like members are arranged in parallel in one direction and a first linear portion and the first linear portion. A plurality of second linear portions arranged in parallel in a direction orthogonal to each other is configured in a lattice shape, and by varying the distance between the first linear portions and the distance between the second linear portions, The distance between the plurality of ventilation holes is changed.

【0013】請求項5では、多孔性成形型であって、型
を貫通する複数の通気孔を有する多孔性成形型におい
て、前記複数の各通気孔が、前記型の表面に形成された
格子状溝の各交差点部を通って貫通して、前記型の表面
に相互に所定間隔を保って開口しているものである。
According to a fifth aspect of the present invention, there is provided a porous molding die having a plurality of ventilation holes penetrating through the molding die, wherein each of the plurality of ventilation holes is a lattice shape formed on the surface of the molding die. It penetrates through each intersection part of a groove | channel, and is opening to the surface of the said mold mutually at predetermined intervals.

【0014】請求項6では、請求項5の多孔性成形型の
ものに、前記型の内部に格子状連通孔を形成するととも
に、前記複数の通気孔が前記格子状溝と当該格子状連通
孔の各交差点部を通って貫通して、前記型の表面に相互
に所定間隔を保って開口しているものである。
According to a sixth aspect of the present invention, in the porous molding die of the fifth aspect, the grid-shaped communication holes are formed inside the mold, and the plurality of ventilation holes are formed in the grid-shaped grooves and the grid-shaped communication holes. Through the respective intersections, and are opened at a predetermined distance from each other on the surface of the mold.

【0015】[0015]

【作用】このように本発明の多孔性成形型の製造方法及
び多孔成形型によれば、模型の通電性塗料上に取り付け
られた格子状部材の各交差点部に不導性球状体を付着す
るという、極めて簡単な作業で複数の通気孔を規則的に
配置できるとともに、格子状部材と不導性球状体とを電
通性塗料上に配置し、電鋳処理にて多数の通気孔、格子
状溝、格子状連通孔を形成するようにしたので、短時間
で、且つ電鋳処理中における各電鋳層内部に発生する内
部応力による電鋳層の歪みを少なくしてすことができ、
その結果、電鋳層が厚くなっても電鋳層内に十分な空間
を有することができ、多孔性は多方向に確保することが
できる。
As described above, according to the method for manufacturing the porous mold and the porous mold of the present invention, the non-conductive spherical bodies are attached to the respective intersections of the grid-like member mounted on the conductive paint of the model. That is, it is possible to arrange a plurality of ventilation holes regularly by an extremely simple work, and to arrange a grid-shaped member and a non-conductive spherical body on a conductive paint, and to form a large number of ventilation holes and a grid shape by electroforming. Since the grooves and the grid-shaped communication holes are formed, it is possible to reduce distortion of the electroformed layer due to internal stress generated inside each electroformed layer during the electroforming process in a short time,
As a result, even if the electroformed layer becomes thick, a sufficient space can be provided in the electroformed layer, and porosity can be secured in multiple directions.

【0016】また、複数の不導性球状体を接着剤が塗布
された格子状部材上に満遍なく拡散して付着させた後、
各交点部に付着されている不導性球状体を残して除去す
るようにしているので、、短時間で、且つ極めて簡単な
作業で格子状部材の各交差点部への不導性球状体の付着
・配置ができる。
Further, after a plurality of non-conductive spherical bodies are evenly diffused and adhered on the grid-shaped member coated with the adhesive,
Since the non-conductive spheres attached to each intersection are left behind, the non-conductive spheres to each intersection of the grid-like member can be removed in a short time and in a very simple operation. Can be attached and arranged.

【0017】更に、格子状部材の各線形部の相互間の間
隔を変動することにより、複数の不導性球状体の相互
間、しいては、複数の通気孔の相互間の間隔を変更させ
て規則的に配置することができる。
Further, by varying the distance between the linear portions of the grid-like member, the distance between the plurality of non-conducting spherical bodies, and hence the distance between the plurality of ventilation holes, can be changed. Can be arranged regularly.

【0018】更に、また、複数の各通気孔が、格子状連
通孔の各交差点部を通って型を貫通して、この表面に相
互に所定間隔を保って開口しているので、自動車内装部
材を成形するためのシート材を全体に亘ってほぼ同一の
吸引力で吸引することが可能となる。
Furthermore, since a plurality of vent holes penetrate the mold through the intersections of the grid-like communicating holes and are opened at a predetermined distance from each other on this surface, the automobile interior member It is possible to suck the sheet material for molding with substantially the same suction force throughout.

【0019】また、複数の通気孔が格子状溝と格子状連
通孔の各交差点部を通って貫通して、型の表面に相互に
所定間隔を保って開口しているので、十分な空間を有
し、且つつ多孔性は多方向に確保できるので、自動車内
装部材を成形するためのシート材を全体に亘ってほぼ同
一の吸引力で吸引することが可能となる。
Further, since a plurality of ventilation holes pass through the intersections of the grid-like grooves and the grid-like communication holes and are opened at a predetermined interval on the surface of the mold, a sufficient space is provided. Since it has the porosity and can secure the porosity in multiple directions, it is possible to suck the sheet material for molding the automobile interior member with substantially the same suction force over the entire sheet.

【0020】[0020]

【実施例】以下、本発明の一実施例である多孔性成形型
及びその製造方法について、図面を参照して説明する。
図1(a)は本実施例における多孔性成形型の構成を示
す断面図、図1(b)は本実施例における多孔性成形型
の構成を示す、図1(a)のA−A断面図、図2乃至図
5は本実施例における多孔形成型の製造方法を説明する
ための断面図、図6は本実施例における多孔性成形型の
変形例を示す図である。尚、多孔性成形型の使用例は図
7で説明したものと同様であるので、その説明は省略す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A porous mold and a method for manufacturing the same according to an embodiment of the present invention will be described below with reference to the drawings.
FIG. 1A is a cross-sectional view showing the structure of the porous molding die of this embodiment, and FIG. 1B is a cross-sectional view taken along the line AA of FIG. 1A, showing the structure of the porous molding die of this embodiment. FIGS. 2 to 5 are cross-sectional views for explaining the method for manufacturing the porous forming die in this embodiment, and FIG. 6 is a diagram showing a modification of the porous forming die in this embodiment. Note that an example of using the porous molding die is the same as that described with reference to FIG. 7, so description thereof will be omitted.

【0021】図1(a)及び図1(b)において、1は
多孔性成形型であって、電鋳処理によりニッケル、銅等
の金属を析出させて成形した、例えば、第1電鋳層2、
第2電鋳層3及び第3電鋳層4(この層の数は任意であ
る。)とが積層された板状体であって、その中央部から
突出する(Z軸方向に突出する)凸板部5を有する凹凸
形状に成形されている。また、多孔成形型1は、この表
面1A(第1電鋳層1の表面)に開口して、凸板部5が
突出する方向(Z軸方向)に直交する2方向(XとY軸
方向)に広がる格子状溝6と、この多孔性成形型1を貫
通する微小な径の複数の通気孔7とが形成されている。
この各格子状溝6は、X軸方向に延びてY軸方向に複数
並列して設けられた第1連通孔部10と、Y軸方向に延
びてX軸方向に複数並列して設けられた第2連通孔部1
1とを有し、この第1連通孔部10の相互間と、第2連
通孔部11の相互間とのそれぞれの間隔A及びBが、後
述説明する多孔性成形型の製造方法における各電鋳層2
〜4の電鋳処理のニッケル、銅等の析出を効果的に行う
ために、0.8mm〜3.0mm範囲内にされている。
In FIGS. 1 (a) and 1 (b), reference numeral 1 is a porous mold, which is formed by depositing a metal such as nickel or copper by electroforming, for example, a first electroformed layer. 2,
It is a plate-like body in which a second electroformed layer 3 and a third electroformed layer 4 (the number of these layers is arbitrary) are laminated, and protrudes from the central portion (projects in the Z-axis direction). It is formed in an uneven shape having a convex plate portion 5. In addition, the porous mold 1 is opened in the surface 1A (the surface of the first electroformed layer 1) and is in two directions (X and Y axis directions) orthogonal to the direction in which the convex plate portion 5 projects (Z axis direction). ) And a plurality of ventilation holes 7 having a minute diameter and penetrating the porous mold 1.
The lattice-shaped grooves 6 extend in the X-axis direction and are provided in a plurality in parallel in the Y-axis direction, and the first communication hole portions 10 that extend in the Y-axis direction and are provided in a plurality in parallel in the X-axis direction. Second communication hole 1
1 and the distances A and B between the first communication hole portions 10 and between the second communication hole portions 11 are the same as each other in the method for manufacturing a porous mold described below. Casting layer 2
In order to effectively deposit nickel, copper and the like in the electroforming process of No. 4 to No. 4, the range is 0.8 mm to 3.0 mm.

【0022】複数の通気孔7は、球を押し付けて連続さ
せた連珠状であり、凸板部5が突出する方向Z軸方向)
に延び、且つ格子状溝6の第1連通孔部10又は第2連
通孔部11との各交差点部12のいずれかを通って、多
孔性成形型1を貫通している。また、複数の通気孔7
は、相互に後述説明する多孔性成形型の製造方法におけ
る各電鋳層2〜4の電鋳処理のニッケル、銅等の析出を
効果的に行うために、0.3mm〜1.0mm範囲内の
間隔(各通気孔7の直径外周間の距離)を保って多孔性
成形型1の表面1A(及び裏面1B)に開口し、表面の
転写性を損なうことなく吸引可能とされているととも
に、その直径が1.0mm〜2.0mmの範囲内とされ
ている。
The plurality of vent holes 7 are in the shape of a continuous string of balls pressed against each other, and the direction in which the convex plate portion 5 projects is the Z-axis direction.
And penetrates the porous mold 1 through either the first communication hole portion 10 of the lattice-shaped groove 6 or each intersection 12 with the second communication hole portion 11. Also, a plurality of ventilation holes 7
Is in the range of 0.3 mm to 1.0 mm in order to effectively perform the electroplating treatment of nickel, copper, etc. of the electroformed layers 2 to 4 in the method for producing a porous mold described later. Is opened at the front surface 1A (and the back surface 1B) of the porous mold 1 while maintaining the interval (distance between the diameter outer circumference of each vent hole 7), and suction is possible without impairing the transferability of the surface, The diameter is within the range of 1.0 mm to 2.0 mm.

【0023】つぎに、上述した多孔性成形型の製造方法
について、図2乃至図5を参照して説明する。
Next, a method of manufacturing the above-mentioned porous mold will be described with reference to FIGS.

【0024】(1)まず、図2(a)に示すように、エ
ポキシ樹脂、ポリエステル樹脂等により成形品と同一の
凸形状の模型20(多孔性成形型1の逆形状)を製作
し、この模型20表面(凸形状側)の全面に通電性塗料
21を塗布して乾燥させる。この通電性塗料21には銅
又は銀を含んだエポキシ系塗料や、銀鏡反応による薄膜
銀層等が用いられる。そして、この通電性塗料21を乾
燥させた後、図2(b)に示すように、乾燥した通電性
塗料21上の全面に亘って、接着剤が塗布されたグラス
ファイバー等の導電性のある可燃性の格子状繊維部材2
5を貼り付ける。この格子状繊維部材25は、図2
(b)及び図2(c)に示すように、1方向(X軸方
向)に並列して複数配置された縦繊維部26(第1線形
部)と、この縦繊維部26に直交する方向(Y軸方向)
に並列して複数配置された横繊維部27(第2線形部)
とで構成されており、その各繊維部26、27の太さが
0.3mm〜2.0mmの範囲内であり、各縦繊維部2
6、26の相互間の間隔A、及び横繊維部27、27の
相互間の間隔Bが1.3mm〜3.0mm範囲内とされ
ている。従って、この格子状繊維部材25の各繊維部2
6、27の間隔A、Bを変動させることにより、不導性
球状体30の配置数とその間隔を所望のものにするこ
と、即ち、多孔性成形型1が有する通気孔7の配置数と
その間隔を所望のものにすることが容易にできる。(第
1工程)
(1) First, as shown in FIG. 2 (a), a convex model 20 (reverse shape of the porous molding die 1), which is the same as the molded product, is made of epoxy resin, polyester resin, etc. The conductive paint 21 is applied to the entire surface of the model 20 (convex side) and dried. An epoxy-based paint containing copper or silver, a thin film silver layer by a silver mirror reaction, or the like is used as the conductive paint 21. Then, after the electrically conductive coating material 21 is dried, as shown in FIG. 2B, the entire surface of the dried electrically conductive coating material 21 is electrically conductive such as glass fiber coated with an adhesive. Flammable grid-like fiber member 2
Paste 5. This lattice fiber member 25 is shown in FIG.
As shown in (b) and FIG. 2C, a plurality of longitudinal fiber portions 26 (first linear portions) arranged in parallel in one direction (X-axis direction) and a direction orthogonal to the longitudinal fiber portions 26. (Y-axis direction)
A plurality of horizontal fiber portions 27 (second linear portion) arranged in parallel with each other
And the thickness of each fiber portion 26, 27 is within the range of 0.3 mm to 2.0 mm, and each longitudinal fiber portion 2
The distance A between the 6 and 26 and the distance B between the horizontal fiber portions 27 and 27 are set within the range of 1.3 mm to 3.0 mm. Therefore, each fiber portion 2 of this lattice-like fiber member 25
By varying the intervals A and B of 6, 27, the number of non-conductive spherical bodies 30 to be arranged and the distance between them are desired, that is, the number of ventilation holes 7 of the porous molding die 1 to be arranged. It is easy to make the interval desired. (First step)

【0025】(2)そして、図2(c)に示すように、
この格子状繊維部材25の縦繊維部26と横繊維部27
との各交差点部28上それぞれに、不導性球状体30
を、以下の手順に従って付着(固定)する。また、不導
性球状体30は、溶剤で溶かすことのできるスチレン樹
脂やアクリル樹脂製であり、その直径が1.0mm〜
2.0mmの大きさのものが用いられる。
(2) Then, as shown in FIG.
The longitudinal fiber portion 26 and the transverse fiber portion 27 of this lattice-like fiber member 25
The non-conducting spherical body 30 is provided on each intersection 28 with
Are attached (fixed) according to the following procedure. The non-conductive spherical body 30 is made of a styrene resin or an acrylic resin that can be dissolved in a solvent and has a diameter of 1.0 mm to
The size of 2.0 mm is used.

【0026】まず、図3(a)に示すように、模型2
0の上方側から格子状繊維部材25に対して多数の不導
性球状体30を満遍なく落下(拡散、ばらまく)する
と、この格子状繊維部材25には全面に亘って接着剤が
塗布されているので、複数の縦繊維部26及び横繊維部
27上にランダム的に複数の不導性球状体30が付着す
る。
First, as shown in FIG. 3A, the model 2
When a large number of non-conductive spherical bodies 30 are evenly dropped (diffused or scattered) from the upper side of 0 to the grid-like fiber member 25, an adhesive is applied over the entire surface of the grid-like fiber member 25. Therefore, the plurality of non-conductive spherical bodies 30 are randomly attached on the plurality of longitudinal fiber portions 26 and the transverse fiber portions 27.

【0027】そして、図3(b)に示すように、模型
20自体を反転させて、格子状繊維部材25の各繊維部
26、27間の模型20上に載っている複数の不導性球
状体30を落下・排除するとともに、図3(c)に示す
ように、格子状繊維部材25の各繊維部26、27上に
あって、各交差点部28以外に付着している不導性球状
体30を除去する。これにより、格子状繊維部材25に
付着された複数の不導性球状体30は、相互に所定間隔
C(各不導性球状体30の直径外周間の距離)を0.3
mm〜1.0mm範囲内に規則的に配置することができ
る。(第2工程)
Then, as shown in FIG. 3 (b), the model 20 itself is inverted so that a plurality of non-conducting spheres placed on the model 20 between the fiber portions 26 and 27 of the lattice fiber member 25. The body 30 is dropped and removed, and as shown in FIG. 3 (c), the non-conducting spheres that are on the fiber portions 26 and 27 of the grid-like fiber member 25 and are attached to portions other than the intersections 28. The body 30 is removed. As a result, the plurality of non-conducting spherical bodies 30 attached to the grid-like fiber member 25 have a predetermined distance C (distance between the diameter outer circumferences of the respective non-conducting spherical bodies 30) of 0.3.
It can be regularly arranged within a range of mm to 1.0 mm. (Second step)

【0028】(3)次に、電導性塗料21、格子状繊維
部材25及び不導性球状30が配置された模型20を、
図4に示すように、電鋳槽35の電解液36中に漬け込
み、電解液36中のニッケル、銅等の金属電極37をプ
ラス電極に接続し、通電性塗料21をマイナス電極に接
続して通電して電鋳処理を施す。これにより、通電性塗
料21上にはニッケル、銅等の金属が析出し、第1電鋳
層2が形成されるが、格子状繊維部材25及び複数の不
導性球状体30には金属が析出せず、格子状連通孔5と
通気孔7の元が形成されるので、第1電鋳層2は不導性
球状体30が露出する程度の厚みにとめられる。(第3
工程)
(3) Next, the model 20 on which the conductive paint 21, the grid-like fiber member 25 and the non-conductive spherical member 30 are arranged is
As shown in FIG. 4, it is immersed in an electrolytic solution 36 in an electroforming tank 35, a metal electrode 37 of nickel, copper or the like in the electrolytic solution 36 is connected to a positive electrode, and a conductive paint 21 is connected to a negative electrode. Electricity is applied to perform electroforming treatment. As a result, a metal such as nickel or copper is deposited on the electrically conductive coating material 21 to form the first electroformed layer 2. However, no metal is deposited on the grid-like fiber member 25 and the plurality of non-conductive spherical bodies 30. Since the grid-shaped communicating holes 5 and the vent holes 7 are formed without being deposited, the first electroformed layer 2 is kept to a thickness such that the non-conductive spherical body 30 is exposed. (Third
Process)

【0029】(4)ところで、不導性球状体30の大き
さが第1電鋳層2の所望厚みより小さい場合には、図5
(a)に示すように、模型20を電解液35中から取り
出し、不導性球状体30の上に更に、接着剤等で不導性
球状体30を付着させ、電解液35に入れて再度電鋳処
理を施す。この繰り返しによって、所望厚さの第1電鋳
層2から第3電鋳層4が得られる。
(4) By the way, when the size of the non-conductive spherical body 30 is smaller than the desired thickness of the first electroformed layer 2, FIG.
As shown in (a), the model 20 is taken out of the electrolytic solution 35, and the non-conductive spherical body 30 is further adhered onto the non-conductive spherical body 30 with an adhesive or the like, and the model 20 is put into the electrolytic solution 35 again. Perform electroforming. By repeating this, the first electroformed layer 2 to the third electroformed layer 4 having a desired thickness are obtained.

【0030】(5)また、この第1電鋳層2上に、図5
(b)に示すように、更に、第2電鋳層3を成形して格
子状連通孔38及び複数の通気孔7を形成する場合に
は、第1電鋳層2の成形が完了した模型20上に、格子
状繊維部材25を、この各交差点28が第1電鋳層2か
ら露出する複数の不導性球状30に一致させて付着する
とともに、上記(2)で示した、第2工程と同様な手順
に従って、第1電鋳層2上に付着された格子状繊維部材
25の各交差点部28上のそれぞれに、不導性球状体3
0を付着した後、上記(3)に示した、第3工程と同様
な手順で、電鋳処理することにより第2電鋳層30を成
形する。この繰り返しによって、第3電鋳層4、・・・
・・、第N電鋳層の成形が得られる。
(5) Further, on the first electroformed layer 2, as shown in FIG.
As shown in (b), when the second electroformed layer 3 is further formed to form the grid-shaped communication holes 38 and the plurality of ventilation holes 7, the model in which the formation of the first electroformed layer 2 is completed. The grid-like fibrous member 25 is adhered to the plurality of non-conductive spheres 30 on each of the intersections 28 so as to be exposed from the first electroformed layer 2. According to the same procedure as the process, the non-conductive spherical body 3 is provided on each of the intersections 28 of the grid-like fiber member 25 attached on the first electroformed layer 2.
After 0 is attached, the second electroformed layer 30 is formed by electroforming according to the same procedure as the third step shown in (3) above. By repeating this, the third electroformed layer 4, ...
.., molding of the Nth electroformed layer can be obtained.

【0031】(6)以上のようにして、模型20上に第
1電鋳層2又は第2電鋳層3、第3電鋳層4、・・・・
・、第N電鋳層からなる積層体である型が成形される
と、この模型20を電解液36から取り出し、型を模型
20から離座させるとともに、この型内に残存する格子
状繊維部材25と複数の不導性球状体30とを、図示し
ないオーブン等で燃焼させ、又は溶剤等で抽出して除去
すると、図1(a)及び図1(b)に示す如き、互いに
所定間隔に保たれた連珠状の複数の通気孔7と格子状溝
6とが形成された多孔性成形型、又は図6(a)及び図
6(b)に示す如く、格子状溝6と複数の通気孔7とと
もに、第2電鋳層3と第3電鋳層4の内部に、格子状溝
6に対して凸部5が突出する方向に直列的に配置される
格子状連通孔38が形成された多孔性成形型40が制作
される。この多孔性成形型40は、図6(a)及び図6
(b)に示すように、第2電鋳層3及び第3電鋳層4内
のそれぞれに格子状連通孔38が形成されたもので、こ
の格子状連通孔38は、凸部5が突出する方向(Z軸方
向)に直交する2方向(XとY軸方向)に、第1電鋳層
2の表面に開口する格子状溝6と同一構成を有して、縦
連通孔部41と横連通孔部42とが複数設けられてお
り、この縦連通孔部41と横連通孔部42との各交差点
部43のそれぞれに複数の各通気孔7が通っているもの
である。
(6) As described above, the first electroformed layer 2 or the second electroformed layer 3, the third electroformed layer 4, ... On the model 20.
.. When the mold, which is a laminated body including the Nth electroformed layer, is molded, the model 20 is taken out of the electrolytic solution 36, the model is separated from the model 20, and the lattice-like fiber member remaining in the mold is formed. When 25 and a plurality of non-conductive spherical bodies 30 are burned in an oven or the like (not shown) or extracted and removed with a solvent or the like, as shown in FIGS. 1 (a) and 1 (b), they are separated from each other at predetermined intervals. A porous mold in which a plurality of continuous ventilated ventilation holes 7 and a lattice-shaped groove 6 are formed, or as shown in FIGS. 6A and 6B, the lattice-shaped groove 6 and a plurality of communication holes are formed. Along with the pores 7, inside the second electroformed layer 3 and the third electroformed layer 4, grid-like communicating holes 38 are formed which are arranged in series in a direction in which the convex portions 5 project with respect to the grid-like grooves 6. A porous mold 40 is produced. This porous mold 40 is shown in FIG. 6 (a) and FIG.
As shown in (b), the grid-shaped communication holes 38 are formed in the second electroformed layer 3 and the third electroformed layer 4, respectively, and the projections 5 project from the grid-shaped communication holes 38. In the two directions (X and Y axis directions) orthogonal to the direction (Z axis direction) which has the same configuration as the grid-like grooves 6 opening on the surface of the first electroformed layer 2 and the vertical communication hole portion 41. A plurality of horizontal communication holes 42 are provided, and a plurality of ventilation holes 7 pass through each intersection 43 of the vertical communication holes 41 and the horizontal communication holes 42.

【0032】[0032]

【発明の効果】このように本発明の多孔性成形型の製造
方法及び多孔成形型によれば、模型の通電性塗料上に取
り付けられた格子状部材の各交差点部に不導性球状体を
付着するという、極めて簡単な作業で複数の通気孔を規
則的に配置できるとともに、格子状部材と不導性球状体
とを電通性塗料上に配置し、電鋳処理にて多数の通気
孔、格子状溝、格子状連通孔を形成するようにしたの
で、短時間で、且つ電鋳処理中における各電鋳層内部に
発生する内部応力による電鋳層の歪みを少なくできるの
で、電鋳層が厚くなっても電鋳層内に十分な空間を有す
ることができ、多孔性は多方向に確保することができ
る。その結果、成形時には、全ての通気孔によりシート
材を全面に亘って略均一の吸引力で吸引がなされること
になり、シート材の成形型への密着が均一となって成形
品の成形型に対する均一な反転性を確保することが可能
となる。
As described above, according to the method for producing a porous mold and the porous mold of the present invention, a non-conductive spherical body is formed at each intersection of the grid-like member mounted on the conductive paint of the model. Adhering, it is possible to arrange a plurality of ventilation holes regularly by an extremely simple work, and to arrange a grid-shaped member and a non-conductive spherical body on a conductive paint, a large number of ventilation holes by electroforming, Since the grid-shaped grooves and grid-shaped communication holes are formed, it is possible to reduce distortion of the electroformed layer due to internal stress generated inside each electroformed layer during the electroforming process in a short time. Even if the thickness is increased, a sufficient space can be provided in the electroformed layer, and porosity can be secured in multiple directions. As a result, at the time of molding, all the vent holes suck the sheet material over the entire surface with a substantially uniform suction force, so that the sheet material is evenly adhered to the molding die and the molding die for the molded product is formed. It is possible to secure a uniform reversibility with respect to.

【0033】また、複数の不導性球状体を接着剤が塗布
された格子状部材上に満遍なく拡散して付着させた後、
各交点部に付着されている不導性球状体を残して除去す
るようにしているので、、短時間で、且つ極めて簡単な
作業で格子状部材の各交差点部への不導性球状体の付着
・配置ができるので、より正確に複数の通気孔を相互に
所定間隔を保つように形成することができる。
Further, after a plurality of non-conductive spherical bodies are evenly diffused and adhered on the grid-shaped member coated with the adhesive,
Since the non-conductive spheres attached to each intersection are left behind, the non-conductive spheres to each intersection of the grid-like member can be removed in a short time and in a very simple operation. Since they can be attached and arranged, the plurality of ventilation holes can be formed more accurately so as to keep a predetermined distance from each other.

【0034】更に、格子状部材の各線形部の相互間の間
隔を変動することにより、複数の不導性球状体の相互
間、しいては、複数の通気孔の相互間の間隔を変更させ
て規則的に配置することができるので、シート材の成形
時における種々の条件に対応して、多孔性成形型の複数
の通気孔の配置数又はその相互間の間隔を変更して制作
することが可能となる。
Furthermore, by varying the distance between the linear portions of the grid-like member, the distance between the plurality of non-conducting spherical bodies, and thus the distance between the plurality of ventilation holes, can be changed. Since it can be arranged regularly, the number of ventilation holes in the porous mold must be changed or the distance between them must be changed according to various conditions when molding the sheet material. Is possible.

【0035】更に、また、複数の各通気孔が、格子状連
通孔の各交差点部を通って型を貫通して、この表面に相
互に所定間隔を保って開口しているので、成形時には、
全ての通気孔によりシート材を全面に亘って略均一の吸
引力で吸引がなされることになり、シート材の成形型へ
の密着が均一となって成形品の成形型に対する均一な反
転性を確保することが可能となる。
Furthermore, since a plurality of ventilation holes pass through the mold through the intersections of the grid-like communication holes and are opened on this surface at a predetermined interval, at the time of molding,
By all the air holes, the sheet material is sucked over the entire surface with a substantially uniform suction force, and the sheet material is evenly adhered to the molding die, so that the molded product can be uniformly inverted with respect to the molding die. It becomes possible to secure.

【0036】また、複数の通気孔が格子状溝と格子状連
通孔の各交差点部を通って貫通して、型の表面に相互に
所定間隔を保って開口しているので、十分な空間を有
し、且つつ多孔性は多方向に確保できるので、自動車内
装部材を成形するためのシート材を全体に亘ってほぼ同
一の吸引力で吸引することが可能となる。
Further, since a plurality of ventilation holes pass through the intersections of the grid-like grooves and the grid-like communicating holes and open at the mold surface at predetermined intervals, a sufficient space is provided. Since it has the porosity and can secure the porosity in multiple directions, it is possible to suck the sheet material for molding the automobile interior member with substantially the same suction force over the entire sheet.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における多孔性成形型の構成
を示す図であって、(a)は断面図、(b)は(a)の
A−A矢視図である。
FIG. 1 is a diagram showing a configuration of a porous molding die according to an embodiment of the present invention, in which (a) is a cross-sectional view and (b) is a view taken along the line AA of (a).

【図2】本発明の一実施例における多孔性成形型の製造
方法を説明するための図であって、(a)は模型上に通
電性塗料を塗布した状態を示す断面図、(b)は通電性
塗料上の格子状繊維部材が付着された状態を示す断面
図、(c)は通電性塗料上の格子状繊維部材が付着され
た状態を示す上面矢視図である。
2A and 2B are views for explaining a method for manufacturing a porous mold according to an embodiment of the present invention, in which FIG. 2A is a cross-sectional view showing a state in which conductive paint is applied on a model, and FIG. FIG. 3C is a cross-sectional view showing a state in which the grid-like fiber member on the conductive paint is attached, and FIG. 7C is a top arrow view showing a state in which the grid-like fiber member on the conductive paint is attached.

【図3】本発明の一実施例における多孔性成形型の製造
方法を説明するための図であって、(a)は格子状繊維
部材上に不導性球状体を落下させる状態を示す断面図、
(b)は格子状繊維部材間に残存する不導球状体を排出
させる状態を示す断面図、(c)は格子状繊維部材の各
交差点部に不導性球状体が付着された状態を示す上面矢
視図である。
FIG. 3 is a diagram for explaining a method for manufacturing a porous mold according to an embodiment of the present invention, in which (a) is a cross section showing a state in which a non-conductive spherical body is dropped onto a lattice-shaped fiber member. Figure,
(B) is a cross-sectional view showing a state in which the non-conducting spheres remaining between the lattice-like fiber members are discharged, and (c) shows a state in which the non-conducting spheres are attached to each intersection of the lattice-like fiber members. FIG.

【図4】本発明の一実施例における多孔性成形型の製造
方法の模型を電鋳処理する状態を示した断面図である。
FIG. 4 is a cross-sectional view showing a state in which a model of a method for manufacturing a porous mold according to an embodiment of the present invention is electroformed.

【図5】本発明の一実施例における多孔性成形型の製造
方法を説明するための図であって、(a)は複数の電鋳
層を形成するための手順を示した断面拡大図、(b)は
複数の電鋳層の内部に格子状連通孔を形成するための手
順を示した断面拡大図である。
FIG. 5 is a view for explaining a method for manufacturing a porous mold according to an embodiment of the present invention, in which (a) is an enlarged cross-sectional view showing a procedure for forming a plurality of electroformed layers; (B) is an enlarged cross-sectional view showing a procedure for forming the grid-shaped communication holes inside a plurality of electroformed layers.

【図6】本発明の一実施例における多孔性成形型の変形
例を示した図であって、(a)は断面図、(b)は
(a)におけるB−B断面図である。
6A and 6B are views showing a modified example of the porous mold in one embodiment of the present invention, in which FIG. 6A is a sectional view and FIG. 6B is a sectional view taken along line BB in FIG. 6A.

【図7】従来技術における多孔性成形型の構成と、その
使用態様を示した断面図である。
FIG. 7 is a cross-sectional view showing a structure of a porous molding die according to a conventional technique and a usage mode thereof.

【符号の説明】[Explanation of symbols]

1、40 多孔性成形型 2〜4 第1乃至第3電鋳層 6 格子状溝 7 通気孔 12、28、43 交差点部 20 模型 21 通電性塗料 25 格子状繊維部材(格子状部材) 30 不導性球状体 38 格子状連通孔 1, 40 Porous mold 2-4 First to third electroformed layer 6 Lattice groove 7 Vent hole 12, 28, 43 Intersection 20 Model 21 Conductive paint 25 Lattice fiber member (Lattice member) 30 N Conductive Spherical Body 38 Lattice Communication Hole

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 模型の表面上に通電性塗料を塗布し、こ
の通電性塗料上に格子状部材を取り付ける第1工程と、
前記格子状部材の各交差点部上に不導性球状体を取り付
ける第2工程と、前記格子状部材上に電鋳層を形成する
第3工程とを含み、 必要に応じて、前記不導性球状体上に、更に不導性球状
体を取り付けられる工程と、前記第1〜3工程とが繰り
返えされて、前記模型上に1又はN層の電鋳層からなる
型を成形するとともに、 この型を前記模型から離座させ、残存する前記格子状部
材及び前記不導性球状体を除去して、前記型の表面に格
子状溝とこの格子状溝の各交差点部を通って前記型を貫
通し、且つ前記型の表面に相互に所定間隔を保って開口
する複数の通気孔を形成させる多孔性成形型の製造方
法。
1. A first step of applying a conductive paint on the surface of a model and attaching a grid member on the conductive paint,
The method includes a second step of attaching a non-conductive spherical body on each intersection of the lattice-like member, and a third step of forming an electroformed layer on the lattice-like member, and the non-conductivity is optional. The step of further mounting the non-conductive spherical body on the spherical body and the first to third steps are repeated to form a mold made of one or N electroformed layers on the model. The mold is separated from the model, the remaining grid-like member and the non-conductive spherical body are removed, and the grid-like grooves are formed on the surface of the mold through the intersections of the grid-like grooves. A method for producing a porous molding die, which comprises forming a plurality of vent holes penetrating the die and opening on the surface of the die at predetermined intervals.
【請求項2】 必要に応じて前記不導性球状体上に前記
格子状部材が取り付けられ、及び更にこの格子状部材の
各交差点部に前記不導性球状体が取り付けられる工程
と、前記第3工程とが繰り返されて、前記模型上に1又
はN層の電鋳造から型を成形するとともに、 この型を前記模型から離座させ、残存する前記格子状部
材及び前記不導性球状体を除去して、前記型の表面に格
子状溝と内部に格子状連通孔、及びこの格子状溝及び格
子状連通孔の各交差点部を通って貫通し、且つ前記型の
表面に相互に所定間隔を保って開口する複数の通気孔を
形成させることを特徴とする請求項1記載の多孔性成形
型の製造方法。
2. A step of mounting the grid-like member on the non-conductive spherical body as required, and further mounting the non-conductive spherical body at each intersection of the grid-shaped member, By repeating 3 steps, a mold is formed on the model by electroforming of 1 or N layers, and the mold is separated from the model to remove the remaining lattice-like member and the non-conductive spherical body. After being removed, it penetrates through the surface of the mold through the grid-like grooves and the grid-like communicating holes inside, and through the intersections of the grid-like grooves and the grid-like communicating holes, and at predetermined intervals with respect to the surface of the mold. The method for producing a porous mold according to claim 1, wherein a plurality of ventilation holes that are opened while maintaining the above are formed.
【請求項3】 前記格子状部材の各交差点部上に不導性
球状体を取り付ける第2工程が、前記格子状部材に接着
剤を塗布して、前記複数の不導性球状体を当該格子状部
材上に満遍なく拡散して付着させた後、当該格子状部材
に付着された前記複数の不導性球状体のうち、この格子
状部材の各交点部に付着されている不導性球状体を残し
て除去するこてにより行われることを特徴とする請求項
1又は請求項2それぞれに記載の多孔性成形型の製造方
法。
3. The second step of attaching non-conductive spheres on each intersection of the grid-like member, applying an adhesive to the grid-like member to attach the plurality of non-conductive spheres to the grid. Of the plurality of non-conducting spheres attached to the lattice-like member after being evenly diffused and attached to the lattice-like member, the non-conducting spheres attached to the intersections of the lattice-like member. The method for producing a porous mold according to claim 1 or 2, wherein the removal is carried out by leaving.
【請求項4】 前記格子状部材が、1方向に並列して複
数配置された第1線形部と当該第1線形部に直交する方
向に並列して複数配置された第2線形部とで格子状に構
成され、この各第1線形部の相互間、及び各第2線形部
の相互間の間隔を変動することにより、前記複数の通気
孔の相互の間隔を変更させることを特徴とする請求項1
から請求項3それぞれに記載の多孔性成形型の製造方
法。
4. The grid is composed of a plurality of first linear parts arranged in parallel in one direction and a plurality of second linear parts arranged in parallel in a direction orthogonal to the first linear part. It is comprised in the shape of, It is characterized by changing the space | interval of each said 1st linear part, and mutually changing each space | interval of each 2nd linear part. Item 1
4. The method for producing a porous mold according to claim 3, wherein
【請求項5】 型を貫通する複数の通気孔を有する多孔
性成形型において、前記複数の各通気孔が、前記型の表
面に形成された格子状溝の各交差点部を通って貫通し
て、前記型の表面に相互に所定間隔を保って開口してい
ることを特徴とする多孔性成形型。
5. A porous molding die having a plurality of vent holes penetrating through a mold, wherein each of the plurality of vent holes penetrates through each intersection of grid-like grooves formed on the surface of the mold. A porous molding die, which is opened at a predetermined distance from each other on the surface of the die.
【請求項6】 前記型の内部に格子状連通孔を形成する
とともに、前記複数の通気孔が前記格子状溝と当該格子
状連通孔の各交差点部を通って貫通して、前記型の表面
に相互に所定間隔を保って開口していることを特徴とす
る請求項5記載の多孔性成形型。
6. The surface of the mold is formed by forming a grid-like communication hole inside the mold, and through which the plurality of ventilation holes pass through the grid-like groove and each intersection of the grid-like communication hole. The porous molding die according to claim 5, wherein the porous molding dies are opened at predetermined intervals.
JP33060694A 1994-12-06 1994-12-06 Production of porous forming die and porous forming die Pending JPH08158089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33060694A JPH08158089A (en) 1994-12-06 1994-12-06 Production of porous forming die and porous forming die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33060694A JPH08158089A (en) 1994-12-06 1994-12-06 Production of porous forming die and porous forming die

Publications (1)

Publication Number Publication Date
JPH08158089A true JPH08158089A (en) 1996-06-18

Family

ID=18234544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33060694A Pending JPH08158089A (en) 1994-12-06 1994-12-06 Production of porous forming die and porous forming die

Country Status (1)

Country Link
JP (1) JPH08158089A (en)

Similar Documents

Publication Publication Date Title
US4872888A (en) Microporous membrane filter and method of producing same
US4575406A (en) Microporous filter
EP1843383A3 (en) Patterns of conductive objects on a substrate and method of producing thereof
US5453173A (en) Process for manufacturing a three-dimensional electroformed mold shell
EP0767257B1 (en) Process for manufacturing integrated electrodes in plastic moulds
JPH08158089A (en) Production of porous forming die and porous forming die
KR100996655B1 (en) Method of manufacturing a holey electroformed shell for patterning
JPH0625885A (en) Porous electroformed die and its production
JPH08277484A (en) Production of porous forming mold and porous forming mold
KR900007535B1 (en) Method of manufacturing an electrocast shell having permeability
EP2405033A1 (en) Porous electroformed shell for patterning and manufacturing method thereof
CA1328240C (en) Method of manufacturing a porous electroformed object
TWI703238B (en) Microporous copper foil manufacturing method and microporous copper foil
JP3429175B2 (en) Manufacturing method of porous electroformed shell
JP4213198B1 (en) Method for producing porous electroformed shell
JP2505395B2 (en) Method for manufacturing resin mold
KR100996656B1 (en) Holey electroformed shell for patterning
JPH04323393A (en) Electroformed product with through hole and its production
CN108149281B (en) Machining method of metal nozzle
CN211947209U (en) Solar cell film coating jig and solar cell
JPH02229512A (en) Production of plated perforated plate for filter medium
JP2000313983A (en) Manufacture of network body
JP3279776B2 (en) Porous electroformed mold and method for producing electroformed shell thereof
CN117769138A (en) Circuit board pattern electroplating method and related products
CN101831511B (en) Electroplated embossing plate and the manufacturing method of the same