JP3279776B2 - Porous electroformed mold and method for producing electroformed shell thereof - Google Patents

Porous electroformed mold and method for producing electroformed shell thereof

Info

Publication number
JP3279776B2
JP3279776B2 JP28766293A JP28766293A JP3279776B2 JP 3279776 B2 JP3279776 B2 JP 3279776B2 JP 28766293 A JP28766293 A JP 28766293A JP 28766293 A JP28766293 A JP 28766293A JP 3279776 B2 JP3279776 B2 JP 3279776B2
Authority
JP
Japan
Prior art keywords
electroformed
shell
layer
conductive
electroforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28766293A
Other languages
Japanese (ja)
Other versions
JPH07207485A (en
Inventor
関治 長田
勝 川村
純次 長田
周市 横山
洋人 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP28766293A priority Critical patent/JP3279776B2/en
Publication of JPH07207485A publication Critical patent/JPH07207485A/en
Application granted granted Critical
Publication of JP3279776B2 publication Critical patent/JP3279776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、プラスチック成形体を
製造するための中空成形型や射出成形型、繊維質成形層
体を製造するためのプレス型に用いられる多孔性電鋳成
形型及びその電鋳シェルの製造方法に関し、特に電鋳シ
ェルの厚みが5〜10mmと厚いものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous electroforming mold used for a hollow mold or an injection mold for producing a plastic molded article, a press mold for producing a fibrous molded layer body, and a porous electroforming mold for the same. The present invention relates to a method for manufacturing an electroformed shell, and particularly to a method for manufacturing an electroformed shell having a thickness of 5 to 10 mm.

【0002】[0002]

【従来の技術】上述した電鋳成形型は、模型の表面に導
電層を形成し、次いでその模型に電鋳処理を施して析出
した金属による電鋳シェルを形成し、この電鋳シェルを
型本体に用いるものである。複雑形状の型が簡単に形成
できるため、真空成形型等に使用されている。この真空
成形型は真空引き下で模様付けを行うため多孔性にする
必要がある。そこで、模型表面の導電層に微小の非導電
部を設け、この非導電部の部分には電鋳処理が施されな
いことによって多数の細孔を形成し多孔性にするものが
知られている。
2. Description of the Related Art In the electroforming mold described above, a conductive layer is formed on the surface of a model, and then the model is subjected to an electroforming process to form an electroformed shell of deposited metal. It is used for the main body. Since a mold having a complicated shape can be easily formed, it is used for a vacuum molding die and the like. This vacuum forming mold needs to be made porous so as to perform patterning under vacuum. Therefore, it has been known that a minute non-conductive portion is provided in a conductive layer on the surface of a model, and the non-conductive portion is not electroformed to form a large number of pores to make it porous.

【0003】この多孔性電鋳成形型は複雑形状の型が簡
単に形成できるため、真空成形型に限らず、上述した中
空成形型、射出成形型及びプレス型への適用の拡大が試
みられるようになった。
[0003] Since this porous electroforming mold can easily form a mold having a complicated shape, it is attempted to expand the application to not only the vacuum molding die but also the above-mentioned hollow molding die, injection molding die and press die. Became.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、中空成
形型、射出成形型及びプレス型のような型は、成形時に
所定の成形圧力が作用する型であり、電鋳シェルにの耐
圧性と耐久性が求められる。そのため、必然的に電鋳シ
ェルの厚みが5〜10mmと厚くなる。なお、真空成形
型の厚みは5mm程度と薄い。
However, molds such as a hollow mold, an injection mold, and a press mold are molds to which a predetermined molding pressure acts during molding, and have a high pressure resistance and durability to the electroformed shell. Is required. Therefore, the thickness of the electroformed shell is inevitably increased to 5 to 10 mm. Note that the thickness of the vacuum forming die is as thin as about 5 mm.

【0005】このように電鋳シェルが厚くなると、次の
ように問題点が発生する。第1の問題点は、通気のため
の細孔が厚みが増すと共に、金属析出で塞がってしまう
ことである。そのため、特公平2−14434のように
厚みが増すと共に細孔が広がる方法や、特開昭61−1
63290のように粒子の積層体の間を金属析出で埋
め、粒子を溶出して多孔性にする方法の適用が考えられ
るが、電鋳シェルの厚みが増したとしても、孔の部分が
占める体積が大きく、強度が不足する。
As described above, when the thickness of the electroformed shell is increased, the following problems occur. The first problem is that pores for ventilation increase in thickness and are blocked by metal deposition. For this reason, the method of increasing the thickness and widening the pores as disclosed in Japanese Patent Publication No.
As in 63290, it is possible to apply a method of filling the space between the particle stacks with metal precipitation and eluting the particles to make the particles porous. But the strength is insufficient.

【0006】第2の問題点は、5〜10mmの厚みの全
部を電鋳処理で形成するとなると、メッキ時間が長くな
って電鋳処理の特徴である内部応力が厚みを増す程大き
くなり、歪みが発生する。
A second problem is that if the entire thickness of 5 to 10 mm is to be formed by electroforming, the plating time becomes longer, and the internal stress, which is a characteristic of the electroforming, increases as the thickness increases, and the distortion increases. Occurs.

【0007】本発明は、従来の技術の有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、電鋳シェルが厚くても、通気のための細孔が厚
み方向に所定形状で開口しており、歪みも少ない多孔性
電鋳成形型及びその電鋳シェルの製造方法を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art. It is an object of the present invention to provide a method in which even if an electroformed shell is thick, pores for ventilation are formed in the thickness direction. It is an object of the present invention to provide a porous electroforming mold having an opening in a predetermined shape with less distortion and a method for producing the electroformed shell.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する多孔
性電鋳成形型は、表面から背面に貫通する細孔が多数開
口する電鋳シェルの背面に通気性のバッキング層が接着
される多孔性電鋳成形型であって、前記電鋳シェルは、
表面側の第1電鋳層と、該第1電鋳層の背面側に取り付
けられた導電性金属の網状体と、該網状体及び前記第1
電鋳層に接合する第2電鋳層とを含む積層体であり、電
鋳シェルの細孔は連珠状に形成されている型である。こ
の電鋳シェルの背面には前記網状体の凹凸が浮き出てい
る。
In order to achieve the above object, a porous electroforming mold is provided in which a gas-permeable backing layer is adhered to the back of an electroformed shell having a large number of pores penetrating from the surface to the back. An electroformed mold, wherein the electroformed shell comprises:
A first electroformed layer on the front side, a net of conductive metal attached to the back side of the first electroformed layer, the net and the first net;
It is a laminate including a second electroformed layer joined to the electroformed layer, wherein the pores of the electroformed shell are formed in a bead shape. On the back surface of the electroformed shell, irregularities of the net-like body are raised.

【0009】この多孔性電鋳成形型に用いられる電鋳シ
ェルの製造方法は、模型の表面に導電塗料を塗布し、こ
の導電塗料の上に梨地状に不導性球状体を付着させる第
1工程と、電鋳加工により第1電鋳層を形成する第2工
程と、この第1電鋳層上に網状体を取り付ける第3工程
と、電鋳加工により第1電鋳層と網状体上に第2電鋳層
を形成して積層体とする第4工程とを含み、前記第2及
び第4工程において、不導性球状体の大きさが電鋳層の
所望厚みより小さい場合には、前記模型を電解液から取
り出し、不導性球状体の上に更に不導性球状体を付着さ
せ、電解液に入れて再度電鋳処理を施すことを繰り返す
ことで所望厚さの電鋳層とし、前記積層体形成後、前記
積層体を模型から離脱させ、残存する不導性球状体を除
去して表面から背面に貫通する細孔を多数開口させる方
法である。この第1工程は、模型の表面に一次導電塗料
を塗布して乾燥させる工程と、該一次導電塗料の上に梨
地状に二次導電塗料を塗布する工程と、この二次導電塗
料が乾く前に不導性球状体を付着させる工程とからな
る。
A method for producing an electroformed shell used in this porous electroforming mold is to apply a conductive paint to the surface of a model, and adhere a non-conductive spherical body in a satin pattern on the conductive paint. A second step of forming a first electroformed layer by electroforming, a third step of attaching a net to the first electroformed layer, and a first step of forming a first electroformed layer and the net by electroforming. and a fourth step of the laminated body to form a second electroformed layer on said second及
In the fourth step, the size of the non-conductive spherical body is
If less than the desired thickness, remove the model from the electrolyte.
Stick out and attach a non-conductive sphere on top of the non-conductive sphere.
And put it in the electrolyte and repeat the electroforming process
A method of forming an electroformed layer of a desired thickness by this, after forming the laminate , removing the laminate from the model, removing the remaining non-conductive sphere, and opening a large number of pores penetrating from the surface to the back surface. It is. The first step is a step of applying and drying a primary conductive paint on the surface of the model, a step of applying a secondary conductive paint in a satin pattern on the primary conductive paint, and before the secondary conductive paint dries. And attaching a non-conductive spherical body to the substrate.

【0010】[0010]

【作用】電鋳層に網状体を取り付けられそのまま更に電
鋳層で一体的に覆われた積層体になっているので、電鋳
層が網状体で支えられ、強度アップになって歪みが少な
くなる。この網状体は電鋳シェルの背面に浮き出て来る
ため、バッキング層との接着性も向上する。
[Function] Since a laminated body is attached to the electroformed layer and is further integrally covered with the electroformed layer as it is, the electroformed layer is supported by the reticulated body, and the strength is increased to reduce distortion. Become. Since this net-like body emerges on the back surface of the electroformed shell, the adhesion to the backing layer is also improved.

【0011】この電鋳シェルの細孔は連珠形状であるた
め、不導性球状体を連設して電鋳処理を行うことで、厚
くなっても、同じ形状の細孔となる。
Since the pores of the electroformed shell have a bead shape, the electroforming process is performed by continuously connecting non-conductive spherical bodies, so that the pores have the same shape even when the thickness is increased.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。図1は本発明の多孔性電鋳成形型に用いられる
電鋳シェルの要部を示す図、図2は多孔性電鋳成形型の
断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a view showing a main part of an electroformed shell used in a porous electroformed mold of the present invention, and FIG. 2 is a sectional view of the porous electroformed mold.

【0013】図1(a)の電鋳シェル断面図において、
電鋳シェル1の背面にバッキング層2が補強のために裏
打ちされている。電鋳シェル1は、電鋳処理によりニッ
ケル、銅等の金属を析出させて形成した第1電鋳層11
と、真鍮網等の網状体12と、第1電鋳層11と同材質
の第2電鋳層13との積層体からなっている。バッキン
グ層2は、アルミ、ニッケル、亜鉛等の金属系粒状体1
5を電鋳シェル1の背面側に充満させ、金属系粒状体1
5同士及び電鋳シェル1との間をエポキシ樹脂、ポリエ
ステル樹脂等の樹脂バインダ16で接着したものであ
り、金属系粒状体15間に空間17が存在することで通
気性を有するものである。
In the sectional view of the electroformed shell shown in FIG.
A backing layer 2 is lined on the back of the electroformed shell 1 for reinforcement. The electroformed shell 1 includes a first electroformed layer 11 formed by depositing a metal such as nickel or copper by electroforming.
, A net body 12 such as a brass net, and a second electroformed layer 13 of the same material as the first electroformed layer 11. The backing layer 2 is made of a metal-based granular material 1 of aluminum, nickel, zinc, or the like.
5 on the back side of the electroformed shell 1
5 and the electroformed shell 1 are bonded with a resin binder 16 such as an epoxy resin or a polyester resin, and have air permeability due to the presence of a space 17 between the metal-based particles 15.

【0014】図1(b)の表面図において、網状体12
は碁盤目状の金網であって、網を構成する真鍮線12a
が補強部材となっている。電鋳シェル1の全面に埋設さ
れた網状体12は、全体の強度アップに寄与し、電鋳層
特有の内部応力に抗して歪みの発生を阻止している。こ
の網状体12の存在によって、電鋳シェル1の厚みが水
増しされたことになり、それだけ電鋳処理時間が短縮さ
れる。また、網状体12が接合状態で一体的に埋設され
たことにより、電鋳シェル1の背面側には網目模様が浮
き出て、凹凸模様が形成される。この凹凸模様にバッキ
ング層2が接着されることにより、層間の耐剥離性が向
上する。
In the surface view of FIG.
Is a grid metal wire mesh, and the brass wire 12a constituting the mesh
Are reinforcing members. The reticulated body 12 buried in the entire surface of the electroformed shell 1 contributes to an increase in the strength of the whole, and prevents generation of distortion against internal stress peculiar to the electroformed layer. Due to the presence of the net-like body 12, the thickness of the electroformed shell 1 is increased, and the electroforming time is shortened accordingly. Further, since the net-like body 12 is buried integrally in a joined state, a mesh pattern is protruded on the back side of the electroformed shell 1 and an uneven pattern is formed. By bonding the backing layer 2 to this uneven pattern, the peeling resistance between layers is improved.

【0015】そして、網状体12を構成する真鍮線12
a間には多数の細孔14が開口している。なお、真鍮線
12aの真下の細孔は二点鎖線のように塞がれるが、塞
がれた細孔は一部分であって、真空引きに支障が生じな
い程度になっている。
The brass wire 12 constituting the mesh 12
Many pores 14 are open between a. In addition, although the pore directly under the brass wire 12a is closed as shown by a two-dot chain line, the closed pore is only a part and does not interfere with evacuation.

【0016】図1(c)の細孔断面図において、細孔1
4は球を押し付けて連続させた連珠状であり、電鋳シェ
ル1の表面から背面へと略同一形状で貫通している。細
孔14が背面に至ると共に広がることなく、細孔14の
電鋳シェル1に占める割合は最小限であって、電鋳シェ
ル1の強度は細孔14の存在で損なわれない。この細孔
14の径は0.1〜0.3mmであって、1平方センチ
メートル当たり50〜200個が開口し、表面の転写性
を損なうことなく吸引可能となっている。
In the sectional view of the fine pores shown in FIG.
Reference numeral 4 denotes a continuous bead formed by pressing spheres, and penetrates from the surface of the electroformed shell 1 to the back in substantially the same shape. The pores 14 do not spread as they reach the back surface, and the proportion of the pores 14 in the electroformed shell 1 is minimal, and the strength of the electroformed shell 1 is not impaired by the presence of the pores 14. The diameter of the fine holes 14 is 0.1 to 0.3 mm, and 50 to 200 holes are opened per square centimeter, so that suction is possible without impairing the transferability of the surface.

【0017】上述した電鋳シェル1を用いる多孔性電鋳
成形型5を図2の断面図により説明する。上側がオープ
ンとなった容器状のダイプレート6にバッキング層2が
充填され、蓋に相当する電鋳シェル1がダイプレート6
に被せられて固着されたものである。電鋳シェル1の窪
み部分で成形材料が加圧されるので、窪み部分に細孔1
4が設けられている。そして、ダイプレート6の適所に
バッキング層2に至るパイプ7が設けられ、このパイプ
7を通じて真空引き、冷風通過による冷却、熱風通過に
よる加熱等が行われる。
A porous electroforming mold 5 using the above-described electroformed shell 1 will be described with reference to a sectional view of FIG. The backing layer 2 is filled in a container-shaped die plate 6 whose upper side is open, and the electroformed shell 1 corresponding to the lid is
And fixed. Since the molding material is pressurized in the recessed portion of the electroformed shell 1, pores 1 are formed in the recessed portion.
4 are provided. A pipe 7 that reaches the backing layer 2 is provided at an appropriate position on the die plate 6, and the pipe 7 is evacuated, cooled by passing cool air, and heated by passing hot air.

【0018】つぎに、上述した多孔性電鋳成形型の製造
方法を図3乃至図8に基づいて説明する。図3乃至図5
は微小な非導電部を有する導電層の形成する第1工程を
示す。図3に示すように、エポキシ樹脂、ポリエステル
樹脂等により成形品と同一形状の模型20(電鋳成形型
の逆形状)を製作する。この模型20の表面の全面に一
次導電塗料21を塗布して乾燥させる。この一次導電塗
料21には銅又は銀を含んだエポキシ系塗料が用いられ
る。
Next, a method of manufacturing the above-described porous electroforming mold will be described with reference to FIGS. 3 to 5
Shows a first step of forming a conductive layer having a minute non-conductive portion. As shown in FIG. 3, a model 20 (the reverse shape of the electroformed mold) having the same shape as the molded product is manufactured from an epoxy resin, a polyester resin, or the like. The primary conductive paint 21 is applied to the entire surface of the model 20 and dried. As the primary conductive paint 21, an epoxy paint containing copper or silver is used.

【0019】図4(a)に示すように、乾燥した一次導
電塗料21の上であって、細孔形成が必要な所望範囲
(図4(b)のように台形状に突出した部分)に二次導
電塗料を霧吹きで塗布し、梨の表面のアバタのように微
小な点が多数付着する梨地状とする。この二次導電塗料
22には銅又は銀を含んだアクリル系塗料が用いられ、
一次導電塗料21と明確に識別でき、梨地状に塗布し易
いものがよい。そして、電鋳処理時には、一次導電塗料
21と二次導電塗料22とで形成される外表面が電鋳シ
ェルの剥離面となる。
As shown in FIG. 4A, on the dried primary conductive paint 21, a desired range in which pore formation is required (portion protruding in a trapezoidal shape as shown in FIG. 4B). A secondary conductive paint is applied by spraying to form a pear-skin-like surface on which a large number of minute points adhere like an avatar on the surface of a pear. An acrylic paint containing copper or silver is used for the secondary conductive paint 22,
It is preferable that the primary conductive paint 21 can be clearly distinguished from the primary conductive paint 21 and can be easily applied in a satin pattern. Then, at the time of the electroforming process, the outer surface formed by the primary conductive paint 21 and the secondary conductive paint 22 becomes a peeling surface of the electroformed shell.

【0020】図5に示すように、梨地状に塗布された二
次導電塗料22が乾く前に、不導性球状体23を接触さ
せると、二次導電塗料22の上に不導性球状体23が付
着する。この不導性球状体23は溶剤で溶かすことがで
きるスチレン樹脂又はアクリル樹脂製であり、直径20
0〜500ミクロンの大きさのものが用いられる。
As shown in FIG. 5, before the secondary conductive paint 22 applied in a satin pattern is dried, the nonconductive spherical body 23 is brought into contact with the nonconductive spherical body 23 on the secondary conductive paint 22. 23 adheres. The non-conductive spherical body 23 is made of a styrene resin or an acrylic resin that can be dissolved with a solvent, and has a diameter of 20 mm.
Those having a size of 0 to 500 microns are used.

【0021】図6は第1電鋳層を形成する第2工程を示
している。第1工程によって形成された模型20を電解
液30中に漬け込み、電解液30中のニッケル、銅等の
電極31をプラス極に接続し、一次導電塗料21をマイ
ナス極に接続して通電して電鋳処理を施す。模型20表
面の一次導電塗料21と二次導電塗料22の上にはニッ
ケル、銅等の金属が析出し、第1電鋳層24が形成され
る。しかし、不導性球状体23には金属が析出せず、細
孔の元が形成されるので、第1電鋳層24は不導性球状
体23が露出している程度の厚みに止められる。
FIG. 6 shows a second step of forming the first electroformed layer. The model 20 formed in the first step is immersed in the electrolytic solution 30, the electrode 31 of nickel, copper or the like in the electrolytic solution 30 is connected to the positive electrode, and the primary conductive paint 21 is connected to the negative electrode to energize. An electroforming process is performed. Metals such as nickel and copper are deposited on the primary conductive paint 21 and the secondary conductive paint 22 on the surface of the model 20 to form a first electroformed layer 24. However, since no metal is deposited on the nonconductive spherical body 23 and the base of the pores is formed, the thickness of the first electroformed layer 24 is limited to such a degree that the nonconductive spherical body 23 is exposed. .

【0022】ところで、不導性球状体23の大きさが第
1電鋳層24の所望厚みより小さい場合には、模型20
を電解液30から取り出し、不導性球状体23の上に更
に溶剤等で不導性球状体23を付着させ、電解液30に
入れて再度電鋳処理を施す。この繰り返しによって、所
望厚さの第1電鋳層24が得られる。
If the size of the non-conductive spherical body 23 is smaller than the desired thickness of the first electroformed layer 24,
Is taken out of the electrolytic solution 30, the non-conductive spherical body 23 is further adhered on the non-conductive spherical body 23 with a solvent or the like, and the non-conductive spherical body 23 is put into the electrolytic solution 30 and electroformed again. By repeating this, the first electroformed layer 24 having a desired thickness is obtained.

【0023】図7は網状体を取り付ける第3工程を示し
ている。第1電鋳層24の表面に、真鍮網等の如き導電
性網状体25をスポット溶接又は真鍮線の結着により密
着状態に取り付ける。この網状体25は第1電鋳装置2
4の全面を覆うように取り付けられ、図示のように碁盤
目状であって、補強の為の芯材となる。
FIG. 7 shows a third step of attaching the mesh. A conductive net 25 such as a brass net is attached to the surface of the first electroformed layer 24 by spot welding or bonding a brass wire. This net-like body 25 is a first electroforming device 2
4 is attached so as to cover the entire surface, and has a grid shape as shown in the figure, and serves as a core material for reinforcement.

【0024】図8は第2電鋳層を形成する第4工程を示
している。第3工程によって形成された模型20を電解
液30中に漬け込み、電鋳処理を施す。第1電鋳層24
及び網状体25の上に一体的に接合する第2電鋳層26
が形成される。この第2電鋳層26で補強のための網状
体25が埋め込まれ、外部又は内部の応力を負担し歪み
の発生を防止する。なお、不導性球状体23の上に更に
溶剤等で不導性球状体23を付着させ、第2電鋳層26
の厚みを増やすことは適宜行われる。
FIG. 8 shows a fourth step of forming the second electroformed layer. The model 20 formed in the third step is immersed in the electrolytic solution 30 and subjected to an electroforming process. First electroformed layer 24
And the second electroformed layer 26 integrally joined on the net 25
Is formed. A mesh 25 for reinforcement is embedded in the second electroformed layer 26 to bear external or internal stress and prevent generation of distortion. The non-conductive spherical body 23 is further adhered on the non-conductive spherical body 23 with a solvent or the like to form the second electroformed layer 26.
Is appropriately increased.

【0025】そして、電鋳層が所望の厚みに達するま
で、上記第3工程と第4工程を繰り返し、電鋳層と網状
体の積層体が形成される。つぎに、模型20を電解液3
0から取り出し、積層体を模型20から離型させる。こ
の時、模型20の一次導電塗料21と二次導電塗料22
の界面が剥離面になり、不導性球状体23は積層体の中
に残る。
Then, the above-described third and fourth steps are repeated until the electroformed layer reaches a desired thickness, thereby forming a laminate of the electroformed layer and the mesh. Next, the model 20 is
Then, the laminate is released from the model 20. At this time, the primary conductive paint 21 and the secondary conductive paint 22 of the model 20 are used.
Becomes an exfoliated surface, and the nonconductive spherical body 23 remains in the laminate.

【0026】積層体の中に残存する不導性球状体23を
溶剤等で抽出して除去すると、連珠状の細孔が形成され
た電鋳シェルを得ることができる。この電鋳シェルを型
本体にして図2の如き多孔性電鋳成形型5が製作され
る。
When the nonconductive spherical body 23 remaining in the laminate is extracted and removed with a solvent or the like, an electroformed shell in which beads are formed can be obtained. Using this electroformed shell as a mold body, a porous electroformed mold 5 as shown in FIG. 2 is manufactured.

【0027】[0027]

【発明の効果】本発明の多孔性電鋳成形型は、電鋳層内
に補強のための網状体が一体的に埋設されているため、
電鋳処理特有の内部応力にこの網状体が抗するため、電
鋳層を厚くしても歪みが少なくなり、5〜10mmもの
厚みを有し耐久性及び耐圧性に優れた電鋳シェルを用い
ることが可能になる。この網状体によって電鋳層の背面
に凹凸が浮き出るため、凹凸によってバッキング層と電
鋳層のずれが阻止され、両層の接着が充分になされ、層
間剥離の発生を防止できる。また、細孔は連珠状であ
り、所定大きさの細孔を厚み方向に連ねることで、5〜
10mmもの厚みを有していても、閉塞することなく且
つ拡大することもなく、所定の径の細孔を電鋳シェルの
表面から裏面に貫通させることができる。
According to the porous electroforming mold of the present invention, a mesh for reinforcement is integrally embedded in the electroformed layer.
Because the mesh resists the internal stress peculiar to the electroforming process, the strain is reduced even if the electroformed layer is thickened, and an electroformed shell having a thickness of 5 to 10 mm and having excellent durability and pressure resistance is used. It becomes possible. Since the irregularities are raised on the back surface of the electroformed layer by the mesh, the deviation between the backing layer and the electroformed layer is prevented by the irregularities, the two layers are sufficiently bonded, and the occurrence of delamination can be prevented. Further, the pores are cascading, and by connecting pores of a predetermined size in the thickness direction, 5 to 5
Even if it has a thickness of 10 mm, the pores having a predetermined diameter can be penetrated from the front surface to the back surface of the electroformed shell without being closed and expanded.

【0028】また、本発明の電鋳シェルの製造方法は、
導電塗料の上に梨地状に不導性球状体を付着させ、必要
に応じて不導性球状体の上に更に不導性球状体を付着さ
せるので、連珠状の細孔を細長く形成することが可能に
なる。この細孔の大きさは不導性球状体の大きさで決ま
り、細孔の径も任意に選択可能である。また、導電塗料
を一次導電塗料と梨地状二次導電塗料の組合せすると、
細孔を設ける部分を任意に選択でき、複雑形状の電鋳シ
ェルの形成に対応可能である。さらに、導電層内には網
状体が埋設されており、この網状体の分だけ厚みが稼げ
るので、所望厚みの電鋳層を得るための電鋳処理時間を
短縮させることもできる。
Further, the method for producing an electroformed shell according to the present invention comprises:
A non-conductive sphere is attached on the conductive paint in a satin pattern, and if necessary, a non-conductive sphere is further attached on the non-conductive sphere. Becomes possible. The size of the pores is determined by the size of the non-conductive spherical body, and the diameter of the pores can be arbitrarily selected. Also, when the conductive paint is combined with the primary conductive paint and the matte secondary conductive paint,
The portion where the pores are provided can be arbitrarily selected, and it is possible to cope with the formation of an electroformed shell having a complicated shape. Further, a net is buried in the conductive layer, and the thickness can be increased by the amount of the net, so that the electroforming time for obtaining an electroformed layer having a desired thickness can be shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の多孔性電鋳成形型に用いられる電鋳シ
ェルの要部を示す図である。
FIG. 1 is a view showing a main part of an electroformed shell used in a porous electroformed mold of the present invention.

【図2】多孔性電鋳成形型の断面図である。FIG. 2 is a sectional view of a porous electroforming mold.

【図3】本発明の電鋳シェル製造の第1工程を示す図で
ある。
FIG. 3 is a view showing a first step of manufacturing an electroformed shell of the present invention.

【図4】本発明の電鋳シェル製造の第1工程を示す図で
ある。
FIG. 4 is a view showing a first step of manufacturing an electroformed shell of the present invention.

【図5】本発明の電鋳シェル製造の第1工程を示す図で
ある。
FIG. 5 is a diagram showing a first step of manufacturing an electroformed shell of the present invention.

【図6】本発明の電鋳シェル製造の第2工程を示す図で
ある。
FIG. 6 is a view showing a second step of manufacturing the electroformed shell of the present invention.

【図7】本発明の電鋳シェル製造の第3工程を示す図で
ある。
FIG. 7 is a view showing a third step of manufacturing the electroformed shell of the present invention.

【図8】本発明の電鋳シェル製造の第4工程を示す図で
ある。
FIG. 8 is a view showing a fourth step of manufacturing the electroformed shell of the present invention.

【符号の説明】[Explanation of symbols]

1 電鋳シェル 2 バッキング層 5 多孔性電鋳成形型 11,24 第1電鋳層 12,25 網状体 13,26 第2電鋳層 14 細孔 20 模型 21 一次導電塗料 22 二次導電塗料 23 不導性球状体 REFERENCE SIGNS LIST 1 electroformed shell 2 backing layer 5 porous electroformed mold 11, 24 first electroformed layer 12, 25 mesh body 13, 26 second electroformed layer 14 pores 20 model 21 primary conductive paint 22 secondary conductive paint 23 Non-conductive sphere

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横山 周市 岐阜県各務原市松が丘7丁目6番地 (72)発明者 長岡 洋人 愛知県小牧市桃ヶ丘1丁目11−11 (58)調査した分野(Int.Cl.7,DB名) C25D 1/00 B29C 33/38 C25D 1/08 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Shu Yokoyama 7-6-6 Matsugaoka, Kakamigahara City, Gifu Prefecture (72) Inventor Hiroto Nagaoka 1-11-11 Momokaoka, Komaki City, Aichi Prefecture (58) Fields surveyed (58) Int.Cl. 7 , DB name) C25D 1/00 B29C 33/38 C25D 1/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 表面から背面に貫通する細孔が多数開口
する電鋳シェルの背面に通気性のバッキング層が接着さ
れる多孔性電鋳成形型であって、前記電鋳シェルは、表
面側の第1電鋳層と、該第1電鋳層の背面側に取り付け
られた導電性金属の網状体と、該網状体及び前記第1電
鋳層に接合する第2電鋳層とを含む積層体であり、電鋳
シェルの細孔は連珠状に形成されている多孔性電鋳成形
型。
1. A porous electroforming mold in which a gas-permeable backing layer is adhered to a back surface of an electroformed shell having a large number of pores penetrating from a surface to a back surface, wherein the electroformed shell has a surface side. A first electroformed layer, a net of conductive metal attached to the back side of the first electroformed layer, and a second electroformed layer joined to the net and the first electroformed layer. A porous electroforming mold in which the electroformed shell is a laminate and the pores of the electroformed shell are formed in a bead shape.
【請求項2】 記電鋳シェルの背面には前記網状体の
凹凸が浮き出ている請求項1記載の多孔性電鋳成形型
2. A pre-Symbol electroforming claim 1 porous electroformed mold, characterized in that stand out irregularities of the mesh body on the back of the shell.
【請求項3】 模型の表面に導電塗料を塗布し、この導
電塗料の上に梨地状に不導性球状体を付着させる第1工
程と、電鋳加工により第1電鋳層を形成する第2工程
と、この第1電鋳層上に網状体を取り付ける第3工程
と、電鋳加工により第1電鋳層と網状体上に第2電鋳層
を形成して積層体とする第4工程とを含み、前記第2及び第4工程において、不導性球状体の大きさ
が電鋳層の所望厚みより小さい場合には、前記模型を電
解液から取り出し、不導性球状体の上に更に不導性球状
体を付着させ、電解液に入れて再度電鋳処理を施すこと
を繰り返すことで所望厚さの電鋳層とし、 前記積層体形成後、 前記積層体を模型から離脱させ、残
存する不導性球状体を除去して表面から背面に貫通する
細孔を多数開口させる電鋳シェルの製造方法。
3. A first step in which a conductive paint is applied to the surface of the model and a non-conductive spherical body is adhered on the conductive paint in a satin pattern, and a first step in which a first electroformed layer is formed by electroforming. A second step, a third step of attaching a net on the first electroformed layer, and a fourth step of forming a second electroformed layer on the first electroformed layer and the net by electroforming to form a laminate. And the size of the non-conductive sphere in the second and fourth steps
Is smaller than the desired thickness of the electroformed layer,
Take out from the solution and place more nonconductive spheres on the nonconductive spheres
Attach the body, put it in the electrolyte and apply the electroforming process again
By repeating this, an electroformed layer having a desired thickness is formed, and after forming the laminate , the laminate is separated from the model, and the remaining non-conductive spheres are removed to open a large number of pores penetrating from the front surface to the back surface. Method for producing an electroformed shell.
【請求項4】 記第1工程は、模型の表面に一次導電
塗料を塗布して乾燥させる工程と、該一次導電塗料の上
に梨地状に二次導電塗料を塗布する工程と、この二次導
電塗料が乾く前に不導性球状体を付着させる工程とから
なる請求項3記載の電鋳シェルの製造方法
4. Before Symbol first step includes a step of drying by applying a primary conductive coating on the surface of the model, and applying a textured secondary conductive coating over the primary conductive coating, the secondary 4. A method for producing an electroformed shell according to claim 3, comprising the step of attaching a nonconductive spherical body before the secondary conductive paint dries.
JP28766293A 1993-10-21 1993-10-21 Porous electroformed mold and method for producing electroformed shell thereof Expired - Fee Related JP3279776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28766293A JP3279776B2 (en) 1993-10-21 1993-10-21 Porous electroformed mold and method for producing electroformed shell thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28766293A JP3279776B2 (en) 1993-10-21 1993-10-21 Porous electroformed mold and method for producing electroformed shell thereof

Publications (2)

Publication Number Publication Date
JPH07207485A JPH07207485A (en) 1995-08-08
JP3279776B2 true JP3279776B2 (en) 2002-04-30

Family

ID=17720109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28766293A Expired - Fee Related JP3279776B2 (en) 1993-10-21 1993-10-21 Porous electroformed mold and method for producing electroformed shell thereof

Country Status (1)

Country Link
JP (1) JP3279776B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5316845B2 (en) * 2008-07-29 2013-10-16 トヨタ紡織株式会社 Mold for injection molding
EP2405033B1 (en) 2010-07-07 2013-05-29 Moltex Co Porous electroformed shell for patterning and manufacturing method thereof

Also Published As

Publication number Publication date
JPH07207485A (en) 1995-08-08

Similar Documents

Publication Publication Date Title
JP2647410B2 (en) Manufacturing method of filter
US5795519A (en) Process of making a microstructured plastic mold
JPH0754891A (en) Friction lining for disc brake and its preparation
WO2000069612A1 (en) Replaceable mold cavities and mold cavity inserts
JP3279776B2 (en) Porous electroformed mold and method for producing electroformed shell thereof
US3424635A (en) Method of making composite printing plate
KR100996655B1 (en) Method of manufacturing a holey electroformed shell for patterning
JPH11320608A (en) Sheet for molding simultaneously with foil decorating, and production of resin molded article molded by simultaneous foil decoration using the sheet
CA1287012C (en) Method of manufacturing an electrocast shell having permeability
EP2405033B1 (en) Porous electroformed shell for patterning and manufacturing method thereof
JPH07173667A (en) Production of electroforming shell having air permeability
JP3429175B2 (en) Manufacturing method of porous electroformed shell
TWI703238B (en) Microporous copper foil manufacturing method and microporous copper foil
JPH0464851B2 (en)
JPH0114848B2 (en)
JPH0825229B2 (en) Synthetic resin sheet for transferring uneven patterns
JP2940906B2 (en) Method for producing porous mold and porous mold
KR100996656B1 (en) Holey electroformed shell for patterning
CN113134221B (en) Golf club head with carbon fiber plate and manufacturing method thereof
JP2505395B2 (en) Method for manufacturing resin mold
JPH0468132B2 (en)
JP2002316013A (en) Filtration filter
JPS61104820A (en) Mold with embossed pattern for synthetic resin sheet
JPS61208892A (en) Manufacture of plastic molding with wire network
JPH04161312A (en) Wire mesh laminated synthetic injection molding, its manufacture and its use

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees