JPH0815646A - Optical low-pass filter and image forming system therewith - Google Patents

Optical low-pass filter and image forming system therewith

Info

Publication number
JPH0815646A
JPH0815646A JP17208094A JP17208094A JPH0815646A JP H0815646 A JPH0815646 A JP H0815646A JP 17208094 A JP17208094 A JP 17208094A JP 17208094 A JP17208094 A JP 17208094A JP H0815646 A JPH0815646 A JP H0815646A
Authority
JP
Japan
Prior art keywords
unit pattern
pass filter
minute
image
optical low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17208094A
Other languages
Japanese (ja)
Inventor
Shoichi Yamazaki
章市 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17208094A priority Critical patent/JPH0815646A/en
Publication of JPH0815646A publication Critical patent/JPH0815646A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect the information of the line of sight with high accuracy by means of the positional information of the image of eyes formed on a photographing element by providing a unit pattern region composed of minute patterns whose sizes are different from each other with a prescribed repeated pitch on a substrate, diffracting a passing light beam and obtaining a low-pass effect. CONSTITUTION:A unit pattern region is composed of three minute patterns 1-3 having projected shape and recessed shape and their sizes are different from each other. Phase differences are imparted between the light beams transmitted through the minute pattern and its surrounding region among the light beams incident on these unit pattern regions, the beams are diffracted and thus a desired low-pass effect is obtained. Specially, the low-pass filter blurs the image two-dimensionally when the positional information is not detected by an image pickup element because of the small image of eyes of an observer and has the low-pass effect detecting the positional information on the surface of the image pickup element with high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学的ローパスフィルタ
ー及びそれを有した結像系に関し、特にビデオカメラ、
電子スチルカメラ等において、撮影者の眼球の視線情報
を検出し、該視線情報に基づいて焦点検出や測光等の各
種の撮影情報を選択して撮影する際の観察者の眼球像を
CCD等の撮像素子面上に結像させる際に好適な光学的
ローパスフィルター及びそれを有した結像系に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical low-pass filter and an imaging system having the same, and more particularly to a video camera,
In an electronic still camera or the like, the line-of-sight information of the eyeball of the photographer is detected, and various types of image-pickup information such as focus detection and photometry are selected based on the line-of-sight information, and the eyeball image of the observer at the time of photographing is displayed by a CCD or the like. The present invention relates to an optical low pass filter suitable for forming an image on the surface of an image sensor and an image forming system having the optical low pass filter.

【0002】[0002]

【従来の技術】一般に離散的画素構造を有する固体撮像
素子を用いた結像系では画像情報を光学的に空間サンプ
リングして出力画像を得ている。この場合、被写体にサ
ンプリング周波数以上の高空間周波数成分が含まれてい
ると被写体が有していない構造や色合い等の偽信号が発
生してくる。即ち結像系によって採取することのできな
い周波数成分(ナイキスト周波数を越える周波数成分)
は画像情報として再現することができず、所謂波形歪み
(エイリアシス)、モアレ縞、偽色等が形成される原因
となってくる。この為従来より光学的ローパスフィルタ
ーを結像系の一部に配置して被写体の高空間周波数成分
を制限している。
2. Description of the Related Art Generally, in an image forming system using a solid-state image pickup device having a discrete pixel structure, image information is optically spatially sampled to obtain an output image. In this case, if the subject includes a high spatial frequency component equal to or higher than the sampling frequency, a false signal such as a structure or a hue that the subject does not have occurs. That is, frequency components that cannot be sampled by the imaging system (frequency components exceeding the Nyquist frequency)
Cannot be reproduced as image information, and causes so-called waveform distortion (aliasing), moire fringes, false colors, and the like. Therefore, conventionally, an optical low-pass filter is arranged in a part of the image forming system to limit the high spatial frequency component of the subject.

【0003】光学的ローパスフィルター及びそれを有し
た結像系は従来より種々の型のものが提案されている。
このうち例えば特公昭52−22247号公報では位相
格子を用いた光学的ローパスフィルターを提案してい
る。同公報では断面形状が台形波状の位相格子を1次元
方向に連続的に配置し、そのときの頂上平坦部と傾斜面
の形状やピッチ等を特定し、良好なるローパス効果を得
ている。
Various types of optical low-pass filters and image forming systems having the same have been conventionally proposed.
Among them, for example, Japanese Patent Publication No. 52-22247 proposes an optical low-pass filter using a phase grating. In this publication, phase gratings having a trapezoidal wave-shaped cross section are continuously arranged in a one-dimensional direction, and the shapes and pitches of the flat top portion and the inclined surface at that time are specified to obtain a good low-pass effect.

【0004】又、特公昭56−2936号公報では位相
格子より成る光学的ローパスフィルターを撮影系の一部
に設けて使用する場合、絞りの開口径を小さくしたとき
でも所定のローパス効果が得られるようにした撮影系を
提案している。
Further, in Japanese Patent Publication No. 56-2936, when an optical low-pass filter composed of a phase grating is provided in a part of the photographing system and used, a predetermined low-pass effect can be obtained even when the aperture diameter of the diaphragm is reduced. I am proposing a photography system that does this.

【0005】[0005]

【発明が解決しようとする課題】最近、ビデオカメラや
35mmフィルムカメラ等の撮影系においては撮影範囲
中に複数の測距点を設けて任意の測距点の距離情報を用
いる多点測距装置や複数の測光点を設けて撮影範囲中の
任意の領域の測光情報(露光情報)を用いる多点測光装
置を設けたものが種々と提案されている。
Recently, in a photographing system such as a video camera or a 35 mm film camera, a plurality of distance measuring points are provided in a photographing range and a distance measuring device using the distance information of an arbitrary distance measuring point is used. Various types of multi-point photometric devices have been proposed, in which a plurality of photometric points are provided and the photometric information (exposure information) of an arbitrary area in the photographing range is used.

【0006】そしてこのときの測距点や測光点を観察者
の視線情報を利用して選択するようにした視線入力装置
が各々と提案されている。このとき観察者の視線情報は
眼球に赤外光を照射し、このとき生じる眼球のプルキン
エ像等の眼球に関する像(以下「P像」と略称する。)
をCCD等の撮影素子面上に結像させて、該撮像素子か
らのP像の位置情報を用いて求めている。P像をCCD
に結像するときP像がCCDの一画素の大きさよりも小
さくなる場合が生じてくる。そうするとP像の位置情報
が得られなくなってくる。
There has been proposed each of the line-of-sight input devices in which the distance measuring point and the light measuring point at this time are selected by utilizing the line-of-sight information of the observer. At this time, as for the line-of-sight information of the observer, an image of the eyeball such as a Purkinje image of the eyeball generated at this time by irradiating the eyeball with infrared light (hereinafter abbreviated as “P image”).
Is imaged on the surface of an image pickup device such as a CCD, and the position information of the P image from the image pickup device is used to obtain the image. CCD of P image
In some cases, the P image becomes smaller than the size of one pixel of the CCD when the image is formed at. Then, the position information of the P image cannot be obtained.

【0007】本発明は、観察者の眼球を赤外光で照明し
たときに得られるP像をCCD等の撮影素子面上に形成
し、該撮影素子に形成したP像の位置情報より眼球の視
線情報を高精度に検出することのできる光学的ローパス
フィルター及びそれを有した結像系の提供を目的とす
る。
According to the present invention, a P image obtained when an observer's eyeball is illuminated with infrared light is formed on the surface of an image pickup device such as a CCD, and the eyeball position is determined from the position information of the P image formed on the image pickup device. An object of the present invention is to provide an optical low-pass filter capable of detecting line-of-sight information with high accuracy and an imaging system having the optical low-pass filter.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

(1−1)本発明の光学的ローパスフィルターは、凸部
又は凹部の大きさの異なる複数の微小パターンより成る
単位パターン領域を複数個、所定の繰り返しピッチで基
板面上に設け、該単位パターン領域を通過する光束を回
折させてローパス効果を得ていることを特徴としてい
る。
(1-1) The optical low-pass filter according to the present invention is provided with a plurality of unit pattern areas each having a plurality of minute patterns having different sizes of a convex portion or a concave portion on a substrate surface at a predetermined repeating pitch. It is characterized in that a low-pass effect is obtained by diffracting the light flux passing through the region.

【0009】(2−1)本発明の光学的ローパスフィル
ターを有した結像系は、凸部又は凹部の大きさの異なる
複数の微小パターンより成る単位パターン領域を複数
個、所定の繰り返しピッチで基板面上に設け、該単位パ
ターン領域を通過する光束を回折させてローパス効果を
得るようにした光学的ローパスフィルターを結像レンズ
の焦点面から光軸方向に所定量、離れた位置に設けたこ
とを特徴としている。
(2-1) In the image forming system having the optical low-pass filter of the present invention, a plurality of unit pattern areas composed of a plurality of minute patterns having different sizes of convex portions or concave portions are formed at a predetermined repeating pitch. An optical low-pass filter, which is provided on the substrate surface and diffracts the light flux passing through the unit pattern area to obtain the low-pass effect, is provided at a position apart from the focal plane of the imaging lens by a predetermined amount in the optical axis direction. It is characterized by that.

【0010】[0010]

【実施例】図1〜図4は本発明の光学的ローパスフィル
ターの要部平面図である。本実施例では何れも単位パタ
ーン領域を架空の正6角形又は同心円とし(実際にはこ
のような6角形や同心円の線は存在しない。)該単位パ
ターン領域を複数個、所定の繰り返しピッチTで2次元
的に蜂の巣の形状となるように配置したときの1つの単
位パターン領域を示している。
1 to 4 are plan views of the essential parts of an optical low-pass filter according to the present invention. In each of the embodiments, the unit pattern area is a fictitious regular hexagon or concentric circles (actually, such hexagonal or concentric circle lines do not exist). A plurality of the unit pattern areas are arranged at a predetermined repeating pitch T. It shows one unit pattern area when it is arranged so as to have a honeycomb shape two-dimensionally.

【0011】本実施例では単位パターン領域内に凸状又
は凹状の大きさの異なる複数の微小パターン1〜nがラ
ンダムに又は一定の規則性を有するように透明基板面上
に形成している。
In this embodiment, a plurality of minute patterns 1 to n having different convex or concave sizes are formed in the unit pattern area on the transparent substrate surface so as to have random or constant regularity.

【0012】図1,図3の実施例1,3では単位パター
ン領域を凸状又は凹状の大きさの異なる3つの微小パタ
ーンより構成している。図2,図4の実施例2,4では
単位パターン領域を凸状又は凹状の大きさの異なる2つ
の微小パターンより構成している。
In the first and third embodiments shown in FIGS. 1 and 3, the unit pattern area is composed of three minute patterns having different convex or concave sizes. In Embodiments 2 and 4 of FIGS. 2 and 4, the unit pattern region is composed of two minute patterns having different sizes such as a convex shape and a concave shape.

【0013】本発明の光学的ローパスフィルターの単位
パターン領域の繰り返しピッチTは主に赤外光(例えば
波長λ=880nm)を対象としている為に100μm
から200μmである。これは可視域を対象とする通常
の光学的ローパスフィルターのピッチ30μm〜40μ
mに比べて大きくなっている。又使用波長をλ、微小パ
ターンによる山と谷との位相差θがπ、基板の材質をア
クリル(屈折率n)、山と谷との深さをdとしたとき
The repeating pitch T of the unit pattern region of the optical low-pass filter of the present invention is 100 μm because it is mainly intended for infrared light (wavelength λ = 880 nm).
To 200 μm. This is a normal optical low-pass filter pitch of 30 μm to 40 μ for the visible range.
It is larger than m. When the wavelength used is λ, the phase difference θ between peaks and valleys due to the minute pattern is π, the substrate material is acrylic (refractive index n), and the depth between peaks and valleys is d.

【0014】[0014]

【数1】 程度となっている。尚波長λとして可視光の波長を用い
れば可視域でも使用可能である。
[Equation 1] It has become a degree. If the wavelength of visible light is used as the wavelength λ, it can be used in the visible range.

【0015】本実施例では微小パターンを何れも大きさ
の異なる複数の互いに独立の円形パターンより構成して
いるが、微小パターンの形状は円形に限らず、楕円、四
角等どのような形状であっても良い。
In this embodiment, the minute pattern is composed of a plurality of independent circular patterns each having a different size. However, the shape of the minute pattern is not limited to a circle, but may be any shape such as an ellipse or a square. May be.

【0016】本実施例ではこれらの単位パターン領域に
入射した光束、例えば赤外光のうち微小パターンとその
周囲の領域とを通過した光束間に各々位相差を付与する
と共に回折させ、これにより所望のローパス効果を得て
いる。例えば低次の回折光(低周波数成分)を強くし、
高次の回折光(高周波数成分)を弱くしている。
In the present embodiment, the light fluxes incident on these unit pattern areas, for example, the light fluxes passing through the minute pattern and the surrounding area of the infrared light are respectively imparted with a phase difference and diffracted, whereby The low-pass effect is obtained. For example, strengthen the low-order diffracted light (low frequency component),
Higher order diffracted light (high frequency component) is weakened.

【0017】特に本発明の光学的ローパスフィルターは
観察者の眼球に関する像(プルキンエ像や虹彩そして瞳
孔等の像)が小さくてCCD等の撮像素子でその位置情
報が検出できないようなときに、該像を2次元的にぼか
し、撮像素子面上での像の位置情報を高精度に検出でき
るようなローパス効果を有している。
Particularly, the optical low-pass filter of the present invention is used when the image of the eyeball of the observer (Purkinje image, iris, pupil, etc.) is so small that its position information cannot be detected by an image pickup device such as CCD. It has a low-pass effect that blurs an image two-dimensionally and can detect the position information of the image on the surface of the image sensor with high accuracy.

【0018】本発明の光学的ローパスフィルターは以上
のような構成により所望のローパス効果を得ているが、
更に次のような構成をとることが望ましい。
The optical low-pass filter of the present invention obtains a desired low-pass effect by the above-mentioned constitution,
Further, it is desirable to have the following configuration.

【0019】(1−イ)前記単位パターン領域はその中
心と該中心を原点とした複数の同心円の円周上に各々微
小パターンが設けられていることである。これにより、
上下方向と左右方向のボケが異なってきて楕円状のボケ
となるのを防止して、回転対称な良好なる円形ボケとな
るようにしている。
(1-a) In the unit pattern area, minute patterns are provided respectively on the center and on the circumference of a plurality of concentric circles having the center as the origin. This allows
The blurring in the vertical direction and the blurring in the left-right direction are prevented from becoming different from each other to prevent the blurring in an elliptical shape, so that a circular blur having a good rotational symmetry is formed.

【0020】(1−ロ)前記微小パターンとその周囲を
通過する光束間の位相差をθ、該微小パターン全体の前
記単位パターン領域に占める面積比をSrとしたとき 0.25π≦θ≦1.25π ‥‥‥(1) 0.1≦Sr≦0.7 ‥‥‥(2) なる条件を満足することである。
(1-b) When the phase difference between the minute pattern and the light flux passing therethrough is θ and the area ratio of the entire minute pattern to the unit pattern region is Sr, 0.25π ≦ θ ≦ 1 .25π ... (1) 0.1 ≦ Sr ≦ 0.7 (2) The condition is satisfied.

【0021】条件式(1),(2)は微小パターンとそ
の周囲を通過する光束間の位相差と単位パターン領域内
の面積比を適切に設定し、良好なるローパス効果を得る
為のものである。
Conditional expressions (1) and (2) are for obtaining a good low-pass effect by appropriately setting the phase difference between the minute pattern and the light flux passing through it and the area ratio in the unit pattern area. is there.

【0022】条件式(1)の下限値を越えると0次光
(直進成分)が強くなりすぎ、ボケが少なくなり、ロー
パス効果が薄れてくる。又上限値を越えると逆に0次光
が弱くなりすぎ、ボケが大きくなってくるので良くな
い。
If the lower limit of conditional expression (1) is exceeded, the zero-order light (straight component) becomes too strong, blurring is reduced, and the low-pass effect is diminished. On the other hand, if the upper limit is exceeded, on the contrary, the 0th-order light becomes too weak and the blur becomes large, which is not good.

【0023】条件式(2)の下限値を越えると低次回折
光が小さくなり、ボケが少なくなってきてローパス効果
が薄れてくる。又上限値を越えると微小パターンを基板
面上に独立に配置するのが難しくなってくるので良くな
い。
If the lower limit of conditional expression (2) is exceeded, the low-order diffracted light will be small, blurring will be small, and the low-pass effect will be weakened. On the other hand, if the upper limit is exceeded, it becomes difficult to independently arrange minute patterns on the substrate surface, which is not preferable.

【0024】尚本発明において更に良好なるローパス効
果を得るには条件式(1),(2)の数値範囲を次の如
く設定するのが良い。
In order to obtain a better low-pass effect in the present invention, it is preferable to set the numerical ranges of conditional expressions (1) and (2) as follows.

【0025】 0.5π≦θ≦1.1π ‥‥‥(1a) 0.35≦Sr≦0.6 ‥‥‥(2a) (1−ハ)前記単位パターン領域の繰り返しピッチをT
としたとき 0.1mm≦T ‥‥‥(3) なる条件を満足することである。繰り返しピッチTが条
件式(3)の下限値を越えると高次回折光が強くなりす
ぎ、ボケが大きくなってくるので良くない。
0.5π ≦ θ ≦ 1.1π (1a) 0.35 ≦ Sr ≦ 0.6 (2a) (1-c) The repeating pitch of the unit pattern area is T
Then, the condition that 0.1 mm ≦ T (3) is satisfied. If the repeating pitch T is below the lower limit of conditional expression (3), the high-order diffracted light becomes too strong and the blur becomes large, which is not good.

【0026】尚本発明において更に好ましくは条件式
(3)の数値範囲を次の如く設定するのが良い。
In the present invention, it is more preferable to set the numerical range of conditional expression (3) as follows.

【0027】 0.1mm≦T≦2.0mm ‥‥‥(3a) 一般にローパスフィルターを結像系中に設ける場合、絞
り(瞳)の径の中に少なくとも2周期分以上の単位パタ
ーン領域が存在するのが良い。条件式(3a)はこのこ
とを考慮して設定し、条件式(3a)を満足することに
より良好なるローパス効果を得ている。
0.1 mm ≦ T ≦ 2.0 mm (3a) Generally, when a low-pass filter is provided in the imaging system, a unit pattern area of at least two cycles exists in the diameter of the diaphragm (pupil). Good to do. Conditional expression (3a) is set in consideration of this, and by satisfying conditional expression (3a), a good low-pass effect is obtained.

【0028】次に光学的ローパスフィルターの実施例1
〜4の数値例を示す。数値データにおいてNo.は微小
パターンの番号、X,Yは単位パターン領域内(6角形
内)の中心を原点(0,0)としたときの微小パターン
の中心座標、dは山と谷の深さ、Rは微小パターンの半
径を示している。
Next, Example 1 of the optical low-pass filter
Numerical examples of 4 are shown. In the numerical data, No. Is the fine pattern number, X and Y are the center coordinates of the fine pattern when the center of the unit pattern area (within the hexagon) is the origin (0, 0), d is the depth of the peaks and valleys, and R is the fine The radius of the pattern is shown.

【0029】〈数値例1〉 No. Xmm Ymm dmm Rmm 1 0.000 0.000 0.00094 0.077 2 0.095 0.000 0.00094 0.012 3 -0.095 0.000 0.00094 0.012 4 -0.142 0.082 0.00094 0.043 5 -0.142 -0.082 0.00094 0.043 6 0.000 -0.165 0.00094 0.043 7 0.142 -0.082 0.00094 0.043 8 0.142 0.082 0.00094 0.043 9 0.000 0.165 0.00094 0.043 単位パターン正6角形の一辺 0.165mm θ=1.0π(λ=880nm) Sr=44.5%
T=0.286mm 〈数値例2〉 No. Xmm Ymm dmm Rmm 1 0.000 0.000 0.0008 0.070 2 -0.066 0.116 0.0008 0.030 3 -0.134 0.000 0.0008 0.030 4 -0.067 -0.115 0.0008 0.030 5 0.067 -0.116 0.0008 0.030 6 0.133 0.000 0.0008 0.030 7 0.066 0.116 0.0008 0.030 単位パターン正6角形の一辺 0.154mm θ=0.88π(λ=880nm) Sr=38.8%
T=0.267mm 〈数値例3〉 No. Xmm Ymm dmm Rmm 1 0.000 0.256 0.0007 0.050 2 -0.222 0.128 0.0007 0.050 3 -0.222 -0.127 0.0007 0.050 4 0.000 -0.256 0.0007 0.050 5 0.223 -0.127 0.0007 0.050 6 0.221 0.128 0.0007 0.050 7 0.000 0.000 0.0007 0.040 8 0.000 0.134 0.0007 0.062 9 -0.115 0.066 0.0007 0.062 10 -0.116 -0.066 0.0007 0.062 11 0.000 -0.136 0.0007 0.062 12 0.119 -0.067 0.0007 0.062 13 0.117 0.067 0.0007 0.062 14 -0.111 0.191 0.0007 0.040 15 -0.222 0.000 0.0007 0.040 16 -0.111 -0.192 0.0007 0.040 17 0.111 -0.192 0.0007 0.040 18 0.222 0.000 0.0007 0.040 19 0.111 0.191 0.0007 0.040 単位パターン正6角形の一辺 0.256mm θ=0.77π(λ=880nm) Sr=63.6%
T=0.443mm 〈数値例4〉 No. Xmm Ymm dmm Rmm 1 0.000 0.421 0.0006 0.101 2 -0.362 0.211 0.0006 0.101 3 -0.362 -0.209 0.0006 0.101 4 0.001 -0.417 0.0006 0.101 5 0.363 -0.211 0.0006 0.101 6 0.363 0.208 0.0006 0.101 7 -0.001 0.007 0.0006 0.101 8 0.000 0.161 0.0006 0.043 9 -0.139 0.077 0.0006 0.043 10 -0.134 -0.077 0.0006 0.043 11 0.001 -0.152 0.0006 0.043 12 0.138 -0.079 0.0006 0.043 13 0.140 0.080 0.0006 0.043 14 0.000 0.264 0.0006 0.043 15 -0.118 0.205 0.0006 0.043 16 -0.225 0.129 0.0006 0.043 17 -0.225 -0.001 0.0006 0.043 18 -0.222 -0.128 0.0006 0.043 19 -0.115 -0.203 0.0006 0.043 20 0.001 -0.256 0.0006 0.043 21 0.120 -0.206 0.0006 0.043 22 0.227 -0.133 0.0006 0.043 23 0.229 -0.001 0.0006 0.043 24 0.227 0.130 0.0006 0.043 25 0.118 0.208 0.0006 0.043 26 -0.134 0.340 0.0006 0.043 27 -0.228 0.289 0.0006 0.043 28 -0.364 0.051 0.0006 0.043 29 -0.366 -0.055 0.0006 0.043 30 -0.230 -0.288 0.0006 0.043 31 -0.136 -0.342 0.0006 0.043 32 0.135 -0.344 0.0006 0.043 33 0.226 -0.290 0.0006 0.043 34 0.363 -0.052 0.0006 0.043 35 0.362 0.054 0.0006 0.043 36 0.230 0.284 0.0006 0.043 37 0.134 0.341 0.0006 0.043 単位パターン正6角形の一辺 0.420mm θ=0.66π(λ=880nm) Sr=52.5%
T=0.727mm 図5(A),(B)は本発明の光学的ローパスフィルタ
ーを有した結像系の光学系の要部概略図と光電素子列か
らの出力信号の説明図である。図5(A),(B)では
観察者の眼球の視線情報を求める際の検出原理の光学系
を中心に示している。図6は本発明に係る光学的ローパ
スフィルターを有した結像系を一眼レフカメラのファイ
ンダー系の一部に適用したときの要部概略図である。
<Numerical Example 1> No. Xmm Ymm dmm Rmm 1 0.000 0.000 0.00094 0.077 2 0.095 0.000 0.00094 0.012 3 -0.095 0.000 0.00094 0.012 4 -0.142 0.082 0.00094 0.043 5 -0.142 -0.082 0.00094 0.043 6 0.000 -0.165 0.00094 0.043 7 0.142 -0.082 0.00094 0.043 8 0.142 0.082 0.00094 0.043 9 0.000 0.165 0.00094 0.043 Unit pattern regular hexagonal side 0.165 mm θ = 1.0π (λ = 880 nm) Sr = 44.5%
T = 0.286mm <Numerical example 2> No. Xmm Ymm dmm Rmm 1 0.000 0.000 0.0008 0.070 2 -0.066 0.116 0.0008 0.030 3 -0.134 0.000 0.0008 0.030 4 -0.067 -0.115 0.0008 0.030 5 0.067 -0.116 0.0008 0.030 6 0.133 0.000 0.0008 0.030 7 0.066 0.116 0.0008 0.030 Unit pattern regular hexagonal side 0.154 mm θ = 0.88π (λ = 880 nm) Sr = 38.8%
T = 0.267 mm <Numerical example 3> No. Xmm Ymm dmm Rmm 1 0.000 0.256 0.0007 0.050 2 -0.222 0.128 0.0007 0.050 3 -0.222 -0.127 0.0007 0.050 4 0.000 -0.256 0.0007 0.050 5 0.223 -0.127 0.0007 0.050 6 0.221 0.128 0.0007 0.050 7 0.000 0.000 0.0007 0.040 8 0.000 0.134 0.0007 0.062 9 -0.115 0.066 0.0007 0.062 10 -0.116 -0.066 0.0007 0.062 11 0.000 -0.136 0.0007 0.062 12 0.119 -0.067 0.0007 0.062 13 0.117 0.067 0.0007 0.062 14 -0.111 0.191 0.0007 0.040 15 -0.222 0.000 0.0007 0.040 16 -0.111 -0.192 0.0007 0.040 17 0.111 -0.192 0.0007 0.040 18 0.222 0.000 0.0007 0.040 19 0.111 0.191 0.0007 0.040 Unit pattern regular hexagonal side 0.256 mm θ = 0.77π (λ = 880 nm) Sr = 63. 6%
T = 0.443 mm <Numerical example 4> No. Xmm Ymm dmm Rmm 1 0.000 0.421 0.0006 0.101 2 -0.362 0.211 0.0006 0.101 3 -0.362 -0.209 0.0006 0.101 4 0.001 -0.417 0.0006 0.101 5 0.363 -0.211 0.0006 0.101 6 0.363 0.208 0.0006 0.101 7 -0.001 0.007 0.0006 0.101 8 0.000 0.161 0.0006 0.043 9 -0.139 0.077 0.0006 0.043 10 -0.134 -0.077 0.0006 0.043 11 0.001 -0.152 0.0006 0.043 12 0.138 -0.079 0.0006 0.043 13 0.140 0.080 0.0006 0.043 14 0.000 0.264 0.0006 0.043 15 -0.118 0.205 0.0006 0.043 16 -0.225 0.129 0.0006 0.043 17 -0.225 -0.001 0.0006 0.043 18 -0.222 -0.128 0.0006 0.043 19 -0.115 -0.203 0.0006 0.043 20 0.001 -0.256 0.0006 0.043 21 0.120 -0.206 0.0006 0.043 22 0.227 -0.133 0.0006 0.043 23 0.229 -0.001 0.0006 0.043 24 0.227 0.130 0.0006 0.043 25 0.118 0.208 0.0006 0.043 26 -0.134 0.340 0.0006 0.043 27 -0.228 0.289 0.0006 0.043 28 -0.364 0.051 0.0006 0.043 29 -0.366 -0.055 0.0006 0.043 30 -0.230 -0.288 0.0006 0.043 31 -0.136- 0.342 0.0006 0.043 32 0.135 -0.344 0.0006 0.043 33 0.226 -0.2 90 0.0006 0.043 34 0.363 -0.052 0.0006 0.043 35 0.362 0.054 0.0006 0.043 36 0.230 0.284 0.0006 0.043 37 0.134 0.341 0.0006 0.043 Unit pattern regular hexagonal side 0.420 mm θ = 0.66π (λ = 880 nm) Sr = 52.5%
T = 0.727 mm FIGS. 5A and 5B are a schematic view of a main part of an optical system of an image forming system having an optical low-pass filter of the present invention and an explanatory diagram of output signals from a photoelectric element array. 5A and 5B mainly show the optical system of the detection principle when obtaining the line-of-sight information of the eyeball of the observer. FIG. 6 is a schematic view of a main part when an image forming system having an optical low-pass filter according to the present invention is applied to a part of a viewfinder system of a single-lens reflex camera.

【0030】本実施例では光源からの平行光束を観察者
の眼球の前眼部へ投射し、角膜からの反射光による角膜
反射像と瞳孔の結像位置を利用して視軸を求めている。
In this embodiment, a parallel light beam from a light source is projected onto the anterior segment of the eyeball of an observer, and the visual axis is obtained by utilizing the corneal reflection image by the reflected light from the cornea and the imaging position of the pupil. .

【0031】図5,図6においてLFは光学的ローパス
フィルター、5は観察者に対して不感の赤外光を放射す
る発光ダイオード等の光源であり、投光レンズ3の焦点
面に配置されている。
In FIGS. 5 and 6, LF is an optical low-pass filter, and 5 is a light source such as a light emitting diode that emits infrared light insensitive to the observer, and is arranged on the focal plane of the light projecting lens 3. There is.

【0032】光源5より発光した赤外光は投光レンズ3
により平行光となり、ハーフミラー2で反射し、眼球2
01の角膜21を照明する。このとき角膜21の表面で
反射した赤外光の一部による角膜反射像dはハーフミラ
ー2を透過し、受光レンズ4により集光され光学的ロー
パスフィルターLFを介して光電素子列6上の位置Z
d′に再結像する。又虹彩23の端部a,bからの光束
はハーフミラー2、受光レンズ4、光学的ローパスフィ
ルターLFを介して光電素子列6上の位置Za′,Z
b′に該端部a,bの像を結像する。受光レンズ4の光
軸(光軸ア)に対する眼球の光軸イの回転角θが小さい
場合、虹彩23の端部a,bのZ座標をZa,Zbとす
ると瞳孔24の中心位置cの座標Zcは Zc≒(Za+Zb)/2 と表される。
The infrared light emitted from the light source 5 is projected by the projection lens 3
Parallel light is reflected by the half mirror 2 and the eyeball 2
The cornea 21 of No. 01 is illuminated. At this time, the corneal reflection image d by a part of the infrared light reflected on the surface of the cornea 21 is transmitted through the half mirror 2, is condensed by the light receiving lens 4, and is positioned on the photoelectric element array 6 via the optical low pass filter LF. Z
Reimage to d '. Light fluxes from the ends a and b of the iris 23 pass through the half mirror 2, the light receiving lens 4 and the optical low pass filter LF to the positions Za ′ and Z on the photoelectric element array 6.
Images of the end portions a and b are formed on b '. When the rotation angle θ of the optical axis a of the eyeball with respect to the optical axis (optical axis a) of the light receiving lens 4 is small, assuming that the Z coordinates of the ends a and b of the iris 23 are Za and Zb, the coordinates of the center position c of the pupil 24. Zc is expressed as Zc≈ (Za + Zb) / 2.

【0033】又角膜反射像の発生位置dのZ座標をZ
d、角膜21の曲率中心Oと瞳孔24の中心Cまでの距
離をOCとすると眼球光軸イの回転角θは OC*SINθ≒Zc−Zd ‥‥‥(T1) の関係式を略満足する。この為演算手段9において同図
(B)の如く光電素子列6面上に投影された各特異点
(角膜反射像d及び虹彩の端部a,b)の位置を検出す
ることにより眼球201の光軸イの回転角θを求めるこ
とができる。このとき(T1)式は
Further, the Z coordinate of the generation position d of the corneal reflection image is Z
d, when the distance between the center O of curvature of the cornea 21 and the center C of the pupil 24 is OC, the rotation angle θ of the optical axis a of the eyeball substantially satisfies the relational expression of OC * SIN θ≈Zc−Zd (T1). . Therefore, the calculating means 9 detects the position of each singular point (corneal reflection image d and edge parts a and b of the iris) projected on the surface of the photoelectric element array 6 as shown in FIG. The rotation angle θ of the optical axis a can be obtained. At this time, the formula (T1) is

【0034】[0034]

【数2】 と書き換えられる。但しβは角膜反射像の発生位置dと
受光レンズ4との距離L1と受光レンズ4と光電素子列
6との距離L0で決まる倍率で、通常略一定の値となっ
ている。
[Equation 2] Can be rewritten as However, β is a magnification determined by the distance L1 between the corneal reflection image generation position and the light receiving lens 4 and the distance L0 between the light receiving lens 4 and the photoelectric element array 6, and is usually a substantially constant value.

【0035】ところで、観察者の眼球の光軸イと視軸と
は一致しない。そこで観察者の眼球の光軸と視軸の角度
補正を行って視線を検出している。今、観察者の眼球の
光軸の水平方向の回転角θが算出されると眼球の光軸と
視軸との角度補正δをすることにより観察者の水平方向
の視線θHを θH=θ±δ ‥‥‥(T3) として求めている。ここで符号±は観察者に関して右へ
の回転角を正とすると、観察装置を覗く観察者の眼が左
眼の場合は+、右眼の場合は−の符号が選択される。
By the way, the optical axis a of the eyeball of the observer does not coincide with the visual axis. Therefore, the line of sight is detected by correcting the angle between the optical axis of the eyeball of the observer and the visual axis. Now, when the horizontal rotation angle θ of the optical axis of the eyeball of the observer is calculated, the angle of sight δH between the optical axis of the eyeball and the visual axis is corrected δ so that the horizontal line of sight θH of the observer is θH = θ ±. It is calculated as δ ... (T3). Here, if the rotation angle to the right with respect to the observer is positive, the sign ± is selected as + if the observer's eye looking into the observation device is the left eye, and − if the observer's eye is the right eye.

【0036】又図5においては観察者の眼球がZ−X平
面(例えば水平面)内で回転する例を示しているが、観
察者の眼球がX−Y平面(例えば垂直面)内で回転する
場合においても同様に検出可能である。但し観察者の視
線の垂直方向の成分は眼球の光軸の垂直方向の成分θ′
と一致する為垂直方向の視線θVは θV=θ′ ‥‥‥(T4) となる。
Although FIG. 5 shows an example in which the observer's eyeball rotates in the Z-X plane (eg, horizontal plane), the observer's eyeball rotates in the XY plane (eg, vertical plane). In the case, it can be detected similarly. However, the vertical component of the line of sight of the observer is the vertical component θ ′ of the optical axis of the eyeball.
Therefore, the line of sight θV in the vertical direction is θV = θ '... (T4).

【0037】次に図6の本発明を一眼レフカメラのファ
インダー系の一部に適用したときの光学系について説明
する。
Next, an optical system when the present invention shown in FIG. 6 is applied to a part of a viewfinder system of a single-lens reflex camera will be described.

【0038】同図において撮影レンズ101を透過した
被写体光は跳ね上げミラー102により反射され、ピン
ト板104の焦点面近傍に結像する。更にピント板10
4にて拡散した被写体光はコンデンサーレンズ105、
ペンタダハプリズム106、そして光分割面1aを有す
る接眼レンズ1を介して撮影者のアイポイント201a
に導かれる。
In the figure, the subject light that has passed through the taking lens 101 is reflected by the flip-up mirror 102 and forms an image near the focal plane of the focusing plate 104. Further focus plate 10
The subject light diffused at 4 is the condenser lens 105,
Through the penta roof prism 106 and the eyepiece 1 having the light splitting surface 1a, the eyepoint 201a of the photographer
Be led to.

【0039】視線検出用の結像系は撮影者(観察者)に
対して不感の赤外発光ダイオード等の光源5と投光レン
ズ3とから成る照明手段(光軸ウ)と光学的ローパスフ
ィルターLF、光電素子列6、ハーフミラー2及び受光
レンズ4とから成る受光手段(光軸ア)とから構成さ
れ、ダイクロイックミラーより成る光分割面1aを有す
る接眼レンズ1の上方に配置されている。赤外発光ダイ
オード5から発した赤外光は光分割面1aにおいて反射
され、撮影者の眼球201を照明する。更に眼球201
で反射した赤外光の一部は光分割面1aで再反射し、受
光レンズ4、ハーフミラー2、光学的ローパスフィルタ
ーLFを介して光電素子列6上に集光する。光電素子列
6上で得られた眼球の像情報(例えば図5(B)で示す
出力信号)より演算手段9において撮影者の視線の方向
を算出している。即ち観察者が観察しているピント面1
04上の点(注視点)を求めている。
The imaging system for detecting the line of sight is an illumination means (optical axis c) composed of a light source 5 such as an infrared light emitting diode which is insensitive to the photographer (observer) and a light projecting lens 3 and an optical low pass filter. The light receiving means (optical axis A) including the LF, the photoelectric element array 6, the half mirror 2 and the light receiving lens 4 is arranged above the eyepiece 1 having the light dividing surface 1a formed of a dichroic mirror. The infrared light emitted from the infrared light emitting diode 5 is reflected by the light dividing surface 1a and illuminates the eyeball 201 of the photographer. Further eyeball 201
A part of the infrared light reflected by is reflected again by the light splitting surface 1a, and is condensed on the photoelectric element array 6 through the light receiving lens 4, the half mirror 2, and the optical low pass filter LF. The direction of the line of sight of the photographer is calculated by the calculation means 9 from the image information of the eyeball (for example, the output signal shown in FIG. 5B) obtained on the photoelectric element array 6. That is, the focus surface 1 observed by the observer
04 I am looking for a point (attention point).

【0040】このときの前述した水平方向の視線θHと
垂直方向の視線θVより撮影者が見ているピント面10
4上の位置(Zn,Yn)は
The focus plane 10 seen by the photographer from the horizontal line of sight θH and the vertical line of sight θV at this time.
The position (Zn, Yn) on 4 is

【0041】[0041]

【数3】 として求められる。但しmはカメラのファインダー系で
決まる定数である。このように一眼レフカメラにおいて
撮影者がピント面104上のどの位置を観察しているか
を知ることができると、例えばカメラの自動焦点検出装
置において焦点検出可能なポイントを画面中心のみなら
ず、画面内の複数箇所に設けた場合、撮影者がそのうち
の1つのポイントを選択して自動焦点検出を行おうとす
る場合、その1つを選択入力する手間を省き、撮影者が
観察しているポイント、即ち注視点を焦点検出するポイ
ントと見なし、該ポイントを自動的に選択して自動焦点
検出を行っているのに有効である。
(Equation 3) Is required. However, m is a constant determined by the finder system of the camera. In this way, when it is possible to know which position on the focus plane 104 the photographer is observing in the single-lens reflex camera, for example, the point where focus detection is possible in the automatic focus detection device of the camera is not limited to the screen center, but the screen. In the case where the photographer selects one of the points to perform automatic focus detection when it is provided at a plurality of positions, the trouble of selecting and inputting one of the points is eliminated, and the point the photographer is observing, That is, it is effective to regard the gazing point as a point for focus detection and automatically select the point for automatic focus detection.

【0042】[0042]

【発明の効果】本発明によれば以上のように、観察者の
眼球を赤外光で照明したときに得られるP像をCCD等
の撮影素子面上に形成し、該撮影素子に形成したP像の
位置情報より眼球の視線情報を高精度に検出することの
できる光学的ローパスフィルター及びそれを有した結像
系を達成することができる。
As described above, according to the present invention, the P image obtained when the observer's eyeball is illuminated with infrared light is formed on the surface of the photographing element such as CCD and formed on the photographing element. It is possible to achieve an optical low-pass filter capable of detecting the eye-gaze information with high accuracy based on the position information of the P image, and an imaging system having the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の光学的ローパスフィルターの実施例
1の要部平面図
FIG. 1 is a plan view of a main part of a first embodiment of an optical low-pass filter according to the present invention.

【図2】 本発明の光学的ローパスフィルターの実施例
2の要部平面図
FIG. 2 is a plan view of the essential parts of Embodiment 2 of the optical low-pass filter of the present invention.

【図3】 本発明の光学的ローパスフィルターの実施例
3の要部平面図
FIG. 3 is a plan view of the essential parts of Embodiment 3 of the optical low-pass filter of the present invention.

【図4】 本発明の光学的ローパスフィルターの実施例
4の要部平面図
FIG. 4 is a plan view of the essential parts of Embodiment 4 of the optical low-pass filter of the present invention.

【図5】 本発明の光学的ローパスフィルターを有した
結像系の要部概略図
FIG. 5 is a schematic view of a main part of an image forming system having an optical low pass filter of the present invention.

【図6】 本発明の光学的ローパスフィルターを有した
結像系を一眼レフカメラに適用したときの要部概略図
FIG. 6 is a schematic diagram of a main part when an imaging system having an optical low-pass filter of the present invention is applied to a single-lens reflex camera.

【符号の説明】[Explanation of symbols]

LF 光学的ローパスフィルター 5 赤外発光ダイオード 3 投光レンズ 4 受光レンズ 6 CCD 201 眼球 LF Optical low-pass filter 5 Infrared light emitting diode 3 Light emitting lens 4 Light receiving lens 6 CCD 201 Eyeball

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 凸部又は凹部の大きさの異なる複数の微
小パターンより成る単位パターン領域を複数個、所定の
繰り返しピッチで基板面上に設け、該単位パターン領域
を通過する光束を回折させてローパス効果を得ているこ
とを特徴とする光学的ローパスフィルター。
1. A plurality of unit pattern areas, each of which is composed of a plurality of minute patterns having different sizes of a convex portion or a concave portion, are provided on a substrate surface at a predetermined repetition pitch, and a light beam passing through the unit pattern area is diffracted. An optical low pass filter characterized by having a low pass effect.
【請求項2】 前記単位パターン領域はその中心と該中
心を原点とした複数の同心円の円周上に各々微小パター
ンが設けられていることを特徴とする請求項1の光学的
ローパスフィルター。
2. The optical low-pass filter according to claim 1, wherein the unit pattern area is provided with a minute pattern on a center thereof and on a circumference of a plurality of concentric circles having the center as an origin.
【請求項3】 前記微小パターンとその周囲を通過する
光束間の位相差をθ、該微小パターン全体の前記単位パ
ターン領域に占める面積比をSrとしたとき 0.25π≦θ≦1.25π 0.1≦Sr≦0.7 なる条件を満足することを特徴とする請求項2の光学的
ローパスフィルター。
3. When a phase difference between the minute pattern and a light beam passing through the periphery thereof is θ and an area ratio of the entire minute pattern to the unit pattern area is Sr, 0.25π ≦ θ ≦ 1.25π 0 3. The optical low pass filter according to claim 2, wherein the condition of 1 ≦ Sr ≦ 0.7 is satisfied.
【請求項4】 前記単位パターン領域の繰り返しピッチ
をTとしたとき 0.1mm≦T なる条件を満足することを特徴とする請求項1,2又は
3の光学的ローパスフィルター。
4. The optical low pass filter according to claim 1, wherein the condition that 0.1 mm ≦ T is satisfied, where T is the repeating pitch of the unit pattern region.
【請求項5】 凸部又は凹部の大きさの異なる複数の微
小パターンより成る単位パターン領域を複数個、所定の
繰り返しピッチで基板面上に設け、該単位パターン領域
を通過する光束を回折させてローパス効果を得るように
した光学的ローパスフィルターを結像レンズの焦点面か
ら光軸方向に所定量、離れた位置に設けたことを特徴と
する結像系。
5. A plurality of unit pattern areas, each of which is composed of a plurality of minute patterns having different sizes of convex portions or concave portions, are provided on a substrate surface at a predetermined repetition pitch, and a light flux passing through the unit pattern areas is diffracted. An imaging system characterized in that an optical low-pass filter for obtaining a low-pass effect is provided at a position apart from the focal plane of the imaging lens by a predetermined amount in the optical axis direction.
【請求項6】 前記単位パターン領域はその中心と該中
心を原点とした複数の同心円の円周上に各々微小パター
ンが設けられていることを特徴とする請求項5の結像
系。
6. The image forming system according to claim 5, wherein the unit pattern area is provided with a minute pattern on a center thereof and on a circumference of a plurality of concentric circles having the center as an origin.
【請求項7】 前記微小パターンとその周囲を通過する
光束間の位相差をθ、該微小パターン全体の前記単位パ
ターン領域に占める面積比をSrとしたとき 0.25π≦θ≦1.25π 0.1≦Sr≦0.7 なる条件を満足することを特徴とする請求項6の結像
系。
7. When the phase difference between the minute pattern and a light beam passing around the minute pattern is θ and the area ratio of the entire minute pattern to the unit pattern region is Sr, 0.25π ≦ θ ≦ 1.25π 0 7. The image forming system according to claim 6, wherein the condition of 1 ≦ Sr ≦ 0.7 is satisfied.
【請求項8】 前記単位パターン領域の繰り返しピッチ
をTとしたとき0.1mm≦Tなる条件を満足すること
を特徴とする請求項5,6又は7の結像系。
8. The image forming system according to claim 5, wherein a condition of 0.1 mm ≦ T is satisfied, where T is a repeating pitch of the unit pattern area.
JP17208094A 1994-06-30 1994-06-30 Optical low-pass filter and image forming system therewith Pending JPH0815646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17208094A JPH0815646A (en) 1994-06-30 1994-06-30 Optical low-pass filter and image forming system therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17208094A JPH0815646A (en) 1994-06-30 1994-06-30 Optical low-pass filter and image forming system therewith

Publications (1)

Publication Number Publication Date
JPH0815646A true JPH0815646A (en) 1996-01-19

Family

ID=15935170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17208094A Pending JPH0815646A (en) 1994-06-30 1994-06-30 Optical low-pass filter and image forming system therewith

Country Status (1)

Country Link
JP (1) JPH0815646A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184351A (en) * 2004-12-27 2006-07-13 Nikon Corp Optical low-pass filter and imaging optical system
US7551221B2 (en) 2004-11-22 2009-06-23 Canon Kabushiki Kaisha Camera apparatus having an optical low pass filter and image pickup apparatus having the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7551221B2 (en) 2004-11-22 2009-06-23 Canon Kabushiki Kaisha Camera apparatus having an optical low pass filter and image pickup apparatus having the same
US7986366B2 (en) 2004-11-22 2011-07-26 Canon Kabushiki Kaisha Optical low pass filter and image pickup apparatus having the same
JP2006184351A (en) * 2004-12-27 2006-07-13 Nikon Corp Optical low-pass filter and imaging optical system
JP4701710B2 (en) * 2004-12-27 2011-06-15 株式会社ニコン Optical low-pass filter and imaging optical system

Similar Documents

Publication Publication Date Title
JP2950546B2 (en) Eye gaze detecting device and camera having eye gaze detecting device
US5473403A (en) Camera having a multi-point focus detecting device
JPH0136088B2 (en)
JPH0658481B2 (en) Multifocal Fresnel lens for camera focus plate
JP2007052072A (en) Focus detecting device, optical equipment, and focusing method
JP2886865B2 (en) Focus state detection device
JP2676870B2 (en) Optical device having gazing point detection means
JP2008070629A (en) Light detection device, camera, focus detection device, and optical characteristic measuring device
JPH0815646A (en) Optical low-pass filter and image forming system therewith
JPH10307314A (en) Observation optical device
JP2754663B2 (en) Gaze detection method and gaze detection device
JP2803223B2 (en) Eye gaze detection device
JP3179182B2 (en) Eye gaze detection device
JP3774528B2 (en) SLR camera viewfinder
JPS6260645B2 (en)
JPH06100765B2 (en) camera
JP3194790B2 (en) Gaze direction detection device
JPS6156312A (en) Automatic focusing device
JP3320178B2 (en) Eye gaze detection device and camera
JP4514202B2 (en) Interchangeable lens, camera body and camera system
JP2608312B2 (en) Phase type reticle
JPS62183416A (en) Focus detecting device
JPS6374042A (en) Photometric device for camera
JPS6365430A (en) Main reflecting mirror for single-lens reflex camera
JPS63197432A (en) Method for measuring radius of curvature of cornea