JPH08156113A - Manufacture of fiber reinforced thermoplastic resin composite tube - Google Patents

Manufacture of fiber reinforced thermoplastic resin composite tube

Info

Publication number
JPH08156113A
JPH08156113A JP6294708A JP29470894A JPH08156113A JP H08156113 A JPH08156113 A JP H08156113A JP 6294708 A JP6294708 A JP 6294708A JP 29470894 A JP29470894 A JP 29470894A JP H08156113 A JPH08156113 A JP H08156113A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
section
reinforced thermoplastic
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6294708A
Other languages
Japanese (ja)
Inventor
Koichi Adachi
浩一 足立
Mitsuo Sasakura
満雄 笹倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP6294708A priority Critical patent/JPH08156113A/en
Publication of JPH08156113A publication Critical patent/JPH08156113A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PURPOSE: To enable a fiber-reinforced thermoplastic resin composite tube to be manufactured efficiently wherein a thermoplastic resin layer laminated on an inner surface is little in one-side thickness, and fusion welding of a resin tube to a reinforced fiber composite is strong without raising extrusion pressure of the resin. CONSTITUTION: At least three fiber-reinforced thermoplastic resin sheets 100 are transferred longitudinally inside an outer die 40 for control of an outside diameter, and combined into a tubular shape of a plygonal section corresponding to the number of the sheets 100 at an inlet of the outer die 40. Thermoplastic resin 10a is extruded tubularly on an inner surface of the tubular combined material 101 from an extrusion die 30, and laminated with a polygonal section part 41 of the outer die 40 to form a tubular shape of the polygonal section. The tubular material 102 is shaped into a tubular shape of a circular or elliptical section by inner pressure of air with a section-enlarged part 42 of the outer die and its circular or elliptical section part 43. By covering an outer periphery of the shape tubular material 103 with a thermoplastic resin by extrusion as occasion demands, a target fiber-reinforced thermoplastic resin composite tube 104 is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、繊維強化熱可塑性樹
脂複合管の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fiber-reinforced thermoplastic resin composite pipe.

【0002】[0002]

【従来の技術】繊維強化熱可塑性樹脂複合管は、金属管
に比べて軽量で錆びない等の優れた特性を有し、また熱
可塑性樹脂管に比べて耐圧性、耐衝撃性、耐熱水性など
が優れており、熱水やガスや薬品など各種の流体を移送
する配管を始め、電気配線用の配管や構造部材などに広
く使用されている。
2. Description of the Related Art Fiber-reinforced thermoplastic resin composite pipes have superior characteristics such as being lighter in weight and less rusting than metal pipes, and also have higher pressure resistance, impact resistance, hot water resistance, etc. than thermoplastic resin pipes. It is widely used for piping for transferring various fluids such as hot water, gas and chemicals, as well as piping for electric wiring and structural members.

【0003】この種の繊維強化熱可塑性樹脂複合管の製
造方法として、特開昭平3−158219号公報には、
1枚の繊維強化熱可塑性樹脂シートを長手方向に移送し
クロスヘッド押出金型内で管状に形成し、この管状体の
内面に上記クロスヘッド押出金型より熱可塑性樹脂を管
状に押出し積層する方法が提案されている。
As a method for producing this type of fiber-reinforced thermoplastic resin composite pipe, Japanese Patent Laid-Open No. 3-158219 discloses a method.
A method in which one sheet of fiber reinforced thermoplastic resin is transferred in the longitudinal direction to form a tubular shape in a crosshead extrusion die, and the thermoplastic resin is extruded into a tubular shape from the crosshead extrusion die and laminated on the inner surface of the tubular body. Is proposed.

【0004】また、特開昭平4−8983号公報には、
2枚の繊維強化熱可塑性樹脂シートを長手方向に移送し
細長いストレート押出金型をマンドレルとしてその外周
に管状に囲繞し、その外周に同様な繊維強化熱可塑性樹
脂シートを巻回し、両方のシートを熱融着して管状に形
成し、この管状体の内面に上記ストレート押出金型より
熱可塑性樹脂を管状に押出し積層する方法が提案されて
いる。
Further, Japanese Patent Application Laid-Open No. 4-8983 discloses that
Two fiber reinforced thermoplastic resin sheets are transferred in the longitudinal direction, a long straight extrusion die is used as a mandrel to surround the outer periphery in a tubular shape, and a similar fiber reinforced thermoplastic resin sheet is wound around the outer periphery, and both sheets are wrapped. A method has been proposed in which heat-sealing is performed to form a tubular shape, and a thermoplastic resin is extruded into a tubular shape from the straight extrusion die and laminated on the inner surface of the tubular body.

【0005】上記提案の方法は、いずれも、繊維強化熱
可塑性樹脂シートからなる管状体とこれに積層される熱
可塑性樹脂層との融着が強固で、耐圧性、耐衝撃性、耐
熱水性などが優れ、しかも連続的に能率良く製造するこ
とができるという利点を有する。
In any of the above-mentioned methods, the tubular body made of the fiber reinforced thermoplastic resin sheet and the thermoplastic resin layer laminated thereon are firmly fused to each other, and the pressure resistance, impact resistance, hot water resistance, etc. And has the advantage that it can be continuously and efficiently manufactured.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記提案の
方法のうち、前者の方法では、クロスヘッド押出金型を
用いて管状体の内面に熱可塑性樹脂を押出し積層せねば
ならず、このようなクロスヘッド押出金型を用いると、
金型内の樹脂流路が曲がっているために樹脂が偏流して
押出され、管状体の内面に積層される樹脂層の偏肉が大
きくなるという問題がある。また、1枚の繊維強化熱可
塑性樹脂シートを用いて管状に形成すると、あまり大き
な径の管状体は形成が難しくなる。
However, in the former method of the above proposed methods, a thermoplastic resin must be extruded and laminated on the inner surface of the tubular body by using a crosshead extrusion die. With a crosshead extrusion mold,
Since the resin flow path in the mold is curved, the resin is unevenly flown and extruded, and the uneven thickness of the resin layer laminated on the inner surface of the tubular body increases. Further, if a single fiber-reinforced thermoplastic resin sheet is used to form a tubular shape, it becomes difficult to form a tubular body having an excessively large diameter.

【0007】また、上記提案の方法のうち、後者の方法
では、マンドレル兼用の細長いストレート押出金型を用
いて管状体の内面に熱可塑性樹脂を押出し積層せねばな
らず、このような細長いストレート押出金型を用いる
と、樹脂層の厚みのばらつきはあまりないが、金型内の
樹脂流路がかなり長くなるために押出圧力が著しく高く
なり、樹脂の押出量を上げることができないという問題
がある。また、金型内での樹脂の滞留時間は長くなるた
め、樹脂が熱分解する恐れもある。
In the latter method of the above proposed methods, the thermoplastic resin must be extruded and laminated on the inner surface of the tubular body by using an elongated straight extrusion die which also serves as a mandrel. When a mold is used, the thickness of the resin layer does not vary much, but the resin flow path inside the mold is considerably long, so the extrusion pressure becomes extremely high, and the amount of resin extruded cannot be increased. . Further, since the residence time of the resin in the mold becomes long, the resin may be thermally decomposed.

【0008】この発明は、上記従来技術の問題を解決す
るものであり、その目的とするところは、内面に積層さ
れる熱可塑性樹脂層の偏肉が小さく、また樹脂の押出圧
力も高くならず、しかも樹脂管と補強繊維複合体との融
着が強固な繊維強化熱可塑性樹脂複合管を、能率よく製
造することのできる方法を提供することにある。
The present invention solves the above-mentioned problems of the prior art. The object of the present invention is to reduce the uneven thickness of the thermoplastic resin layer laminated on the inner surface and to prevent the resin extrusion pressure from increasing. Moreover, it is another object of the present invention to provide a method capable of efficiently producing a fiber-reinforced thermoplastic resin composite pipe in which fusion bonding between the resin pipe and the reinforcing fiber composite is strong.

【0009】[0009]

【課題を解決するための手段】この発明の繊維強化熱可
塑性樹脂複合管の製造方法は、少なくとも3枚の繊維強
化熱可塑性樹脂シートを長手方向に移送してこのシート
の枚数に対応する断面多角形の管状に組合せ、この管状
組合せ体の内面に熱可塑性樹脂を管状に押出し積層して
断面多角形の管状に形成し、この管状体を内圧により断
面円形又は楕円形の管状に賦形することを特徴とし、そ
れにより上記の目的を達成することができる。
The method for producing a fiber-reinforced thermoplastic resin composite pipe according to the present invention is to transfer at least three fiber-reinforced thermoplastic resin sheets in the longitudinal direction to obtain a cross-section having a number of cross sections corresponding to the number of the sheets. Combining into a rectangular tube, extruding a thermoplastic resin into a tubular shape on the inner surface of the tubular combination to form a tube with a polygonal cross section, and shaping this tube into a tube with a circular or elliptical cross section by internal pressure. The above object can be achieved thereby.

【0010】以下、図面を参照しながら、この発明繊維
強化熱可塑性樹脂複合管の製造方法を具体的に説明す
る。
The method for producing the fiber-reinforced thermoplastic resin composite pipe of the present invention will be specifically described below with reference to the drawings.

【0011】図1は、この発明方法の一例を示す概略説
明図である。図1において、10は繊維強化樹脂シート
の繰出しロール、20は第1押出機、30は第1押出機
20に付設された内層押出用の押出金型、40は外径規
制用の外金型である。
FIG. 1 is a schematic explanatory view showing an example of the method of the present invention. In FIG. 1, 10 is a fiber-reinforced resin sheet feeding roll, 20 is a first extruder, 30 is an extrusion die for inner layer extrusion attached to the first extruder 20, and 40 is an outer die for outer diameter regulation. Is.

【0012】上記押出金型30には空気圧入孔31が設
けられ、一端は圧縮空気源32に接続され、他端は押出
金型30の先端面に開口している。また、外径規制用の
外金型40は、断面多角形の部分41とこの部分41か
ら断面が次第に円形又は楕円形に拡大された断面拡大部
分42と断面円形又は楕円形の部分43とから構成され
ている。
An air press-fitting hole 31 is provided in the extrusion die 30, one end of which is connected to a compressed air source 32, and the other end of which is opened at the tip surface of the extrusion die 30. The outer die 40 for controlling the outer diameter is composed of a portion 41 having a polygonal cross section, an enlarged portion 42 having a cross section gradually enlarged from this portion 41 into a circular or elliptical shape, and a portion 43 having a circular or elliptical cross section. It is configured.

【0013】上記外金型40において、断面多角形の部
分41の断面形状は、使用する繊維強化熱可塑性樹脂シ
ートの寸法及び枚数によって決められる。例えば、この
シートを4枚用いる場合は、断面多角形の部分41はこ
のシートの枚数に対応する断面4角形の部分41とな
り、このシートを8枚用いる場合は、断面多角形の部分
41はこのシートの枚数に対応する断面8角形の部分4
1となる。
In the outer mold 40, the cross-sectional shape of the polygonal section 41 is determined by the size and number of the fiber-reinforced thermoplastic resin sheets used. For example, when four sheets are used, the portion 41 having a polygonal cross section becomes a portion 41 having a quadrangular cross section corresponding to the number of sheets, and when using eight sheets, the portion 41 having a polygonal cross section is Octagonal section 4 corresponding to the number of sheets 4
It becomes 1.

【0014】また、断面円形又は楕円形の部分43は、
製造する繊維強化熱可塑性樹脂複合管の断面形状によっ
て決められ、ここで円形又は楕円形とは、真の円形や真
の楕円形のほか卵形や小判形も含まれる。
Further, the portion 43 having a circular or elliptical cross section is
It is determined by the cross-sectional shape of the fiber-reinforced thermoplastic resin composite pipe to be produced, and the circular or elliptical shape includes a true circular shape and a true elliptical shape, as well as an oval shape and an oval shape.

【0015】そして、外金型40の断面円形又は楕円形
の部分43の内部には、押出金型30の空気圧入孔31
から圧入された空気を密閉するために円板状又は楕円板
状のシール栓50が設けられ、このシール栓50は、押
出金型30の先端面から延ばされたワイヤー51により
移動しないように固定されている。
Then, the air press-fitting hole 31 of the extrusion die 30 is provided inside the circular or elliptical section 43 of the outer die 40.
A disc-shaped or elliptical-plate-shaped seal plug 50 is provided to seal the air press-fitted from, and the seal plug 50 is prevented from moving by the wire 51 extended from the tip surface of the extrusion die 30. It is fixed.

【0016】さらに、外金型40の前方には、第2押出
機60、第2押出機60に付設された外層被覆用の押出
金型70、サイジング冷却型80、引取機90が設けら
れている。なお、この第2押出機60及び外層被覆用の
押出金型70は、必要に応じて設けられる。
Further, in front of the outer die 40, there are provided a second extruder 60, an extrusion die 70 for coating the outer layer attached to the second extruder 60, a sizing cooling die 80, and a take-off machine 90. There is. The second extruder 60 and the extrusion die 70 for coating the outer layer are provided as needed.

【0017】先ず、繰出しロール10から少なくとも3
枚の繊維強化熱可塑性樹脂シート100が長手方向に押
出金型30を取り囲むようにして、外径規制用の外金型
40の内側へ移送される。そして、外金型40の断面多
角形の部分41の入口部分で、上記シートの枚数に対応
して断面多角形の管状に組合せられる。
First, at least 3 from the feeding roll 10
The sheet of fiber-reinforced thermoplastic resin sheet 100 is transferred to the inside of the outer die 40 for controlling the outer diameter so as to surround the extrusion die 30 in the longitudinal direction. Then, at the entrance of the portion 41 having a polygonal cross section, the outer die 40 is combined into a tubular shape having a polygonal cross section corresponding to the number of sheets.

【0018】繊維強化熱可塑性樹脂シート100を断面
多角形の管状に組合せる際には、各繊維強化熱可塑性樹
脂シート100は隙間ができないようにシートの側縁を
突き合わせるか或いは接触させて組合せる。この場合、
断面正角形に組合せるのが好ましい。例えば、4枚のシ
ート100を用いる場合は、図2の(イ)、(ロ)、
(ハ)に示すような状態に断面正4角形の管状に組合せ
る。図3の(A)は、図1のX−X断面を示し、図2の
(イ)のように組合せられた断面正4角形の管状組合せ
体101を示す。
When the fiber-reinforced thermoplastic resin sheet 100 is assembled in a tubular shape having a polygonal cross section, the fiber-reinforced thermoplastic resin sheets 100 are assembled by abutting or contacting the side edges of the sheets so that no gap is formed. It in this case,
It is preferable to combine them in a regular cross section. For example, when using four sheets 100, (a), (b) in FIG.
The state shown in (c) is combined in a tubular shape with a regular square cross section. 3A shows the XX cross section of FIG. 1, and shows a tubular combination body 101 having a regular quadrangular cross section that is combined as shown in FIG.

【0019】上記繊維強化熱可塑性樹脂シートは、多数
のロービング状又はストランド状の補強繊維に熱可塑性
樹脂を含浸させて得られるもので、公知の方法で製造さ
れる。
The fiber-reinforced thermoplastic resin sheet is obtained by impregnating a large number of roving-like or strand-like reinforcing fibers with a thermoplastic resin, and is manufactured by a known method.

【0020】例えば、前記特開昭平3−158219号
公報及び特開昭平4−8983号公報に詳述されている
ように、ロービング状又はストランド状の補強繊維を熱
可塑性樹脂粉末の流動床中を通過させて繊維間に樹脂を
付着含浸させ、これを加熱加圧して一体化させる方法が
好適に採用される。
For example, as described in detail in JP-A-3-158219 and JP-A-4-8983, roving-like or strand-like reinforcing fibers are provided in a fluidized bed of thermoplastic resin powder. A method in which a resin is adhered and impregnated between the fibers by passing it through, and the fibers are heated and pressurized to be integrated is preferably adopted.

【0021】その他、ロービング状又はストランド状の
補強繊維を熱可塑性樹脂粉末の分散液や溶液中を通過さ
せて繊維間に樹脂を付着含浸させたあと乾燥させ、これ
を加熱加圧して一体化させる方法や、長手方向に連続繊
維を配したクロス状、網状又はネット状の補強繊維に熱
可塑性樹脂フィルムを積層し、これを加熱加圧して一体
化させる方法のほか、補強繊維としてはスワール状のも
のを用いる方法等が採用される。
In addition, a roving-shaped or strand-shaped reinforcing fiber is passed through a dispersion liquid or solution of a thermoplastic resin powder to impregnate and impregnate a resin between the fibers, and then dried, which is heated and pressed to be integrated. In addition to the method and a method of laminating a thermoplastic resin film on a cross-shaped, mesh-shaped or net-shaped reinforcing fiber in which continuous fibers are arranged in the longitudinal direction, and heating and pressurizing this, the reinforcing fiber is swirl-shaped. The method of using a thing is adopted.

【0022】補強繊維としては、ガラス繊維、炭素繊
維、金属繊維等の無機繊維、アラミド繊維、ビニロン繊
維等の合成繊維が用いられる。熱可塑性樹脂としては、
ポリ塩化ビニル、塩素化ポリ塩化ビニル、ポリエチレ
ン、ポリプロピレン、ポリスチレン、ポリアミド、ポリ
カーボネート、ポリフェニレンサルファイド、ポリアリ
ールエーテルスルホン、ポリアリールエーテルケトン等
が用いられる。
As the reinforcing fiber, inorganic fiber such as glass fiber, carbon fiber and metal fiber, synthetic fiber such as aramid fiber and vinylon fiber are used. As a thermoplastic resin,
Polyvinyl chloride, chlorinated polyvinyl chloride, polyethylene, polypropylene, polystyrene, polyamide, polycarbonate, polyphenylene sulfide, polyaryl ether sulfone, polyaryl ether ketone, etc. are used.

【0023】補強繊維の太さは1〜100μm 、好まし
くは3〜50μm 、補強繊維の含有量は3〜70重量
%、好ましくは10〜50重量%で、繊維強化熱可塑性
樹脂シートの厚さは0.1〜5mm、好ましくは0.3〜
2mmであり、そのシート幅は、使用するシートの枚数及
び製造する繊維強化熱可塑性樹脂複合管の寸法によっ
て、適当に決められる。
The thickness of the reinforcing fiber is 1 to 100 μm, preferably 3 to 50 μm, the content of the reinforcing fiber is 3 to 70% by weight, preferably 10 to 50% by weight, and the thickness of the fiber reinforced thermoplastic resin sheet is 0.1-5 mm, preferably 0.3-
The sheet width is 2 mm, and the sheet width is appropriately determined depending on the number of sheets to be used and the dimensions of the fiber-reinforced thermoplastic resin composite tube to be produced.

【0024】引き続いて、外金型40の断面多角形の部
分41において、上記管状組合せ体101の内面に、熱
可塑性樹脂10aが管状に押出され積層されて断面多角
形の管状に形成される。上記管状組合せ体101の内面
に熱可塑性樹脂10aを管状に押出し積層するには、押
出金型30より熱可塑性樹脂10aを管状組合せ体10
1の断面形状と同様な断面多角形の管状に押出しなが
ら、この管内に押出金型30を通して、例えば空気等を
圧入して積層する方法が好適に採用される。
Subsequently, at the portion 41 of the outer die 40 having a polygonal cross section, the thermoplastic resin 10a is extruded in a tubular shape and laminated on the inner surface of the tubular combination body 101 to form a tubular shape having a polygonal cross section. In order to extrude and laminate the thermoplastic resin 10a on the inner surface of the tubular combination body 101 in a tubular shape, the thermoplastic resin 10a is extruded from the extrusion die 30 to form the tubular combination body 10.
A method in which, while extruding into a tubular shape having a polygonal cross-section similar to that of No. 1 and passing through an extrusion die 30 into this tube, for example, air or the like is pressed and laminated, is suitably adopted.

【0025】その他、押出金型30より熱可塑性樹脂1
0aを断面円形の管状に押出すとともに、この管内に押
出金型30を通して空気等を圧入して管を径方向に膨張
させ管状組合せ体101の内面に積層する方法等が採用
される。図3の(B)は、図1のY−Y断面を示し、前
者の方法で形成された断面正4角形の管状体102を示
す。
In addition, the thermoplastic resin 1 is fed from the extrusion die 30.
0a is extruded into a tubular shape having a circular cross section, and air or the like is forced into the tube through an extrusion die 30 to expand the tube in the radial direction so that the tubular combination body 101 is laminated on the inner surface thereof. FIG. 3B shows a YY cross section of FIG. 1, and shows a tubular body 102 having a regular quadrangular cross section formed by the former method.

【0026】管状組合せ体101の内面に積層される熱
可塑性樹脂10aとしては、繊維強化熱可塑性樹脂シー
トを構成する樹脂と相溶性の良い熱可塑性樹脂が用いら
れ、例えば、ポリ塩化ビニル、塩素化ポリ塩化ビニル、
ポリエチレン、ポリプロピレン、ポリスチレン、ポリア
ミド、ポリカーボネート、ポリフェニレンサルファイ
ド、ポリアリールエーテルスルホン、ポリアリールエー
テルケトン等の中から選定される。
As the thermoplastic resin 10a laminated on the inner surface of the tubular combination 101, a thermoplastic resin having a good compatibility with the resin constituting the fiber reinforced thermoplastic resin sheet is used, and for example, polyvinyl chloride or chlorinated. PVC,
It is selected from polyethylene, polypropylene, polystyrene, polyamide, polycarbonate, polyphenylene sulfide, polyaryl ether sulfone, polyaryl ether ketone, and the like.

【0027】これ等の熱可塑性樹脂には、必要に応じ
て、熱安定剤、滑剤、可塑剤、酸化防止剤、紫外線吸収
剤、顔料、充填剤、加工助剤、改質剤等の添加剤が配合
される。
These thermoplastic resins may contain additives such as heat stabilizers, lubricants, plasticizers, antioxidants, ultraviolet absorbers, pigments, fillers, processing aids and modifiers, if necessary. Is blended.

【0028】引き続いて、上記断面多角形の管状体10
2は、断面が次第に円形又は楕円形に拡大された断面拡
大部分42を経て断面円形又は楕円形の部分43に移送
され、この断面拡大部分42及び断面円形又は楕円形の
部分43において、管状体102の管内に押出金型30
を通して圧入された空気の内圧により断面円形又は楕円
形に賦形される。図3の(C)は、図1のZ−Z断面を
示し、断面が真円形に賦形された賦形管状体103を示
す。
Subsequently, the tubular body 10 having the polygonal cross-section described above.
2 is transferred to a circular or elliptical section 43 through a sectional enlarged section 42 whose section is gradually enlarged into a circular or elliptical section. Extrusion die 30 in the pipe of 102
It is shaped into a circular or elliptical cross section by the internal pressure of the air press-fitted through. FIG. 3C shows the ZZ cross section of FIG. 1, and shows the shaped tubular body 103 whose cross section is shaped into a perfect circle.

【0029】なお、管状体102及び賦形管状体103
を得る際に用いられる空気等による内圧は、製造する複
合管の口径にもよるが、一般に0.05〜5 kg/cm2
が好ましく、さらに好ましくは0.1〜2 kg/cm2
ある。また、内圧をかける際の樹脂の温度は、樹脂の種
類や管の口径や内圧を考慮し、樹脂のビカット軟化温度
以上、融点以下で、熱分解しない範囲で成形条件に合わ
せて適宜選択されるが、特に、樹脂は溶融状態であるこ
とが好ましい。
The tubular body 102 and the shaped tubular body 103
The internal pressure due to the air, etc. used to obtain the product is generally 0.05 to 5 kg / cm 2 although it depends on the diameter of the composite pipe to be manufactured.
Is more preferable and 0.1 to 2 kg / cm 2 is more preferable. In addition, the temperature of the resin when applying the internal pressure is appropriately selected in consideration of the type of the resin, the bore diameter of the tube, and the internal pressure, above the Vicat softening temperature of the resin, below the melting point, and in accordance with the molding conditions within the range that does not cause thermal decomposition. However, it is particularly preferable that the resin is in a molten state.

【0030】上記賦形管状体103は、必要に応じて、
第2押出機60に付設された外層被覆用の押出金型70
に通され、その表面に上記と同様な熱可塑性樹脂が押出
被覆され、サイジング冷却型80により冷却され、引取
機90により引き取られる。こうして、繊維強化熱可塑
性樹脂複合管104が製造される。
The shaped tubular body 103 is, if necessary,
Extrusion die 70 attached to the second extruder 60 for coating the outer layer
The same thermoplastic resin as described above is extrusion-coated on the surface, cooled by the sizing cooling die 80, and taken by the take-off machine 90. In this way, the fiber-reinforced thermoplastic resin composite pipe 104 is manufactured.

【0031】[0031]

【作用】この発明のように、少なくとも3枚の繊維強化
複合シートを長手方向に移送してこのシートの枚数に対
応する断面多角形の管状に組合せ、この組合せ体の内面
に熱可塑性樹脂を管状に押出し積層して断面多角形の管
状に形成し、この管状体を内圧により断面円形又は楕円
状の管状に賦形すると、少なくとも3枚の繊維強化複合
シートを用いるためにストレート金型を用いることがで
きる。そのため、、金型内で樹脂が偏流することがな
く、管状体の内面に積層される樹脂層の厚みのばらつき
が小さくなる。
As in the present invention, at least three fiber reinforced composite sheets are transferred in the longitudinal direction and combined into a tubular shape having a polygonal cross section corresponding to the number of sheets, and a thermoplastic resin is applied to the inner surface of the combined body in a tubular shape. When it is extruded and laminated to form a tube having a polygonal cross section, and this tubular body is shaped into a tube having a circular or elliptical cross section by an internal pressure, a straight mold is used to use at least three fiber-reinforced composite sheets. You can Therefore, the resin does not flow unevenly in the mold, and the variation in the thickness of the resin layer laminated on the inner surface of the tubular body is reduced.

【0032】また、少なくとも3枚の繊維強化複合シー
トを用いて管状に形成すると、大きな径の管状体も容易
に組立てることができ、またストレート金型の長さを比
較的短くすることができる。そのため、樹脂の押出圧力
の増大が防止され、樹脂の押出量を上げることができ
る。また、金型内での樹脂の滞留時間が短く、樹脂が熱
分解する恐れもなくなる。
When at least three fiber-reinforced composite sheets are used to form a tube, a tubular body having a large diameter can be easily assembled and the length of the straight mold can be made relatively short. Therefore, the extrusion pressure of the resin is prevented from increasing, and the extrusion amount of the resin can be increased. Also, the residence time of the resin in the mold is short, and there is no risk of the resin thermally decomposing.

【0033】[0033]

【実施例】以下、本発明の実施例及び比較例を示す。実施例1 繊維強化熱可塑性樹脂シートの製造 直径23μm のフィラメントよりなるロービング状ガラ
ス繊維(4400tex)を開繊し引き揃えて、塩素化
ポリ塩化ビニル粉末(塩素含有量64重量%、平均重合
度550、平均粒径100μm )の流動床中を通過さ
せ、補強繊維の間隙に樹脂粉末を含浸付着させる。これ
を230℃に加熱された加熱加圧ロールを通過させるこ
とにより、樹脂粉末を溶融させるとともにシート状に成
形し、これを長手方向に切断して、厚さ1mm、幅77m
m、ガラス繊維含有率20重量%の繊維強化熱可塑性樹
脂シート100を得た。
EXAMPLES Examples and comparative examples of the present invention will be shown below. Example 1 Production of Fiber Reinforced Thermoplastic Resin Sheet Roving glass fibers (4400 tex) made of filaments having a diameter of 23 μm were opened and aligned to obtain chlorinated polyvinyl chloride powder (chlorine content 64% by weight, average degree of polymerization 550). , An average particle size of 100 μm), and the resin powder is impregnated and adhered to the gaps between the reinforcing fibers. This is passed through a heating and pressure roll heated to 230 ° C to melt the resin powder and form a sheet, which is cut in the longitudinal direction to have a thickness of 1 mm and a width of 77 m.
A fiber reinforced thermoplastic resin sheet 100 having m and a glass fiber content of 20% by weight was obtained.

【0034】繊維強化熱可塑性樹脂複合管の製造 先ず、図1に示すように、4枚の上記繊維強化熱可塑性
樹脂シート100を長手方向に移送して断面正四角の管
状に組合せた。この管状組合せ体101の内面に塩素化
ポリ塩化ビニル(塩素含有量64重量%、平均重合度5
50)10aを195℃で管状に溶融押出し、樹脂圧及
び圧入空気の圧力を利用し積層して断面正四角の管状に
形成した。押出金型30の全長は600mm、押出圧力は
150 kg/cm2 であった。
Manufacture of Fiber Reinforced Thermoplastic Resin Composite Pipe First, as shown in FIG. 1, four fiber reinforced thermoplastic resin sheets 100 were transferred in the longitudinal direction and combined in a tubular shape having a square cross section. Chlorinated polyvinyl chloride (chlorine content: 64% by weight, average degree of polymerization: 5) was formed on the inner surface of the tubular assembly 101.
50) 10a was melt-extruded into a tube at 195 ° C. and laminated by using the resin pressure and the pressure of pressurizing air to form a tube having a square cross section. The total length of the extrusion die 30 was 600 mm, and the extrusion pressure was 150 kg / cm 2 .

【0035】この断面正四角の管状体103の内部に空
気を0.3 kg/cm2 の圧力で圧入し、この空気の内圧
により断面円形の管状に賦形した。この断面円形の賦形
管状体103を第2押出金型70に通し、その外周に塩
素化ポリ塩化ビニル(塩素含有量64重量%、平均重合
度550)を195℃で押出被覆し、サイジング冷却型
80により冷却され、引取機90により引き取って、繊
維強化熱可塑性樹脂複合管104を得た。ライン速度は
2m/分であった。
Air was pressed into the tubular body 103 having a square cross section at a pressure of 0.3 kg / cm 2 , and the tube was shaped into a circular cross section by the internal pressure of the air. The shaped tubular body 103 having a circular cross section is passed through the second extrusion die 70, and the outer periphery thereof is extrusion coated with chlorinated polyvinyl chloride (chlorine content 64% by weight, average degree of polymerization 550) at 195 ° C., and sizing cooling The fiber-reinforced thermoplastic resin composite tube 104 was obtained by being cooled by the mold 80 and taken by the take-off machine 90. The line speed was 2 m / min.

【0036】得られた繊維強化熱可塑性樹脂複合管10
4は、内径100mm、外径114mm、肉厚7mmで、内層
樹脂の厚みが3mm±0.05mmで、内層樹脂の偏肉は極
めて少なかった。
Fiber-reinforced thermoplastic resin composite tube 10 obtained
In No. 4, the inner diameter was 100 mm, the outer diameter was 114 mm, the wall thickness was 7 mm, the inner layer resin thickness was 3 mm ± 0.05 mm, and the uneven thickness of the inner layer resin was extremely small.

【0037】実施例2 繊維強化熱可塑性樹脂シートの製造 塩素化ポリ塩化ビニル粉末に替えてポリ塩化ビニル粉末
(平均重合度1000、平均粒径100μm )を用い、
実施例1と同様な方法で、厚さ1.5mm、幅75mm、ガ
ラス繊維含有率20重量%の繊維強化熱可塑性樹脂シー
ト100を得た。
Example 2 Production of Fiber Reinforced Thermoplastic Resin Sheet Polyvinyl chloride powder (average degree of polymerization: 1000, average particle size: 100 μm) was used in place of the chlorinated polyvinyl chloride powder,
In the same manner as in Example 1, a fiber-reinforced thermoplastic resin sheet 100 having a thickness of 1.5 mm, a width of 75 mm and a glass fiber content of 20% by weight was obtained.

【0038】繊維強化熱可塑性樹脂複合管の製造 先ず、図1に示すように、8枚の上記繊維強化熱可塑性
樹脂シート100を長手方向に移送して断面正八角形の
管状に組合せた。この管状組合せ体101の内面にポリ
塩化ビニル(平均重合度1000)10aを190℃で
管状に溶融押出し、樹脂圧及び圧入空気の圧力を利用し
積層して断面正八角形の管状に形成した。押出金型の全
長は1000mm、押出圧力は120 kg/cm2 であっ
た。
Manufacture of Fiber Reinforced Thermoplastic Resin Composite Tube First, as shown in FIG. 1, eight of the above fiber reinforced thermoplastic resin sheets 100 were transferred in the longitudinal direction and combined into a tubular shape having a regular octagonal cross section. Polyvinyl chloride (average degree of polymerization 1000) 10a was melt extruded into a tubular shape at 190 ° C. on the inner surface of the tubular assembly 101, and laminated using the resin pressure and the pressure of the pressurizing air to form a regular octagonal tubular section. The total length of the extrusion die was 1000 mm, and the extrusion pressure was 120 kg / cm 2 .

【0039】この断面正八角形の管状体102の内部に
空気を0.4 kg/cm2 の圧力で圧入し、この空気の内
圧により断面円形の管状に賦形した。この断面円形の賦
形管状体103を第2押出金型70に通し、その外周に
実施例1と同様にして塩素化ポリ塩化ビニル(塩素含有
量64重量%、平均重合度550)を195℃で押出被
覆し、サイジング冷却型80により冷却され、引取機9
0により引き取って、繊維強化熱可塑性樹脂複合管10
4を製造した。ライン速度は2m/分であった。
Air was pressed into the inside of the tubular body 102 having a regular octagonal cross section at a pressure of 0.4 kg / cm 2 , and the tube was shaped into a circular cross section by the internal pressure of the air. This shaped tubular body 103 having a circular cross section was passed through a second extrusion die 70, and chlorinated polyvinyl chloride (chlorine content 64% by weight, average degree of polymerization 550) was passed through the second extrusion die 70 at 195 ° C. in the same manner as in Example 1. Extrusion coating and cooling with a sizing cooling die 80, and a take-up machine 9
Fiber reinforced thermoplastic resin composite pipe 10
4 was produced. The line speed was 2 m / min.

【0040】得られた繊維強化熱可塑性樹脂複合管10
4は、内径195mm、外径215mm、肉厚10mmで、内
層樹脂の厚みが5mm±0.05mmで、内層樹脂の偏肉は
極めて少なかった。
Fiber-reinforced thermoplastic resin composite tube 10 obtained
In No. 4, the inner diameter was 195 mm, the outer diameter was 215 mm, the wall thickness was 10 mm, the thickness of the inner layer resin was 5 mm ± 0.05 mm, and the uneven thickness of the inner layer resin was extremely small.

【0041】比較例1 繊維強化熱可塑性樹脂シートの製造 実施例1と同様な方法で、厚さ1mm、幅340mm、ガラ
ス繊維含有率20重量%の繊維強化熱可塑性樹脂シート
を得た。
Comparative Example 1 Production of Fiber Reinforced Thermoplastic Resin Sheet By the same method as in Example 1, a fiber reinforced thermoplastic resin sheet having a thickness of 1 mm, a width of 340 mm and a glass fiber content of 20% by weight was obtained.

【0042】繊維強化熱可塑性樹脂複合管の製造 特開昭平3−158219号公報の実施例に基づいて、
1枚の上記繊維強化熱可塑性樹脂シートを長手方向に移
送しクロスヘッド押出金型内で断面円形の管状に形成
し、この断面円形の管状体の内面に塩素化ポリ塩化ビニ
ル(塩素含有量64重量%、平均重合度550)を上記
クロスヘッド押出金型から195℃で管状に溶融押出し
積層し、その外周に実施例1と同様にして塩素化ポリ塩
化ビニル(塩素含有量64重量%、平均重合度550)
を195℃で押出被覆し、サイジング冷却型により冷却
し、引取機により引き取って、繊維強化熱可塑性樹脂複
合管を製造した。ライン速度は2m/分であった。
Manufacture of Fiber Reinforced Thermoplastic Resin Composite Tube Based on the example of Japanese Patent Laid-Open No. 3-158219.
One of the above-mentioned fiber reinforced thermoplastic resin sheets is transferred in the longitudinal direction and formed into a tubular shape having a circular cross section in a crosshead extrusion die. The inner surface of the tubular body having the circular cross section has a chlorinated polyvinyl chloride (chlorine content of 64%). % By weight and an average degree of polymerization of 550) are melt-extruded and laminated in a tubular shape from the above crosshead extrusion die at 195 ° C., and chlorinated polyvinyl chloride (chlorine content: 64% by weight, average) on the outer periphery thereof in the same manner as in Example 1. Degree of polymerization 550)
Was extruded at 195 ° C., cooled by a sizing cooling mold, and taken by a take-up machine to produce a fiber-reinforced thermoplastic resin composite pipe. The line speed was 2 m / min.

【0043】上記クロスヘッド押出金型の全長は800
mm、押出圧力は210 kg/cm2 であった。得られた繊
維強化熱可塑性樹脂複合管は、内径100mm、外径11
4mm、肉厚約7mmで、内層樹脂の厚みが3mm±0.3mm
で、内層樹脂の偏肉は極めて大きかった。
The total length of the crosshead extrusion die is 800.
mm, the extrusion pressure was 210 kg / cm 2 . The fiber-reinforced thermoplastic resin composite pipe obtained has an inner diameter of 100 mm and an outer diameter of 11
4mm, wall thickness about 7mm, inner layer resin thickness is 3mm ± 0.3mm
Therefore, the uneven thickness of the inner layer resin was extremely large.

【0044】比較例2 繊維強化熱可塑性樹脂シートの製造 塩素化ポリ塩化ビニル粉末に替えてポリ塩化ビニル粉末
(平均重合度1000、平均粒径100μm )を用い、
実施例1と同様な方法で、厚さ1.5mm、幅80mm、ガ
ラス繊維含有率20重量%の繊維強化熱可塑性樹脂シー
トを得た。
Comparative Example 2 Production of Fiber Reinforced Thermoplastic Resin Sheet Polyvinyl chloride powder (average degree of polymerization: 1000, average particle size: 100 μm) was used in place of the chlorinated polyvinyl chloride powder,
In the same manner as in Example 1, a fiber-reinforced thermoplastic resin sheet having a thickness of 1.5 mm, a width of 80 mm and a glass fiber content of 20% by weight was obtained.

【0045】繊維強化熱可塑性樹脂複合管の製造 特開昭平4−8983号公報公報の実施例に基づいて、
8枚の上記繊維強化熱可塑性樹脂シートを長手方向に移
送し、細長い押出金型をマンドレルとしてその外周に断
面円形の管状に囲繞し、その外周に同様な繊維強化熱可
塑性樹脂シートを隙間や重なりが生じないように螺旋状
に巻回し、両方のシートを熱融着して断面円形の管状体
を形成した。
Manufacture of Fiber Reinforced Thermoplastic Resin Composite Tube Based on the example of Japanese Patent Application Laid-Open No. 4-8983.
Eight sheets of the above fiber reinforced thermoplastic resin sheets are transferred in the longitudinal direction, a slender extrusion die is used as a mandrel and is surrounded by a tubular shape with a circular cross-section, and similar fiber reinforced thermoplastic resin sheets are formed in the outer periphery of the mandrel with gaps or overlaps. So as not to occur, both sheets were heat-sealed to form a tubular body having a circular cross section.

【0046】上記断面円形の内面にポリ塩化ビニル(平
均重合度1000)を細長い押出金型から190℃で管
状に溶融押出し積層し、その外周に実施例1と同様にし
てポリ塩化ビニル(平均重合度1000)を190℃で
押出被覆し、サイジング冷却型により冷却し、引取機に
より引き取って、繊維強化熱可塑性樹脂複合管を製造し
た。ライン速度は2m/分であった。
Polyvinyl chloride (average degree of polymerization of 1000) was melt-extruded in a tubular form at 190 ° C. from an elongated extrusion die and laminated on the inner surface of the circular cross section, and polyvinyl chloride (average degree of polymerization was averaged on the outer periphery thereof) in the same manner as in Example 1. (1000 degree) was extruded at 190 ° C., cooled by a sizing cooling mold, and taken by a take-up machine to produce a fiber-reinforced thermoplastic resin composite pipe. The line speed was 2 m / min.

【0047】上記マンドレル兼用の細長い押出金型の全
長は1400mm、押出圧力は320kg/cm2 で押出圧
力が著しく高くなった。得られた繊維強化熱可塑性樹脂
複合管は、内径195mm、外径215mm、肉厚10mm
で、内層樹脂の厚みが5mm±0.05mmで、内層樹脂の
偏肉は極めて小さかった。
The length of the elongated extrusion die which also serves as the mandrel was 1400 mm and the extrusion pressure was 320 kg / cm 2 , and the extrusion pressure was remarkably high. The fiber-reinforced thermoplastic resin composite tube obtained has an inner diameter of 195 mm, an outer diameter of 215 mm, and a wall thickness of 10 mm.
The thickness of the inner layer resin was 5 mm ± 0.05 mm, and the uneven thickness of the inner layer resin was extremely small.

【0048】[0048]

【発明の効果】上述の通り、この発明の繊維強化熱可塑
性樹脂複合管の製造方法は、少なくとも3枚の繊維強化
熱可塑性樹脂シートを長手方向に移送してこのシートの
枚数に対応する断面多角形の管状に組合せ、この管状組
合せ体の内面に熱可塑性樹脂を管状に押出し積層して断
面多角形の管状に形成し、この管状体を内圧により断面
円形又は楕円形の管状に賦形するもので、それにより、
従来技術に比べ、内面に積層される熱可塑性樹脂層の偏
肉が小さく、また樹脂の押出圧力も高くならず、しかも
樹脂管と補強繊維複合体との融着が強固で、耐圧性、耐
衝撃性、耐熱水性などの繊維補強効果に優れた繊維強化
熱可塑性樹脂複合管を、能率よく製造することができ
る。
As described above, according to the method for producing a fiber-reinforced thermoplastic resin composite pipe of the present invention, at least three fiber-reinforced thermoplastic resin sheets are transferred in the longitudinal direction and the cross-sectional area corresponding to the number of sheets is increased. Combined in a rectangular tube, and extruding a thermoplastic resin in a tubular shape on the inner surface of this tubular combination to form a tube having a polygonal cross section, and shaping this tube into a tube having a circular or elliptical cross section by an internal pressure. And then
Compared with the conventional technology, the uneven thickness of the thermoplastic resin layer laminated on the inner surface is small, the extrusion pressure of the resin does not increase, and the fusion bonding between the resin tube and the reinforcing fiber composite is strong, and the pressure resistance and resistance are high. It is possible to efficiently manufacture a fiber-reinforced thermoplastic resin composite tube having excellent fiber reinforcing effects such as impact resistance and hot water resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明方法の一例を示す概略説明図である。FIG. 1 is a schematic explanatory view showing an example of the method of the present invention.

【図2】(イ)、(ロ)、(ハ)は4枚の繊維強化熱可
塑性樹脂シートを断面正4角形の管状に組合せる例を示
す断面図である。
2 (a), (b), and (c) are cross-sectional views showing an example in which four fiber-reinforced thermoplastic resin sheets are combined in a tubular shape having a regular square cross section.

【図3】(A)は図1におけるX−X断面図、(B)は
図1におけるY−Y断面図、(C)は図1におけるZ−
Z断面図である。
3A is a sectional view taken along line XX in FIG. 1, FIG. 3B is a sectional view taken along line YY in FIG. 1, and FIG.
It is a Z sectional view.

【符号の説明】[Explanation of symbols]

30 内層押出用の押出金型 31 空気圧入孔 40 外径規制用の外金型 41 外金型の断面多角形の部分 42 外金型の断面拡大部分 43 外金型の断面円形又は楕円形の部分 50 円板状又は楕円状のシール栓 70 外層被覆用の押出金型 80 サイジング冷却型 90 引取機 100 繊維強化熱可塑性樹脂シート 101 断面多角形の管状に組合せられた組合せ体 10a 組合せ体の内面に積層された熱可塑性樹脂 102 断面多角形の管状に形成された管状体 103 断面円形又は楕円形に賦形された賦形管状体 104 繊維強化熱可塑性樹脂複合管 30 Extrusion Die for Inner Layer Extrusion 31 Air Press-in Hole 40 Outer Die for Outer Diameter Control 41 Polygonal Section of Outer Die 42 Expanded Section of Outer Die 43 Cross Section of Outer Die Circular or Elliptical Part 50 Disc-shaped or elliptical seal plug 70 Extrusion die for outer layer coating 80 Sizing cooling type 90 Take-off machine 100 Fiber reinforced thermoplastic resin sheet 101 Combination body combined in a tubular shape having a polygonal cross section 10a Inner surface of combination body Thermoplastic resin 102 laminated in a tubular shape tubular body 103 having a polygonal cross section 103 shaped tubular body 104 having a circular or elliptical cross section 104 fiber-reinforced thermoplastic resin composite pipe

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29L 9:00 23:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display area B29L 9:00 23:00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも3枚の繊維強化熱可塑性樹脂
シートを長手方向に移送してこのシートの枚数に対応す
る断面多角形の管状に組合せ、この管状組合せ体の内面
に熱可塑性樹脂を管状に押出し積層して断面多角形の管
状に形成し、この管状体を内圧により断面円形又は楕円
形の管状に賦形することを特徴とする繊維強化熱可塑性
樹脂複合管の製造方法。
1. At least three fiber-reinforced thermoplastic resin sheets are transferred in the longitudinal direction and combined into a tubular shape having a polygonal cross section corresponding to the number of the sheets, and the thermoplastic resin is tubularly formed on the inner surface of the tubular combination body. A method for producing a fiber-reinforced thermoplastic resin composite pipe, which comprises extruding and laminating to form a tubular shape having a polygonal cross section, and shaping the tubular body into a tubular shape having a circular or elliptical cross section by an internal pressure.
JP6294708A 1994-11-29 1994-11-29 Manufacture of fiber reinforced thermoplastic resin composite tube Pending JPH08156113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6294708A JPH08156113A (en) 1994-11-29 1994-11-29 Manufacture of fiber reinforced thermoplastic resin composite tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6294708A JPH08156113A (en) 1994-11-29 1994-11-29 Manufacture of fiber reinforced thermoplastic resin composite tube

Publications (1)

Publication Number Publication Date
JPH08156113A true JPH08156113A (en) 1996-06-18

Family

ID=17811283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6294708A Pending JPH08156113A (en) 1994-11-29 1994-11-29 Manufacture of fiber reinforced thermoplastic resin composite tube

Country Status (1)

Country Link
JP (1) JPH08156113A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210029763A (en) * 2017-09-27 2021-03-16 (주)엘지하우시스 Composite material producing apparatus, and method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210029763A (en) * 2017-09-27 2021-03-16 (주)엘지하우시스 Composite material producing apparatus, and method of the same

Similar Documents

Publication Publication Date Title
US2810424A (en) Method and apparatus for making reinforced plastic tubing
US4341578A (en) Method of hose production
US5862591A (en) Method for manufacturing paint rollers
GB2034433A (en) Method of hose production and product
JPH08156113A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
KR101392951B1 (en) Method for the production of a cylindrical, strand-shaped part
JPH0531782A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH07117178B2 (en) Composite pipe
JPH0584847A (en) Production of fiber reinforced thermoplastic resin pipe
JPH06344444A (en) Thermoplastic resin lined metallic pipe
JPH03243333A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JP3214892B2 (en) Method for producing hollow cross-section shaped body
JPH086847B2 (en) Composite pipe and manufacturing method thereof
JPH07256779A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH0460292A (en) Manufacture of fiber reinforced resin pipe
JPH0735270A (en) Manufacture of fiber reinforced thermoplastic resin pipe
JP2674844B2 (en) Manufacturing method of fiber reinforced resin pipe
JPH074877B2 (en) Method for manufacturing fiber-reinforced resin pipe
JPH0516262A (en) Manufacture of fiber-reinforced thermoplastic resin tube
JPH07290591A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH05154936A (en) Method and apparatus for manufacturing fiber reinforced thermoplastic resin pipe
JPH07132565A (en) Preparation of fiber-reinforced thermoplastic resin composite pipe
JP2726123B2 (en) Manufacturing method of fiber reinforced resin pipe
RU2271930C2 (en) Method for manufacture of biplastic pipes
JPH06340004A (en) Production of fiber-reinforced complex tube