JPH08155650A - Welding method of austenitic stainless steel - Google Patents

Welding method of austenitic stainless steel

Info

Publication number
JPH08155650A
JPH08155650A JP31945694A JP31945694A JPH08155650A JP H08155650 A JPH08155650 A JP H08155650A JP 31945694 A JP31945694 A JP 31945694A JP 31945694 A JP31945694 A JP 31945694A JP H08155650 A JPH08155650 A JP H08155650A
Authority
JP
Japan
Prior art keywords
welding
carbon dioxide
cooling
weld zone
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31945694A
Other languages
Japanese (ja)
Other versions
JP3627194B2 (en
Inventor
Koji Ishii
宏治 石井
Kazuji Toyoda
和司 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishii Iron Works Co Ltd
Original Assignee
Ishii Iron Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishii Iron Works Co Ltd filed Critical Ishii Iron Works Co Ltd
Priority to JP31945694A priority Critical patent/JP3627194B2/en
Publication of JPH08155650A publication Critical patent/JPH08155650A/en
Application granted granted Critical
Publication of JP3627194B2 publication Critical patent/JP3627194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE: To suppress generation of precipitation of alloy component, coarsing of grain, thermal strain, residual stress so as to obtain the weld zone excellent in corrosion resistance, durability and external appearance by cooling the weld zone right after heating to high temp. with solidified solid particle of dioxide carbon in welding of austenitic stainless steel. CONSTITUTION: On the surface of a weld zone 7 in high temp. right after welding, a solidified solid particle 8 of a dioxide carbon is sprayed for cooling by a spraying machine 5. At this time, the weld zone 7 is rapidly cooled in short time by the latent heat sublimating from solid to gas. In order not to give adverse influence on welding such as the solidified solid particle 8 is directly spattered on the weld zone or air is entrapped for oxidizing weld zone, etc., the nozzle direction of the spraying machine 5 is inclined backward in the prescribed angle or a protective cover, spraying guide, etc., are mounted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、オーステナイト系ス
テンレス鋼の溶接の際に、冷却しながら溶接する方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for welding austenitic stainless steel while cooling it.

【0002】[0002]

【従来の技術】オーステナイト系ステンレス鋼を溶接す
る際に、溶接箇所の高い溶接熱で溶接箇所及びその近傍
が、冷却過程でおよそ500℃〜800℃の温度範囲に
長時間維持されると、熱的影響によって溶着金属及び熱
影響部の合金成分の炭化物が結晶粒界部に析出して、耐
食性が劣化し粒界腐食の原因となる問題が知られてい
る。また、結晶粒の粗大化や熱歪みによって強度が劣化
したり残留応力の発生や変形が生じて、これらが応力腐
食割れの要因となる問題や、耐食性や美観を損なう表面
酸化被膜が形成される等の問題が知られている。また、
初層溶接後の積層溶接をする際にも、積層溶接の溶接熱
の影響によって、上記溶接欠陥が初層及び積層溶接部に
生じる問題が知られている。
2. Description of the Related Art When welding austenitic stainless steel, if the welding site and its vicinity are maintained in a temperature range of about 500 ° C. to 800 ° C. for a long time during the cooling process due to the high welding heat of the welding site, the heat is generated. It is known that the deposited metal and carbide of the alloy component of the heat-affected zone are precipitated in the crystal grain boundary portion due to the thermal influence, and the corrosion resistance deteriorates, causing intergranular corrosion. In addition, coarsening of crystal grains and thermal strain cause deterioration in strength and generation and deformation of residual stress, which cause stress corrosion cracking, and a surface oxide film that deteriorates corrosion resistance and aesthetics is formed. Problems such as are known. Also,
It is known that the above-mentioned welding defect occurs in the initial layer and the laminated welded portion due to the influence of the welding heat of the laminated welding when performing the laminated welding after the initial layer welding.

【0003】これらの問題を解決するために、オーステ
ナイト系ステンレス鋼の溶接部を冷却しながら溶接をす
る方法が知られている。その方法としては、溶接する
側、つまり表側から溶接部表面に低温の不活性ガスを直
接噴射しながら溶接を行う溶接方法があった。また、他
の方法としては、初層溶接後に積層溶接をする際に、当
該積層溶接箇所に相当する裏側の初層溶接箇所に、水等
の液状冷媒を吹き付けたり又は流したりして冷却しなが
ら溶接を行う溶接方法があった。
In order to solve these problems, there is known a method of welding while welding a welded portion of austenitic stainless steel. As the method, there is a welding method in which a low temperature inert gas is directly injected from the side to be welded, that is, the front side, to the surface of the welded portion to perform welding. Further, as another method, when laminating welding after the initial layer welding, to the first layer welding portion on the back side corresponding to the laminated welding portion, while cooling by spraying or flowing a liquid refrigerant such as water. There was a welding method for welding.

【0004】[0004]

【発明が解決しようとする課題】オーステナイト系ステ
ンレス鋼の溶接の際に、溶接部表面に溶接用シールドガ
スとして、低温にした不活性ガスを噴射して溶接部を冷
却する溶接方法は、低温ガスの比熱に係わる温度変化に
よる顕熱を利用して冷やすために、溶接部を短時間に充
分に冷やすことが難しく、溶接部の充分な耐食性、耐久
性等が得られなかった。また、冷却の熱効率が良くない
ために大量の低温ガスも必要とした。
When welding austenitic stainless steel, a welding method for cooling a weld by injecting a low temperature inert gas as a welding shield gas onto the surface of the weld is a low temperature gas. Since it is cooled by utilizing the sensible heat due to the temperature change related to the specific heat, it is difficult to sufficiently cool the welded part in a short time, and sufficient corrosion resistance and durability of the welded part cannot be obtained. Also, a large amount of low-temperature gas was required because the thermal efficiency of cooling was not good.

【0005】また、オーステナイト系ステンレス鋼の初
層溶接後に積層溶接をする際に、裏側の初層溶接箇所
に、水等の液状冷媒を吹き付けたり又は流したりして溶
接部を冷却する溶接方法は、液状冷媒の顕熱と気化熱を
利用するものであるが、短時間に冷やすことはいまだ充
分でなく、初層及び積層溶接部の充分な耐食性、耐久性
等を得ることが難しかった。また、冷却の熱効率が良く
ないために大量の水等の冷媒が必要であるのに加えて、
管材等の溶接の場合に水等の液状冷媒を漏れないように
シールして均一に循環させる機構を必要とし、飛散して
濡れたり作業の支障にならないように保護したり、回収
して処理が必要であるなど、冷却機構が複雑で取扱いが
大変であった。また、水等の液状冷媒が表面に付着する
とその表面に酸化被膜が形成されて耐食性や美観が損な
われる等の問題を内在していた。
In addition, when performing a layered welding after the first layer welding of austenitic stainless steel, a welding method of cooling the welded portion by spraying or flowing a liquid refrigerant such as water at the first layer welding portion on the back side is used. Although the sensible heat and the heat of vaporization of the liquid refrigerant are used, it is still insufficient to cool them in a short time, and it has been difficult to obtain sufficient corrosion resistance and durability of the initial layer and the laminated weld. In addition to the fact that a large amount of water or other refrigerant is required due to the poor thermal efficiency of cooling,
When welding pipes, etc., it is necessary to have a mechanism to seal liquid refrigerant such as water so that it does not leak and to circulate it evenly, and protect it so that it does not splash and get wet or hinder work. The cooling mechanism was complicated and it was difficult to handle. Further, when a liquid refrigerant such as water adheres to the surface, an oxide film is formed on the surface, which impairs corrosion resistance and aesthetics.

【0006】この発明は、上述の課題に鑑みてなされた
もので、オーステナイト系ステンレス鋼の溶接の際に、
従来の低温ガス又は水等の液状冷媒を使用することな
く、二酸化炭素の凝結固体(商品名、ドライアイス)の
粒子を使用して、高温の溶接部を大きな昇華の潜熱によ
って短時間に効率良く冷却して、熱影響による合金成分
の析出や結晶粒の粗大化、熱歪や残留応力の発生、表面
酸化被膜の形成等をなくして、耐食性、耐久性に優れた
品質の良い溶接部が得られ、かつ溶接及び冷却の作業が
容易なオーステナイト系ステンレス鋼の溶接法を提供す
るものである。
The present invention has been made in view of the above-mentioned problems, and when welding austenitic stainless steel,
Efficient in a short time due to large latent heat of sublimation of high temperature welds by using particles of solidified carbon dioxide (trade name, dry ice) without using liquid refrigerant such as conventional low temperature gas or water. Cooling eliminates precipitation of alloy components due to heat effect, coarsening of crystal grains, generation of thermal strain and residual stress, formation of surface oxide film, etc., resulting in a good quality weld with excellent corrosion resistance and durability. The present invention provides a welding method for austenitic stainless steel, which is easy to weld and cool.

【0007】[0007]

【課題を解決するための手段】この発明に係るオーステ
ナイト系ステンレス鋼の溶接法は、溶接直後の溶接部の
表裏面のうち少なくとも片面に、二酸化炭素の凝結固体
粒子を吹き付けて冷却するものである。
In the welding method for austenitic stainless steel according to the present invention, condensed solid particles of carbon dioxide are sprayed on at least one of the front and back surfaces of the welded portion immediately after welding to cool it. .

【0008】また、この発明に係るオーステナイト系ス
テンレス鋼の溶接法は、初層溶接後に積層溶接をする際
に、当該積層溶接箇所に相当する裏側の初層溶接箇所に
直接、二酸化炭素の凝結固体粒子を吹き付け冷却して、
前記溶接を行うものである。
Further, the welding method for austenitic stainless steel according to the present invention is such that, when the first layer welding is followed by the layer welding, the solidified carbon dioxide is directly added to the first layer welding point on the back side corresponding to the layer welding point. Spray the particles to cool,
The welding is performed.

【0009】[0009]

【作用】この発明に係るオーステナイト系ステンレス鋼
の溶接法は、溶接直後の溶接部の表裏面のうち少なくと
も片面に二酸化炭素の凝結固体粒子を吹き付けて冷却す
るので、粉体状又は粒状の固体粒子が、高温に熱せられ
た箇所に次々に衝突すると同時に固体から気体に瞬時に
変化し、昇華による大きな潜熱を奪って短時間に急激に
冷却する。固体粒子は表面まで直接到達し衝突と同時に
瞬間的に蒸発して、表面に常に新たな固体粒子を接触さ
せて、冷却効果を一層高める。このように、短時間に効
率良く冷却するので、溶接の高い熱による耐食性の劣化
や熱歪みの発生や応力腐食割れの要因等の問題を生じる
ことがない。
In the method for welding austenitic stainless steel according to the present invention, the solidified particles of carbon dioxide are cooled by spraying condensed solid particles of carbon dioxide to at least one of the front and back surfaces of the welded portion immediately after welding, so that solid particles in the form of powder or particles are cooled. However, at the same time, they collide with the places heated to a high temperature one after another, and at the same time, they instantly change from solid to gas and take large latent heat from sublimation to cool rapidly. The solid particles directly reach the surface and instantaneously evaporate at the same time as the collision, so that new solid particles are constantly brought into contact with the surface to further enhance the cooling effect. As described above, since the cooling is efficiently performed in a short time, problems such as deterioration of corrosion resistance due to high heat of welding, occurrence of thermal distortion, and factors of stress corrosion cracking do not occur.

【0010】溶接対象物が小口径の管材など裏側から溶
接や冷却等ができない場合には、溶接する側、すなわち
表側から溶接直後の溶接部表面にのみ二酸化炭素の凝結
固体粒子の吹き付けによる冷却を行って溶接部を短時間
に冷却する。また、溶接直後の溶接部裏面にのみ上記冷
却を行った場合には、溶接する側での冷却の同時作業が
ないため、溶接作業がし易い。さらにまた、溶接直後の
溶接部の表裏両面から同時に上記冷却を行った場合に
は、短時間に冷却して冷却効率が一層高まるばかりか、
両面から冷却するために、残留応力、熱歪み及び塑性変
形を一層抑制することができる。
When the object to be welded cannot be welded or cooled from the back side such as a pipe material having a small diameter, cooling is performed by spraying condensed solid particles of carbon dioxide only from the welding side, that is, from the front side to the welded surface immediately after welding. To cool the weld in a short time. Further, when the above cooling is performed only on the back surface of the welded portion immediately after welding, the welding operation is easy because there is no simultaneous cooling operation on the welding side. Furthermore, when the above-mentioned cooling is performed simultaneously from both the front and back surfaces of the welded portion immediately after welding, not only the cooling efficiency is further improved by cooling in a short time,
Since cooling is performed from both sides, residual stress, thermal strain and plastic deformation can be further suppressed.

【0011】また、この発明は冷却媒体として固体から
気体に直ぐに昇華する二酸化炭素の凝結固体粒子を使用
しているので、水等の液状冷媒のように溶接箇所や裏面
の表面等を濡らしたり、漏れたりすることがなく、ま
た、後処理等の配慮をする必要がないため、取扱いが容
易で溶接部の冷却の作業性が良い。
Further, since the present invention uses condensed solid particles of carbon dioxide which immediately sublimes from a solid to a gas as a cooling medium, it wets the welding site or the surface of the back surface like a liquid refrigerant such as water, Since it does not leak and there is no need to consider post-processing, it is easy to handle and the workability of cooling the welded part is good.

【0012】また、この発明に係るオーステナイト系ス
テンレス鋼の溶接法は、初層溶接後に積層溶接をする際
に、積層溶接直後の溶接部の表裏面のうち少なくとも片
面に二酸化炭素の凝結固体粒子を吹き付けて冷却すると
同時に、当該積層溶接箇所に相当する裏側の初層溶接箇
所にも直接、二酸化炭素の凝結固体粒子を吹き付けるの
で、積層溶接箇所及び初層溶接箇所を積層溶接と同時に
短時間で表裏両面から冷却するため一層冷却効率が高ま
る。このように積層溶接の場合にも、短時間に効率良く
冷却するので、積層溶接の高い熱による初層及び積層溶
接部の耐食性の劣化や応力腐食割れの要因等を抑制する
とともに、両面から冷却するために、残留応力や熱歪み
等の発生を一層抑制することができる。
Further, the welding method for austenitic stainless steel according to the present invention is such that, when performing the laminated welding after the initial layer welding, condensed solid particles of carbon dioxide are formed on at least one of the front and back surfaces of the welded portion immediately after the laminated welding. At the same time as spraying and cooling, the solidified carbon dioxide particles are also sprayed directly to the first layer welded part on the back side corresponding to the laminated welded part. Since cooling is performed from both sides, cooling efficiency is further enhanced. In this way, even in the case of laminated welding, efficient cooling in a short time suppresses deterioration of corrosion resistance and stress corrosion cracking of the initial layer and laminated weld due to high heat of laminated welding, and cools from both sides. Therefore, the occurrence of residual stress, thermal strain, etc. can be further suppressed.

【0013】[0013]

【実施例】この発明の実施例を図面に従って説明する。
図1に、この発明に係る溶接法を示す。図中、1は被溶
接材のオーステナイト系ステンレス鋼材、2はTIG溶
接する場合の溶接トーチ、3は溶接材料ワイヤ、4は溶
接機、7は溶接箇所直後の溶着金属とその近傍の熱影響
部を含む溶接部である。また、5は溶接部7を冷却する
ための二酸化炭素凝結固体粒子8の吹き付け機、6は凝
結固体粒子の二酸化炭素を製造して送り出す供給装置で
ある。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a welding method according to the present invention. In the figure, 1 is an austenitic stainless steel material to be welded, 2 is a welding torch for TIG welding, 3 is a welding material wire, 4 is a welding machine, 7 is a weld metal immediately after the welding site and a heat-affected zone in the vicinity thereof It is a welded part including. Further, 5 is a spraying machine of carbon dioxide condensed solid particles 8 for cooling the welded portion 7, and 6 is a supply device for producing and sending carbon dioxide of the condensed solid particles.

【0014】この図1は、小口径の管材など裏側からの
溶接ができない場合等に、溶接する方向側、つまり表側
から片側溶接した直後の溶接部7の表面のみを冷却して
いる状態を示す。図のように、溶接直後の高温になった
溶接部7の表面に、凝結固体状二酸化炭素の吹き付け機
5によって二酸化炭素の凝結固体粒子8を吹き付けて冷
却する。この際に、固体から気体に瞬時に昇華する大き
な潜熱によって溶接部7を短時間に急激に冷却する。
FIG. 1 shows a state in which only the surface of the welded portion 7 immediately after one side is welded from the welding direction side, that is, the front side, when the welding from the back side such as a small-diameter pipe material is not possible. . As shown in the figure, the solidified carbon dioxide spraying machine 5 sprays the solidified carbon dioxide particles 8 onto the surface of the welded portion 7 which has been heated to a high temperature immediately after welding and is cooled. At this time, the weld 7 is rapidly cooled in a short time by the large latent heat that instantly sublimes from solid to gas.

【0015】このように、溶接部7を短時間に効率良く
冷却するので、溶接箇所の高い溶接熱によって溶着金属
及び熱影響部の合金成分の炭化物が結晶粒界部に析出し
て、耐食性が劣化し粒界腐食の原因となったり、また、
結晶粒の粗大化や熱歪みによって強度が劣化したり残留
応力が発生して、これらが応力腐食割れの要因となった
り、耐食性や美観を損なう表面酸化被膜が形成されたり
することがない。
As described above, since the welded portion 7 is efficiently cooled in a short time, the weld metal and the carbide of the alloy component of the heat-affected zone are precipitated at the grain boundary portion by the high welding heat of the welded portion, and the corrosion resistance is improved. It causes deterioration and causes intergranular corrosion.
It does not occur that strength is deteriorated or residual stress is generated due to coarsening of crystal grains or thermal strain, which cause stress corrosion cracking, or a surface oxide film that impairs corrosion resistance or aesthetics is formed.

【0016】また、二酸化炭素の凝結固体粒子8が飛散
して溶接箇所に直接かかったり、空気を巻き込んで溶接
部を酸化させる等溶接に対して悪影響を及ぼさないよう
に、吹き付け機5のノズルの方向を溶接の進行方向に対
して後方所定角度に傾斜させたり、また保護カバーや吹
き出しガイド等を取り付けておく。
Further, in order to prevent the condensed solid particles 8 of carbon dioxide from scattering and directly hitting the welded portion, or entraining air to oxidize the welded portion, there is no adverse effect on the welding. The direction is inclined at a predetermined angle rearward with respect to the welding proceeding direction, and a protective cover, a blowing guide, etc. are attached.

【0017】凝結固体状二酸化炭素の供給装置6は、低
温液化二酸化炭素を貯蔵する容器9と、この液体を凝結
固形化して造粒する二酸化炭素凝結固体粒子製造装置1
0と、この固体粒子を送り出す送出装置11とから形成
する。二酸化炭素の凝結固体粒子8は、炭酸ガスやアル
ゴンガス等の不活性ガスを貯蔵したガス容器12から送
られる圧縮された低温のガスをキャリヤーにして、混合
装置13で混合して二酸化炭素吹き付け機5に搬送す
る。
The condensed solid carbon dioxide supply device 6 includes a container 9 for storing low temperature liquefied carbon dioxide, and a carbon dioxide condensed solid particle production device 1 for condensing and solidifying the liquid for granulation.
0 and a delivery device 11 for delivering the solid particles. The condensed solid particles 8 of carbon dioxide are mixed by a mixing device 13 with a compressed low temperature gas sent from a gas container 12 storing an inert gas such as carbon dioxide gas or argon gas and mixed by a carbon dioxide spraying machine. Transport to 5.

【0018】溶接部7に吹き付ける二酸化炭素の凝結固
体粒子8は、例えば、容器9に貯蔵した比重1.1程度
で沸点−78.5℃の物性を有する低温液化二酸化炭素
つまり液化炭酸を、二酸化炭素凝結固体粒子製造装置1
0で圧力80気圧程度に圧縮冷却して細孔から噴出させ
断熱膨張により比重1.5程度の雪片状に凝結させ、こ
の雪片を圧縮成形造粒して製造する。この二酸化炭素の
凝結固体粒子8を、送出装置11で混合装置13に送り
出し、ガス容器12から送られる低温ガスをキャリヤー
にして圧力を高めて移送する。
The condensed solid particles 8 of carbon dioxide sprayed onto the weld 7 are, for example, low-temperature liquefied carbon dioxide having a specific gravity of about 1.1 and a boiling point of -78.5 ° C. Carbon condensed solid particle production device 1
At 0, the pressure is compressed and cooled to about 80 atm, and the particles are ejected from the pores and adiabatic expansion is caused to condense into a snowflake having a specific gravity of about 1.5, and the snowflake is compression-molded and manufactured. The condensed solid particles 8 of carbon dioxide are sent out to the mixing device 13 by the sending device 11, and the low temperature gas sent from the gas container 12 is used as a carrier to increase the pressure and to be transferred.

【0019】なお上記実施例は、二酸化炭素の凝結固体
粒子8を二酸化炭素凝結固体製造装置10によって容器
9から送られる低温液化二酸化炭素を用いて製造した場
合を示したが、あらかじめ固形に製造された二酸化炭素
(商品名、ドライアイス)を用いて、これを粉砕装置等
によって所望の大きさの粒状に粉砕造粒等して製造する
ようにして、製造装置の簡素化を図っても良い。
In the above embodiment, the condensed solid particles 8 of carbon dioxide were produced by the low temperature liquefied carbon dioxide sent from the container 9 by the carbon dioxide condensed solid producing apparatus 10. It is also possible to simplify the manufacturing apparatus by using carbon dioxide (trade name: dry ice) and crushing and granulating it into particles of a desired size by a crushing apparatus or the like.

【0020】二酸化炭素の凝結固体粒子8は、溶接部7
の冷却部表面が凹凸状態や狭い範囲であっても所望の冷
却箇所を的確に狙って効率良く冷却できるように、粒子
を固くして圧力を高めて強い衝撃力で吹き付ける形状、
例えば、数百ミクロンから数ミリ程度の粗い球体や柱体
の粒状に形成する。
The solidified particles 8 of carbon dioxide are welded to each other at the welded portion 7.
Even if the surface of the cooling part has unevenness or a narrow range, the particles can be hardened and the pressure can be increased with a strong impact so that the desired cooling spot can be accurately aimed and cooled efficiently.
For example, it is formed in the shape of coarse spheres or columns having a size of several hundreds of microns to several millimeters.

【0021】図2は、オーステナイト系ステンレス鋼の
板材14,14の溶接の際に、表裏両面側から同時に溶
接直後の溶接部表裏両面に二酸化炭素の凝結固体粒子8
を吹き付けて冷却している状態を示す。
FIG. 2 shows that when the austenitic stainless steel plate materials 14 are welded, the solidified carbon particles 8 of carbon dioxide are simultaneously applied to the front and back surfaces of the welded portion immediately after the welding from both front and back surfaces.
Shows the state of being sprayed and cooled.

【0022】図中、5Aは表面側の吹き付け機、5Bは
裏面側の吹き付け機である。表面側の吹き付け機5A
は、溶接直後の表面の溶接部7Aに二酸化炭素の凝結固
体粒子8を吹き付けて溶接部7Aを冷却し、同時に裏面
側の吹き付け機5Bは、溶接直後の表面の溶接部7Aに
対応して裏面の溶接部7Bに二酸化炭素の固体粒子8を
吹き付けて冷却するように設置する。このように、溶接
直後の溶接部7A,7Bの表裏両面から同時に冷却した
場合には、冷却効率を一層高めることができるばかり
か、残留応力、熱歪み及び塑性変形が生じにくい。
In the figure, 5A is a front side spraying machine and 5B is a back side spraying machine. Front side spraying machine 5A
Is to cool the welded portion 7A by spraying the solidified carbon particles 8 of carbon dioxide onto the welded portion 7A immediately after the welding, and at the same time, the spraying machine 5B on the back surface side corresponds to the welded portion 7A on the surface immediately after the welding. It is installed so that the solid particles 8 of carbon dioxide are sprayed onto the welded part 7B of FIG. As described above, when the front and back surfaces of the welded portions 7A and 7B immediately after welding are simultaneously cooled, not only the cooling efficiency can be further improved, but also residual stress, thermal strain and plastic deformation hardly occur.

【0023】また、図1や図2以外の方法として、溶接
直後の溶接部の裏面のみに二酸化炭素の凝結固体粒子を
吹き付けて冷却するようにした場合には、溶接する表側
での冷却の同時作業がなく、また、二酸化炭素の凝結固
体粒子や炭酸ガスが溶接箇所の周囲に飛散することがな
いため、溶接作業がし易くなる。
Further, as a method other than those shown in FIGS. 1 and 2, when the solidified carbon dioxide particles are sprayed to cool only the back surface of the welded portion immediately after welding, the front side of the welding is simultaneously cooled. There is no work, and since the solidified particles of carbon dioxide and carbon dioxide do not scatter around the welding spot, the welding work becomes easier.

【0024】図3は、オーステナイト系ステンレス鋼の
管材15,15の溶接の際に、初層溶接17施工後の積
層溶接18施工時に管材15の内側から初層溶接17箇
所に直接二酸化炭素の凝結固体粒子8を吹き付けて冷却
している状態を示す。
FIG. 3 shows that when welding austenitic stainless steel pipe materials 15 and 15, carbon dioxide is directly condensed from the inside of the pipe material 15 to the 17 places of the first layer welding during the laminated welding 18 after the first layer welding 17 is performed. The state where the solid particles 8 are sprayed and cooled is shown.

【0025】図中、5Cは管用の二酸化炭素凝結固体吹
き付け機、16は二酸化炭素凝結固体粒子8を導いて所
定の冷却部に吹き付けて効率良く冷却するための分散ガ
イドである。管材15,15に初層溶接17をセルフシ
ールドアーク溶接又は裏面にバックシールドガスを使用
したTIG溶接によって施工後、積層溶接18を行う際
に、積層溶接18直後の溶接部7Cの表面に二酸化炭素
の凝結固体粒子8を吹き付けると同時に、積層溶接18
箇所に相当する裏側の初層溶接17箇所も直接冷却する
ように、管材15の内側から管用の吹き付け機5Cと分
散ガイド16によって二酸化炭素の凝結固体粒子8を、
管材15の積層溶接部7Cに直接相当する裏側位置を含
む初層溶接17の表面全体に吹き付けて、表裏両面から
短時間に効率良く冷却するように形成する。
In the figure, 5C is a carbon dioxide condensation solid spraying machine for pipes, and 16 is a dispersion guide for guiding the carbon dioxide condensation solids particles 8 and spraying them to a predetermined cooling part for efficient cooling. After performing the first layer welding 17 on the pipe materials 15 and 15 by self-shield arc welding or TIG welding using the back shield gas on the back surface, when performing the laminated welding 18, carbon dioxide is formed on the surface of the welded portion 7C immediately after the laminated welding 18. At the same time as spraying the solidified solid particles 8 of
The solidified particles 8 of carbon dioxide are condensed from the inside of the pipe material 15 by the spraying machine 5C for the pipe and the dispersion guide 16 so as to directly cool the first layer welding 17 on the back side corresponding to the place.
The entire surface of the first layer weld 17 including the back side position directly corresponding to the laminated welded portion 7C of the pipe material 15 is sprayed and formed so as to be efficiently cooled from both the front and back sides in a short time.

【0026】このように、積層溶接18の際にも、積層
溶接18箇所とその裏側の初層溶接17箇所の両面を同
時に短時間に効率良く冷却するので、積層溶接18箇所
の高い溶接熱によって積層溶接18及び初層溶接17双
方の溶着金属及び熱影響部の合金成分の炭化物が結晶粒
界部に析出して、耐食性が劣化し粒界腐食の原因となっ
たり、また、結晶粒の粗大化や熱歪みによって強度が劣
化したり残留応力が発生して、これらが応力腐食割れの
要因となったり、耐食性や美観を損なう表面酸化被膜が
形成されたりすることがない。
As described above, even during the laminated welding 18, both the 18 laminated welding portions and the 17 first layer welding portions on the back side thereof are efficiently cooled simultaneously in a short time. The weld metal of both the layered weld 18 and the first layer weld 17 and the carbide of the alloy component of the heat-affected zone are precipitated in the grain boundary portion, which deteriorates the corrosion resistance and causes the intergranular corrosion. The deterioration of strength and the generation of residual stress due to aging and thermal strain do not cause stress corrosion cracking, and a surface oxide film that impairs corrosion resistance and aesthetics is not formed.

【0027】なお、管材15の径が大きい場合等には、
初層溶接17を施工後の積層溶接18を行う際に、積層
溶接18直後の溶接部7Cの表面に二酸化炭素の凝結固
体粒子8を吹き付けると同時に、積層溶接部7Cに相当
する裏側を局部的に直接冷却するように、管用の吹き付
け機5Cの出口ノズルを管内面の一方向に曲げて、溶接
の進行に追随して回転させるように形成すると、高温に
なる溶接箇所に追随して直接集中して冷却することがで
きるため冷却効率と経済性が一層向上する。
When the diameter of the pipe material 15 is large,
When performing the laminated welding 18 after the first layer welding 17 is performed, the solidified carbon particles 8 of carbon dioxide are sprayed onto the surface of the welded portion 7C immediately after the laminated welding 18 and at the same time, the back side corresponding to the laminated welded portion 7C is locally localized. If the outlet nozzle of the pipe spraying machine 5C is bent in one direction on the inner surface of the pipe so as to be cooled directly, and is formed so as to rotate following the progress of welding, it directly concentrates following the welding point where the temperature becomes high. Therefore, cooling efficiency and economic efficiency are further improved.

【0028】[0028]

【効果】この発明に係るオーステナイト系ステンレス鋼
の溶接法は、上述のように、高温に熱せられた溶接直後
の溶接部を二酸化炭素の凝結固体粒子の大きな昇華潜熱
で短時間に効率良く冷却するので、溶接の熱影響による
合金成分の析出や結晶粒の粗大化、熱歪や残留応力の発
生を抑制して、耐食性、耐久性に優れ、美観に優れた溶
接部を得ることができる。
[Effect] As described above, the welding method for austenitic stainless steel according to the present invention efficiently cools the welded portion immediately after welding heated to a high temperature in a short time by the large latent heat of sublimation of condensed solid particles of carbon dioxide. Therefore, it is possible to obtain a welded portion which is excellent in corrosion resistance, durability and aesthetics by suppressing precipitation of alloying components, coarsening of crystal grains, generation of thermal strain and residual stress due to thermal influence of welding.

【0029】また、二酸化炭素の凝結固体粒子は固体か
ら気体に瞬時に昇華するので、水等の液状冷媒のよう
に、濡れたり漏れたり等して周囲に害を及ぼすことがな
く、取扱いが容易であるため、溶接時の良い冷却作業性
が得られる。
Further, the condensed solid particles of carbon dioxide instantly sublimate from a solid to a gas, and therefore, unlike liquid refrigerants such as water, they do not get wet or leak and do not harm the surroundings, and are easy to handle. Therefore, good cooling workability during welding can be obtained.

【0030】また、この発明に係るオーステナイト系ス
テンレス鋼の溶接法は、上述のように、初層溶接後に積
層溶接をする際に、積層溶接直後の溶接部表面と、当該
積層溶接箇所に相当する裏側の初層溶接箇所の両面に、
二酸化炭素の凝結固体粒子を吹き付けて同時に直接短時
間に効率良く冷却するので、積層溶接の熱影響による初
層及び積層溶接部の合金成分の析出や結晶粒の粗大化、
熱歪や残留応力の発生、表面酸化被膜の形成等を抑制し
て、耐食性、耐久性に一層優れた初層及び積層溶接部を
得ることができる。
Further, the welding method for austenitic stainless steel according to the present invention, as described above, corresponds to the surface of the welded portion immediately after the laminated welding and the laminated welded portion when the laminated welding is performed after the initial layer welding. On both sides of the first layer weld on the back side,
Since condensed solid particles of carbon dioxide are simultaneously sprayed and efficiently cooled directly in a short time, precipitation of alloy components and coarsening of crystal grains in the initial layer and the laminated weld due to the heat effect of laminated welding,
It is possible to obtain the initial layer and the laminated weld which are further excellent in corrosion resistance and durability by suppressing the generation of thermal strain and residual stress, the formation of surface oxide film, and the like.

【0031】[0031]

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明に係る溶接法を示す説明図である。FIG. 1 is an explanatory view showing a welding method according to the present invention.

【図2】 この発明に係る溶接法の表裏両面から同時に
冷却して板材を溶接する状態を示す説明図ある。
FIG. 2 is an explanatory view showing a state in which a plate material is welded by simultaneously cooling both front and back sides of the welding method according to the present invention.

【図3】 この発明に係る溶接法の初層溶接後に積層溶
接をする際に冷却して管材を溶接する状態を示す説明図
である。
FIG. 3 is an explanatory view showing a state where the pipe material is cooled and welded when the laminated welding is performed after the initial layer welding of the welding method according to the present invention.

【符号の説明】[Explanation of symbols]

1 オーステナイト系ステンレス鋼材 11
送出装置 2 溶接トーチ 12
ガス容器 3 ワイヤ 13
混合装置 4 溶接機 14
板材 5,5A,5B,5C 吹き付け機 15
管材 6 供給装置 16
分散ガイド 7,7A,7B,7C 溶接部 17
初層溶接 8 固体粒子 18
積層溶接 9 容器 10 固体粒子製造装置
1 Austenitic stainless steel 11
Delivery device 2 Welding torch 12
Gas container 3 wire 13
Mixer 4 Welder 14
Plate material 5, 5A, 5B, 5C Spraying machine 15
Pipe material 6 Supply device 16
Dispersion guide 7, 7A, 7B, 7C Welded part 17
First layer welding 8 Solid particles 18
Multilayer welding 9 Container 10 Solid particle manufacturing equipment

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 オーステナイト系ステンレス鋼の溶接の
際に、溶接直後の溶接部の表裏面のうち少なくとも片面
に、二酸化炭素の凝結固体粒子を吹き付けて冷却するこ
とを特徴とするオーステナイト系ステンレス鋼の溶接
法。
1. When austenitic stainless steel is welded, condensed solid particles of carbon dioxide are sprayed on at least one of the front and back surfaces of the welded portion immediately after welding to cool the austenitic stainless steel. Welding method.
【請求項2】 初層溶接後に積層溶接をする際に、当該
積層溶接箇所に相当する裏側の初層溶接箇所に直接、二
酸化炭素の凝結固体粒子を吹き付けて冷却することを特
徴とする請求項1記載のオーステナイト系ステンレス鋼
の溶接法。
2. When carrying out layered welding after the first layer welding, condensed solid particles of carbon dioxide are directly blown to and cooled at the first layer welded portion on the back side corresponding to the layered welded portion. 1. A welding method for austenitic stainless steel according to 1.
JP31945694A 1994-11-30 1994-11-30 Welding method of austenitic stainless steel Expired - Fee Related JP3627194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31945694A JP3627194B2 (en) 1994-11-30 1994-11-30 Welding method of austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31945694A JP3627194B2 (en) 1994-11-30 1994-11-30 Welding method of austenitic stainless steel

Publications (2)

Publication Number Publication Date
JPH08155650A true JPH08155650A (en) 1996-06-18
JP3627194B2 JP3627194B2 (en) 2005-03-09

Family

ID=18110408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31945694A Expired - Fee Related JP3627194B2 (en) 1994-11-30 1994-11-30 Welding method of austenitic stainless steel

Country Status (1)

Country Link
JP (1) JP3627194B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028792A (en) * 2000-05-03 2002-01-29 Boc Group Plc:The Improvement in thermal welding
JP2004090091A (en) * 2002-09-03 2004-03-25 General Electric Co <Ge> Method for welding to material sensitive to stress
JP2006308176A (en) * 2005-04-27 2006-11-09 Taiyo Nippon Sanso Corp Coolant, cooling method and coolant feeder
JP2009018346A (en) * 2007-07-10 2009-01-29 Linde Ag Machine and method for welding one workpiece to another
JP2009531180A (en) * 2006-03-29 2009-09-03 ドン エイ フレキシブル メタル チューブス コーポレーション リミテッド Stainless steel pipe welding apparatus and welding method
JP2012000662A (en) * 2010-06-21 2012-01-05 Nippon Steel Engineering Co Ltd Method for welding stainless steel sheet and welded joint
JP2015047678A (en) * 2013-09-03 2015-03-16 昭和電工ガスプロダクツ株式会社 Melting device
WO2015193633A1 (en) * 2014-06-20 2015-12-23 Linde Ag Welding apparatus comprising a weld cooling apparatus
EP2505677A3 (en) * 2011-03-31 2016-08-17 Linde Aktiengesellschaft Method and apparatus for relieving stress in a pipeline

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109108441A (en) * 2018-10-18 2019-01-01 中国化学工程第六建设有限公司 Auxiliary device for austenitic stainless steel welding
DE102021005854A1 (en) * 2021-11-25 2023-05-25 Messer Se & Co. Kgaa Method of reducing distortion when welding and cutting metals

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028792A (en) * 2000-05-03 2002-01-29 Boc Group Plc:The Improvement in thermal welding
JP2004090091A (en) * 2002-09-03 2004-03-25 General Electric Co <Ge> Method for welding to material sensitive to stress
JP2006308176A (en) * 2005-04-27 2006-11-09 Taiyo Nippon Sanso Corp Coolant, cooling method and coolant feeder
JP2009531180A (en) * 2006-03-29 2009-09-03 ドン エイ フレキシブル メタル チューブス コーポレーション リミテッド Stainless steel pipe welding apparatus and welding method
JP2009018346A (en) * 2007-07-10 2009-01-29 Linde Ag Machine and method for welding one workpiece to another
JP2012000662A (en) * 2010-06-21 2012-01-05 Nippon Steel Engineering Co Ltd Method for welding stainless steel sheet and welded joint
EP2505677A3 (en) * 2011-03-31 2016-08-17 Linde Aktiengesellschaft Method and apparatus for relieving stress in a pipeline
JP2015047678A (en) * 2013-09-03 2015-03-16 昭和電工ガスプロダクツ株式会社 Melting device
WO2015193633A1 (en) * 2014-06-20 2015-12-23 Linde Ag Welding apparatus comprising a weld cooling apparatus
CN106604800A (en) * 2014-06-20 2017-04-26 兰德股份公司 Welding apparatus comprising weld cooling apparatus
US10486271B2 (en) 2014-06-20 2019-11-26 Linde Aktiengesellschaft Welding apparatus

Also Published As

Publication number Publication date
JP3627194B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
JP5058424B2 (en) Friction stir welding method
Ribic et al. Problems and issues in laser-arc hybrid welding
Liu et al. Effects of relative positioning of energy sources on weld integrity for hybrid laser arc welding
JPH08155650A (en) Welding method of austenitic stainless steel
US4243867A (en) Apparatus for fusibly bonding a coating material to a metal article
JP5348957B2 (en) Apparatus and method for welding workpieces together
JPH0742589B2 (en) Method and apparatus for repairing metal parts of articles
US7067759B2 (en) Metal working
JPS6216894A (en) Padding method for aluminum base metal
Hashemabad et al. Flux-less direct soldering of aluminum by ultrasonic surface activation
CN107717209A (en) A kind of friction stir welding method of high strength alumin ium alloy
US7820939B2 (en) Zero-gap laser welding
CA1051288A (en) Method and apparatus for fusibly bonding a coating metal powder to a metal article
JP4678749B2 (en) Laser welding method for high strength steel sheet
JP2003094184A (en) Lap laser-beam welding method for galvanized steel sheet
Wu et al. The influence of welding speed on nanosecond laser welding of AZ31B magnesium alloy and 304 stainless steel
KR20110043668A (en) Method of manufacture through the welding of finned tubes with cooled guide discs onto a tubular body set into rotational motion
CN109136907B (en) Ultrasonic quick cold spraying device and method
EP0129402A1 (en) Spray welding of metals
CN107962291A (en) A kind of method for improving aluminum alloy stirring friction welding welding point corrosion resistance
CN108015424A (en) A kind of compound reproducing method of laser-electric arc that cylinder ironcasting is held for TRT
CN107988463A (en) A kind of method for improving high strength alumin ium alloy agitating friction weldering welding point corrosion resistance
JP2009262214A (en) Welding equipment and welding method
JP2000273653A (en) Surface modifying method for metallic member, and metallic member with modified layer
Danlos et al. Combining effects of ablation laser and laser preheating on metallic substrates before thermal spraying

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040309

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040412

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Effective date: 20041126

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091217

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20121217

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees