JP2000273653A - Surface modifying method for metallic member, and metallic member with modified layer - Google Patents
Surface modifying method for metallic member, and metallic member with modified layerInfo
- Publication number
- JP2000273653A JP2000273653A JP11076330A JP7633099A JP2000273653A JP 2000273653 A JP2000273653 A JP 2000273653A JP 11076330 A JP11076330 A JP 11076330A JP 7633099 A JP7633099 A JP 7633099A JP 2000273653 A JP2000273653 A JP 2000273653A
- Authority
- JP
- Japan
- Prior art keywords
- metal member
- modified layer
- particle dispersion
- fine particle
- supply material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laser Beam Processing (AREA)
- Powder Metallurgy (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Welding Or Cutting Using Electron Beams (AREA)
Abstract
Description
【0001】[0001]
【技術分野】本発明は,金属部材の表面改質金属部材お
よび改質層を有する金属部材に関する。TECHNICAL FIELD The present invention relates to a surface-modified metal member of a metal member and a metal member having a modified layer.
【0002】[0002]
【従来技術】金属製の部材(金属部材)は,自動車部
品,機械部品等,様々な用途に広く利用されている。金
属部材としては,一般に,強度,耐摩耗性等の諸性質に
優れるものが望まれている。そのため,これまでにも,
これらの諸性質を改善するための技術が種々提案されて
いる。例えば,部材の表面特性を改善する表面処理方法
が種々提案されている。具体的には,めっき法,拡散浸
透処理,真空蒸着法,溶射法等,様々な方法がある。2. Description of the Related Art Metal members (metal members) are widely used in various applications such as automobile parts and machine parts. Generally, a metal member that is excellent in various properties such as strength and wear resistance is desired. So, until now,
Various techniques for improving these properties have been proposed. For example, various surface treatment methods for improving the surface characteristics of members have been proposed. Specifically, there are various methods such as a plating method, a diffusion infiltration treatment, a vacuum evaporation method, and a thermal spraying method.
【0003】しかし,これらの表面処理方法には,処理
設備が高く,処理に要する時間が長いという問題があ
る。また,基材と被覆層との界面が存在するため剥離し
やすく密着性が不足する,あるいは,処理による製品の
歪み,寸法変化が生じるというような品質上の問題もあ
る。[0003] However, these surface treatment methods have a problem that the treatment equipment is expensive and the time required for the treatment is long. In addition, there is also a quality problem such that the interface between the base material and the coating layer is easily peeled and the adhesion is insufficient due to the existence of an interface between the substrate and the coating layer, or distortion and dimensional change of the product due to processing occur.
【0004】また,従来の文献(日経メカニカル,199
5.11.27 No.468,p31-35)には,金属部材の表面に他
の材料を合金化すべく肉盛りすることにより表面特性を
改善する技術が示されている。即ち,表面改質すべき部
分に合金粉末を供給しながら母材にレーザビームを照射
する。これにより,母材表面で反射したレーザビームが
合金粉末に吸収され,これが溶融する。そして,母材表
面上に合金粉末が溶融してなる溶融プールが形成され
る。この溶融プールが急冷凝固して肉盛り層となる。[0004] Conventional literature (Nikkei Mechanical, 199
5.11.27 No.468, p31-35) shows a technique for improving the surface characteristics by building up the surface of a metal member to alloy another material. That is, the base material is irradiated with a laser beam while supplying the alloy powder to the portion to be surface-modified. As a result, the laser beam reflected on the base material surface is absorbed by the alloy powder and melted. Then, a molten pool formed by melting the alloy powder is formed on the surface of the base material. This molten pool rapidly solidifies and forms a build-up layer.
【0005】しかしながら,この肉盛り法にも次の問題
がある。即ち,肉盛り層の厚みは,上記溶融プールの深
さ等により変動する。そのため,肉盛り直後の製品は寸
法精度に劣るので,切削あるいは研削仕上げを行う工程
が必要となる。However, this overlay method has the following problems. That is, the thickness of the build-up layer varies depending on the depth of the molten pool and the like. Therefore, the product immediately after the overlaying is inferior in dimensional accuracy, so that a step of cutting or grinding is required.
【0006】また,従来においては,製品の表面層を溶
融させて,その後急冷凝固させることにより,いわゆる
部分チル層を形成し,これにより表面を改質する方法も
提案されている。しかしながら,従来の部分チル層は,
表面にしわ等が発生し,最終的に表面形状を整える仕上
げ加工が必要であった。Conventionally, a method has been proposed in which a so-called partial chill layer is formed by melting a surface layer of a product and then rapidly solidifying the product, thereby modifying the surface. However, the conventional partial chill layer is
Wrinkles and the like were generated on the surface, and finishing work was required to finally adjust the surface shape.
【0007】また,特開平10−30190号公報に
は,金属部材の表面に機械的エネルギーを付与し,機械
的合金化層を形成することを特徴とする金属部材の表面
改質方法が提案されている。この方法によれば,上記種
々の問題をある程度克服したうえで,上記機械的合金化
層よりなる改質層を金属部材の表面に形成することがで
きる。Japanese Patent Application Laid-Open No. 10-30190 proposes a method of modifying the surface of a metal member, which comprises applying mechanical energy to the surface of the metal member to form a mechanical alloying layer. ing. According to this method, the modified layer composed of the mechanical alloying layer can be formed on the surface of the metal member while overcoming the above various problems to some extent.
【0008】しかしながら,上記従来の表面改質方法に
も次の問題が残っている。即ち,上記機械的エネルギー
を金属部材の表面に付与したすることにより,その表面
形状が荒れてしまう。そのため,その形状的な問題か
ら,耐摩耗性等の表面特性を十分に確保することができ
ない。However, the following problems remain in the above-mentioned conventional surface modification method. That is, by applying the above mechanical energy to the surface of the metal member, the surface shape thereof becomes rough. Therefore, due to the shape problem, it is not possible to sufficiently secure surface characteristics such as wear resistance.
【0009】[0009]
【解決しようとする課題】ところで,特開平9−216
075号公報には,高密度エネルギービームを利用した
金属部材の表面仕上げ方法が示されており,また,特開
平9−3528号公報には,高密度エネルギービームを
利用した表面処理方法が示されている。これらの高密度
エネルギービームを用いた処理方法によれば,平坦な表
面を得ることが可能となる。The problem to be solved is disclosed in Japanese Patent Application Laid-Open No. 9-216.
No. 075 discloses a surface finishing method for a metal member using a high-density energy beam, and Japanese Patent Application Laid-Open No. 9-3528 discloses a surface treatment method using a high-density energy beam. ing. According to the processing method using these high-density energy beams, a flat surface can be obtained.
【0010】しかしながら,上記高密度エネルギービー
ムを用いた表面改質方法だけでは,金属部材の組成に依
存した表面改質しか行えず,表面改質層の組成を変える
ことはできない。具体的には,例えば,金属部材の素材
が低炭素鋼である場合には,上記高密度エネルギービー
ム用いた表面改質法による改質効果は低炭素鋼の素材成
分に依存する特性の範囲内に制限される。そして,これ
は,高炭素鋼等が有する高いレベルの表面特性にはけっ
して及ばない。それ故,上記従来の高密度エネルギービ
ームを用いた表面改質方法においても,さらに表面改質
効果を高める技術の開発が望まれていた。However, only the surface modification method using the above high-density energy beam can perform only the surface modification depending on the composition of the metal member, and cannot change the composition of the surface modified layer. Specifically, for example, when the material of the metal member is low-carbon steel, the modification effect by the surface modification method using the high-density energy beam is within a range of characteristics depending on the material component of the low-carbon steel. Is limited to And this is far below the high level surface properties of high carbon steels and the like. Therefore, in the above-described conventional surface modification method using a high-density energy beam, development of a technique for further enhancing the surface modification effect has been desired.
【0011】本発明は,かかる従来の問題点に鑑みてな
されたもので,高い改質効果が得られ,かつ,平坦な表
面に仕上げることができる金属部材の表面改質方法およ
び改質層を有する金属部材を提供しようとするものであ
る。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and provides a method of modifying the surface of a metal member and a modified layer capable of obtaining a high modification effect and achieving a flat surface. It is intended to provide a metal member having the same.
【0012】[0012]
【課題の解決手段】請求項1に記載の発明は,金属部材
の表面に,該金属部材とは組成が異なる供給物質が存在
する状態において機械的エネルギーを付与することによ
り,上記金属部材の表面に上記供給物質よりなる微粒子
を分散させてなる微粒子分散体を形成し,その後,該微
粒子分散体に高密度エネルギービームを照射して少なく
とも上記微粒子分散体の一部を溶融して溶融部を形成
し,次いで該溶融部を急冷することにより改質層を形成
することを特徴とする金属部材の表面改質方法にある。According to a first aspect of the present invention, there is provided a method for applying mechanical energy to a surface of a metal member in a state where a supply material having a composition different from that of the metal member is present. To form a fine particle dispersion obtained by dispersing fine particles of the above-described supply material, and then irradiating the fine particle dispersion with a high-density energy beam to melt at least a part of the fine particle dispersion to form a fused portion Forming a modified layer by quenching the melted portion, and then forming a modified layer.
【0013】本発明において最も注目すべきことは,ま
ず金属部材の表面に上記微粒子分散体を形成し,次い
で,上記高密度エネルギービームを用いて上記溶融部を
形成した後,該溶融部を急冷して上記改質層を形成する
ことである。The most remarkable point in the present invention is that the fine particle dispersion is first formed on the surface of a metal member, and then the molten portion is formed by using the high-density energy beam. To form the modified layer.
【0014】上記微粒子分散体層は,上記のごとく,金
属部材の表面に,上記供給物質が存在する状態において
機械的エネルギーを付与することにより形成する。上記
供給物質としては,上記金属部材と組成が異なる物質を
用いる。ここで,組成が異なるとは,構成元素が同一で
あっても,その組成比が異なる場合も含む。なお,上記
供給物質としては,金属部材を構成している素材の成分
と反応が起こりやすい物質を適用することことが好まし
い。As described above, the fine particle dispersion layer is formed by applying mechanical energy to the surface of the metal member in a state where the supply material is present. As the supply material, a material having a composition different from that of the metal member is used. Here, the difference in composition includes the case where the composition ratio is different even if the constituent elements are the same. In addition, it is preferable to use a substance that easily reacts with the components of the material constituting the metal member as the supply substance.
【0015】また,上記供給物質は,金属部材の種類に
応じて選択される。例えば,上記金属部材がFeを主体
とする金属であれば,供給物質としては,C,N,W
C,SiC,TiC,NbC,TiN,Si3N4,Cr
N,その他の金属,合金,セラミック等,種々の物質を
用いることができる。また,上記金属部材が例えばT
i,Al,Cu,Mgのいずれかを主体とする金属であ
れば,Cr,Ti,Si,W,その他の金属,合金,セ
ラミック等,種々の物質を用いることができる。[0015] The supply material is selected according to the type of the metal member. For example, if the metal member is a metal mainly composed of Fe, C, N, W
C, SiC, TiC, NbC, TiN, Si 3 N 4 , Cr
Various substances such as N, other metals, alloys, and ceramics can be used. Further, if the metal member is, for example, T
Various metals such as Cr, Ti, Si, W, other metals, alloys, and ceramics can be used as long as the metal is mainly one of i, Al, Cu, and Mg.
【0016】また,上記供給物質の形態は,粉末状また
はフィルム状の固体,もしくは,気体あるいは液体であ
ってもよい。上記供給物質が粉末の場合には,粒径が3
00μm以下が望ましい。この粒径が300μmを超え
る場合には,機械的エネルギーを付与しても供給物質に
そのエネルギーが吸収され,金属部材と供給物質との間
に塑性流動が起こりにくくなるという問題がある。ま
た,供給物質よりなる粉末は小さくて数が多いほどよ
い。これにより,機械的エネルギーを付与した時の金属
部材と供給物質との接触面積が大きくなるので,供給物
質よりなる微粒子が均一に分散された表面状態を金属部
材上に形成することができる。そのため,供給物質が粉
末の場合には,その粒径を100μm以下とすることが
より好ましい。Further, the form of the supply substance may be a powder or film solid, or a gas or liquid. If the feed material is a powder, the particle size should be 3
It is desirably not more than 00 μm. When the particle size exceeds 300 μm, there is a problem that even if mechanical energy is applied, the energy is absorbed by the supply material, and plastic flow hardly occurs between the metal member and the supply material. Also, the smaller and the larger the number of powders composed of the supply material, the better. This increases the contact area between the metal member and the supply material when mechanical energy is applied, so that a surface state in which fine particles of the supply material are uniformly dispersed can be formed on the metal member. Therefore, when the supply material is a powder, it is more preferable that the particle size be 100 μm or less.
【0017】上記供給物質がフィルム状の場合には,厚
さが10μm以下であることが好ましい。この厚さが1
0μmを超える場合には,機械的エネルギーが供給物質
に吸収され,金属部材を塑性変形させることが困難とな
るという問題がある。なお,フィルム状の供給物質を形
成させる手段としては,例えば,溶射,メッキ,CVD
などの表面処理方法等を用いることができる。When the supply material is in the form of a film, the thickness is preferably 10 μm or less. This thickness is 1
If it exceeds 0 μm, there is a problem that mechanical energy is absorbed by the supplied material and it becomes difficult to plastically deform the metal member. Means for forming the supply material in the form of a film include, for example, thermal spraying, plating, and CVD.
And other surface treatment methods.
【0018】次に,上記機械的エネルギーを付与する方
法には,種々の方法がある。いずれの方法においても,
金属部材の表面と供給物質との間で,微粒子分散体を得
るための塑性流動を発現させるように機械的エネルギー
を付与する。上記塑性流動を効率よく発現させるために
は,剪断応力の印加面積を小さくして,その印加回数を
多くすることが好ましい。具体的には,1回当たりの応
力の印加面積は0.5mm2以下とし,1mm2当たりの
応力の印加回数は50回以上,好ましくは100回以上
行うことが望ましい。これにより,上記塑性流動を効率
よく発現させることができる。Next, there are various methods for applying the mechanical energy. In either case,
Mechanical energy is applied between the surface of the metal member and the supply material so as to develop plastic flow for obtaining a fine particle dispersion. In order to efficiently develop the plastic flow, it is preferable to reduce the application area of the shear stress and increase the number of times the shear stress is applied. Specifically, it is desirable that the stress application area per one time is 0.5 mm 2 or less, and the number of times of applying the stress per 1 mm 2 is 50 or more, preferably 100 or more. Thereby, the plastic flow can be efficiently developed.
【0019】具体的な機械的エネルギーの付与方法とし
ては,例えば,粒子を高速で金属部材に繰り返し衝突さ
せる方法がある。また,容器内に,上記金属部材と供給
物質と,さらに硬質ボールを入れた状態で,上記容器を
回転させる方法を採ることもできる。あるいは,金属部
材の表面に供給物質を配置しておき,剛性の高いブラシ
状のもので金属部材の表面を繰り返し叩く方法を採るこ
ともできる。As a specific method of applying mechanical energy, for example, there is a method of repeatedly colliding particles with a metal member at high speed. Further, a method in which the container is rotated with the metal member, the supply material, and the hard balls placed in the container may be adopted. Alternatively, a method in which a supply substance is arranged on the surface of the metal member and the surface of the metal member is repeatedly hit with a brush having high rigidity can be adopted.
【0020】上記の粒子を高速で金属部材に繰り返し衝
突させる方法においては,上記粒子としては,供給物質
よりなる粉末を利用してもよいし,他の剛性の高い粒子
を用いることもできる。上記供給物質よりなる粉末を用
いる場合には,その粉末の硬さは,上記金属部材と同等
もしくはそれよりも高いことが好ましい。供給物質粉末
の硬さが金属部材よりも低い場合には,金属部材の表面
に供給物質が変形して付着するに止まり,金属部材との
間で微粒子分散体を得るための塑性流動を発現させるこ
とができないためである。In the method of repeatedly colliding the particles with the metal member at a high speed, the particles may be a powder made of a supply material, or may be other rigid particles. When a powder made of the above-mentioned supply material is used, the hardness of the powder is preferably equal to or higher than that of the above-mentioned metal member. When the hardness of the supply material powder is lower than that of the metal member, the supply material is deformed and adheres to the surface of the metal member, and a plastic flow for obtaining a fine particle dispersion with the metal member is developed. This is because they cannot do it.
【0021】また,金属部材よりも硬さが低い供給物質
の粉末を用いる場合には,金属部材の表面に予め凹凸を
与えておき,上記粉末を高速で衝突させて付着させた
後,他の方法により機械的エネルギーを付与することも
できる。この場合にも,微粒子分散体の形成を行うこと
ができる。When a powder of a supply material having a hardness lower than that of a metal member is used, the surface of the metal member is provided with irregularities in advance, and the powder is caused to collide at a high speed and adhere to the other member. Mechanical energy can also be applied by the method. Also in this case, a fine particle dispersion can be formed.
【0022】供給物質の形態が気体や液体である場合に
は,その気体又は液体を,エネルギー付与粒子を搬送す
るための媒体として用いることができる。例えば,供給
物質の形態が気体である場合には,高速で金属部材に繰
り返し衝突させる方法において,圧縮空気の代わりに供
給物質からなる気体を用いることができる。When the supply material is a gas or a liquid, the gas or the liquid can be used as a medium for transporting the energy imparting particles. For example, when the form of the supply material is a gas, in the method of repeatedly colliding with the metal member at high speed, a gas made of the supply material can be used instead of the compressed air.
【0023】また,上記機械的エネルギーの大きさは,
金属部材の種類によって好適な範囲がある。具体的に
は,降伏点あるいは0.2%耐力よりも少なくとも50
%以上高い剪断応力を与えることが,塑性変形を起こす
ためには望ましい。また,この剪断応力の付与は,金属
部材と供給物質との間の固相反応を促進させるために繰
り返し行うことが必須である。The magnitude of the mechanical energy is
There is a suitable range depending on the type of the metal member. Specifically, at least 50% less than the yield point or 0.2% proof stress
It is desirable to apply a shear stress higher than 10% to cause plastic deformation. In addition, it is essential that the application of the shear stress be repeatedly performed in order to promote a solid-phase reaction between the metal member and the supply material.
【0024】次に,機械的エネルギーを付与して微粒子
分散体を形成した後は,微粒子分散体に高密度エネルギ
ービームを照射して溶融部を形成する。この溶融部は,
上記微粒子分散体の少なくとも一部を溶融して形成す
る。この場合,微粒子分散体の厚み方向の一部だけ,あ
るいはすべてを溶融してもよいし,微粒子分散体に隣接
する部分をも含んで溶融してもよい。Next, after applying a mechanical energy to form a fine particle dispersion, the fine particle dispersion is irradiated with a high-density energy beam to form a molten portion. This fusion zone
It is formed by melting at least a part of the fine particle dispersion. In this case, only part or all of the fine particle dispersion in the thickness direction may be melted, or the part including the part adjacent to the fine particle dispersion may be melted.
【0025】ここで,上記高密度エネルギービームとし
ては,例えば電子ビーム,レーザービーム,また,ビー
ムではないが高周波加熱などの高密度エネルギーがあ
る。本発明では,これらを総称して高密度エネルギービ
ームという。この高密度エネルギービームの照射条件等
は,上記金属部材および微粒子分散体の種類により最適
範囲が異なる。また,高密度エネルギービームは,その
照射位置を比較的容易に制御できるので,平面的に見
て,上記微粒子分散体の表面のすべてを覆うように照射
することもできるし,その表面の一部だけに照射するこ
ともできる。Here, the high-density energy beam includes, for example, an electron beam, a laser beam, and a high-density energy such as high-frequency heating, which is not a beam. In the present invention, these are collectively called high-density energy beams. The optimum range of irradiation conditions of the high-density energy beam differs depending on the types of the metal member and the fine particle dispersion. In addition, since the irradiation position of the high-density energy beam can be controlled relatively easily, the irradiation can be performed so as to cover the entire surface of the fine particle dispersion in plan view, or a part of the surface. It can also be applied to only
【0026】次に,上記溶融部を急冷することにより改
質層を形成する。この場合の急冷は,自己放冷により行
うことができる。これは,上記溶融部の形成を上記高密
度エネルギービームの照射により行うため,金属部材の
ごく表面層のみにおいて形成できるためである。なお,
上記自己放冷に加えて,水冷,空冷等の強制冷却方法を
行うこともできる。また,上記自己放冷の効果を高める
には,金属部材の厚みを上記溶融部の厚みの4倍以上と
することが好ましい。これにより,溶融部の周囲への熱
拡散を急速かつ確実に行うことができる。Next, a reformed layer is formed by rapidly cooling the above-mentioned molten portion. Rapid cooling in this case can be performed by self-cooling. This is because the formation of the melted portion is performed by the irradiation of the high-density energy beam, so that it can be formed only on the very surface layer of the metal member. In addition,
In addition to the above-described self cooling, a forced cooling method such as water cooling or air cooling can be performed. Further, in order to enhance the effect of the self-cooling, it is preferable that the thickness of the metal member is at least four times the thickness of the molten portion. This makes it possible to rapidly and reliably diffuse heat to the periphery of the fusion zone.
【0027】また,上記改質層は,後述するごとく,急
冷される際の相変態,あるいは,組織構造の変化等によ
り改質されて形成される層である。そのため,急冷後に
相変態等の改質効果が得られる温度まで加熱されていれ
ば,その部分は上記急冷によって改質層となりうる。し
たがって,上記溶融部に隣接しており,実際には溶融は
しなかったが半溶融状態あるいは加熱のみされた部分に
ついても上記改質層の一部とすることができる場合があ
る。The modified layer is a layer formed by being modified by a phase transformation at the time of quenching or a change in a microstructure as described later. Therefore, if the material is heated to a temperature at which a reforming effect such as phase transformation can be obtained after the quenching, that portion can become a reformed layer by the quenching. Therefore, a portion that is adjacent to the melting portion and that did not actually melt but is in a semi-molten state or heated only may be part of the modified layer in some cases.
【0028】次に,本発明の作用効果につき説明する。
本発明においては,上記金属部材に対して,まず上記微
粒子分散体を形成する。この微粒子分散体は,金属部材
に上記供給物質が存在する状態において機械的エネルギ
ーを付与することにより,供給物質からなる微粒子が金
属部材の表面に分散して形成される。さらに,後述する
ごとく,微粒子と金属部材との間には機械的合金化層が
形成される場合もある。Next, the operation and effect of the present invention will be described.
In the present invention, the fine particle dispersion is first formed on the metal member. The fine particle dispersion is formed by applying mechanical energy to the metal member in a state where the above-mentioned supply material is present, whereby fine particles made of the supply material are dispersed on the surface of the metal member. Further, as described later, a mechanical alloying layer may be formed between the fine particles and the metal member.
【0029】一方,上記微粒子分散体は,上記機械的エ
ネルギー付与の影響により,表面状態が荒れた状態とな
る。そのため,このままの状態では,微粒子分散体によ
る改質効果を十分に発揮することができない。ここで,
本発明においては,上記微粒子分散体形成後に,この微
粒子分散体に対して上記高密度エネルギービームを照射
して溶融部を形成する。On the other hand, the surface state of the fine particle dispersion becomes rough due to the influence of the mechanical energy. Therefore, in this state, the modification effect by the fine particle dispersion cannot be sufficiently exhibited. here,
In the present invention, after the fine particle dispersion is formed, the fine particle dispersion is irradiated with the high-density energy beam to form a molten portion.
【0030】この溶融部の形成により,表面形状的に問
題のあった微粒子分散体は,いったん溶融状態となって
重力や表面張力によって平坦な表面形状に修正される。
次に,上記溶融部は,急冷によってその平坦形状を維持
したまま凝固する。それ故,得られた改質層の表面形状
は非常に平坦な形状となる。Due to the formation of the molten portion, the fine particle dispersion having a problem in surface shape is once in a molten state and corrected to a flat surface shape by gravity or surface tension.
Next, the molten portion is solidified by rapid cooling while maintaining its flat shape. Therefore, the surface shape of the obtained modified layer becomes a very flat shape.
【0031】また,得られた改質層は,上記溶融部の形
成およびその急冷により,組織的な面からも改質され
る。即ち,上記溶融部は,上記高密度エネルギービーム
の照射により,上記微粒子分散体が存在する表層部近傍
のみに形成される。そのため,上記溶融部は,自己放冷
により,容易に急速冷却することができる。この溶融部
の急速冷却は,相変態,あるいは,過飽和固溶体の形
成,組織の微細化等の組織的変化をもたらす。それ故,
得られた改質層は,組織的に改善される。The obtained modified layer is also reformed from the structural aspect by the formation of the above-mentioned melted portion and its rapid cooling. That is, the molten portion is formed only in the vicinity of the surface layer where the fine particle dispersion exists by the irradiation of the high-density energy beam. Therefore, the molten portion can be rapidly cooled easily by self-cooling. The rapid cooling of the melted part causes a phase transformation or a structural change such as formation of a supersaturated solid solution and refinement of the structure. Therefore,
The resulting modified layer is systematically improved.
【0032】さらに,上記溶融部は,上記のごとく,微
粒子分散体が存在する表層部近傍に形成される。この微
粒子分散体は,上記のごとく,合金化された供給物質に
よって成分的に改善されている。そのため,得られる改
質層は,上述した組織的な改善だけでなく,成分的な改
善を加えた状態で形成される。それ故,改質層は,もと
の素材特性を超える優れた改質効果を発現しうるものと
なる。Further, as described above, the molten portion is formed in the vicinity of the surface layer where the fine particle dispersion exists. The fine particle dispersion is componentally improved by the alloyed feed material, as described above. Therefore, the obtained modified layer is formed in a state where not only the above-mentioned structural improvement but also a component improvement is added. Therefore, the modified layer can exhibit an excellent modification effect exceeding the original material properties.
【0033】このように,本発明の改質方法を実施した
金属部材は,微粒子分散体の形成による表面改質効果
と,高密度エネルギービームの照射による平坦化および
表面改質効果を併せ持った優れた部材となる。したがっ
て,本発明によれば,素材特性を超える高い改質効果が
得られ,かつ,平坦な表面に仕上げることができる金属
部材の表面改質方法を提供することができる。As described above, the metal member on which the reforming method of the present invention has been carried out has an excellent surface modification effect by forming a fine particle dispersion and flattening and surface modification effects by irradiation with a high-density energy beam. Member. Therefore, according to the present invention, it is possible to provide a method for modifying the surface of a metal member, which can achieve a high modification effect exceeding the material properties and can finish the surface to a flat surface.
【0034】次に,請求項2に記載の発明のように,上
記微粒子分散体は,上記微粒子と上記金属部材との間に
機械的合金化層を有している構造とすることもできる。
この場合には,微粒子分散体を組織的により強固な状態
とすることができる。そのため,上記の改質層とならず
に微粒子分散体のまま残存する部分を強化することがで
き,ひいては,金属部材の表面特性の更なる向上を図る
ことができる。なお,上記機械的合金化層は,例えば過
飽和固溶体,準安定相,アモルファス相,金属間化合物
などで形成される。Next, as in the second aspect of the present invention, the fine particle dispersion may have a structure having a mechanical alloying layer between the fine particles and the metal member.
In this case, the fine particle dispersion can be systematically made stronger. Therefore, the portion that remains as the fine particle dispersion without being the modified layer can be strengthened, and the surface characteristics of the metal member can be further improved. The mechanical alloying layer is formed of, for example, a supersaturated solid solution, a metastable phase, an amorphous phase, an intermetallic compound, or the like.
【0035】また,請求項3に記載の発明のように,上
記金属部材は,Al,Fe,Mg,Tiのうちのいずれ
か1種以上の金属あるいは該金属を用いた合金により作
製されていることが好ましい。これらの金属を主体とす
る金属部材は,上記表面改質による効果を非常に有効に
発現させることができる。According to a third aspect of the present invention, the metal member is made of one or more of Al, Fe, Mg, and Ti or an alloy using the metal. Is preferred. These metal-based metal members can very effectively exert the effect of the surface modification.
【0036】また,請求項4に記載の発明のように,上
記金属部材はFe合金より作製されており,かつ,上記
供給物質は,C又はNの少なくとも一方の元素を含む物
質であることが好ましい。即ち,上記金属部材がFe合
金である場合には,上記供給物質として,C又はNを用
いることにより,容易に,硬度向上,耐摩耗性向上等の
効果を得ることができる。According to a fourth aspect of the present invention, the metal member is made of an Fe alloy, and the supply material is a material containing at least one element of C or N. preferable. That is, when the metal member is an Fe alloy, by using C or N as the supply material, effects such as improvement in hardness and wear resistance can be easily obtained.
【0037】また,請求項5に記載の発明のように,上
記溶融部の急冷は,マルテンサイト変態領域まで行い,
上記改質層をマルテンサイト組織とすることが好まし
い。すなわち,上記金属部材がFe合金である場合に
は,上記改質層をマルテンサイト組織とすることによ
り,いわゆる焼入れ効果を得ることができる。それ故,
さらなる硬度向上,耐摩耗性向上等の効果を得ることが
できる。Further, as in the invention according to claim 5, the quenching of the molten portion is performed up to the martensitic transformation region,
The modified layer preferably has a martensite structure. That is, when the metal member is an Fe alloy, a so-called quenching effect can be obtained by making the modified layer have a martensite structure. Therefore,
Further effects such as improvement in hardness and wear resistance can be obtained.
【0038】また,請求項6に記載の発明は,金属部材
の表面に,該金属部材とは組成が異なる供給物質が存在
する状態において機械的エネルギーを付与することによ
り,上記金属部材の表面に上記供給物質よりなる微粒子
を分散させてなる微粒子分散体を形成し,その後,該微
粒子分散体に高密度エネルギービームを照射して少なく
とも上記微粒子分散体の一部を溶融して溶融部を形成
し,次いで該溶融部を急冷することにより形成した改質
層を有していることを特徴とする改質層を有する金属部
材にある。Further, the invention according to claim 6 is characterized in that mechanical energy is applied to the surface of the metal member in a state where a supply material having a composition different from that of the metal member is present, whereby the surface of the metal member is provided. A fine particle dispersion is formed by dispersing the fine particles of the above-mentioned supply material, and thereafter, the fine particle dispersion is irradiated with a high-density energy beam to melt at least a part of the fine particle dispersion to form a fused portion. And a metal member having a modified layer, characterized by having a modified layer formed by rapidly cooling the molten portion.
【0039】本発明の金属部材は,上記微粒子分散体の
形成後,上記高密度エネルギービームによる溶融部の形
成およびその急冷により,上記改質層を形成している。
そのため,この改質層は,上述したごとく,微粒子分散
体の形成による表面改質効果と,高密度エネルギービー
ムの照射による平坦化および表面改質効果とを併せ持っ
た優れた改質面となる。In the metal member of the present invention, after forming the fine particle dispersion, the modified layer is formed by forming a molten portion by the high-density energy beam and rapidly cooling the molten portion.
Therefore, as described above, this modified layer becomes an excellent modified surface having both the surface modifying effect by forming the fine particle dispersion and the flattening and surface modifying effects by irradiation with the high-density energy beam.
【0040】したがって,本発明によれば,素材特性を
超える高い改質効果が得られ,かつ,平坦な表面に仕上
げられた改質層を有する金属部材を提供することができ
る。Therefore, according to the present invention, it is possible to provide a metal member having a high modification effect exceeding the material properties and having a modified layer finished on a flat surface.
【0041】次に,請求項7に記載の発明のように,上
記微粒子分散体は,上記微粒子と上記金属部材との間に
機械的合金化層を有している構造とすることができる。
この場合には,微粒子分散体を組織的により強固な状態
とすることができる。そのため,上記の改質層とならず
に微粒子分散体のまま残存する部分を強化することがで
き,ひいては,金属部材の表面特性の更なる向上を図る
ことができる。Next, the fine particle dispersion may have a structure having a mechanical alloying layer between the fine particles and the metal member.
In this case, the fine particle dispersion can be systematically made stronger. Therefore, the portion that remains as the fine particle dispersion without being the modified layer can be strengthened, and the surface characteristics of the metal member can be further improved.
【0042】[0042]
【発明の実施の形態】実施形態例1 本発明の実施形態例にかかる金属部材の表面改質方法及
び改質層を有する金属部材につき,図1,図2を用いて
説明する。本例においては,上記金属部材1として,
0.05wt%Cを含有した板状の鋼部材SPC340
(JIS)を用いた例を示す。また,供給物質2として
はCを多量に含有する高炭素鋼よりなる粉末を用いた。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 A method for modifying the surface of a metal member and a metal member having a modified layer according to an embodiment of the present invention will be described with reference to FIGS. In this example, as the metal member 1,
Plate-shaped steel member SPC340 containing 0.05 wt% C
An example using (JIS) is shown. As the supply material 2, powder made of high carbon steel containing a large amount of C was used.
【0043】即ち,本例では,図1に示すごとく,金属
部材(鋼部材)1の表面に,該金属部材1とは組成が異
なる供給物質2が存在する状態において機械的エネルギ
ーを付与することにより,上記金属部材1の表面に上記
供給物質2よりなる微粒子を分散させてなる微粒子分散
体10を形成した。その後,図2に示すごとく,微粒子
分散体10に高密度エネルギービーム5を照射して少な
くとも上記微粒子分散体10の一部を溶融して溶融部3
を形成し,次いで該溶融部3を急冷することにより改質
層4を形成した。That is, in this embodiment, as shown in FIG. 1, mechanical energy is applied to a surface of a metal member (steel member) 1 in a state where a supply material 2 having a different composition from the metal member 1 exists. As a result, a fine particle dispersion 10 in which fine particles made of the supply substance 2 were dispersed on the surface of the metal member 1 was formed. Thereafter, as shown in FIG. 2, the fine particle dispersion 10 is irradiated with the high-density energy beam 5 to melt at least a part of the fine particle dispersion
Was formed and then the melted portion 3 was quenched to form a modified layer 4.
【0044】以下,これを詳説する。本例においては,
上記機械的エネルギーを付与する手段としては,供給物
質2よりなる粒子を高速で金属部材1に繰り返し衝突さ
せる方法を用いた。具体的には,ショットブラスト装置
7を用いて,供給物質2よりなる粒子を圧縮空気8によ
り高速で噴出させ,これを金属部材1の表面に衝突させ
た。これにより,金属部材1の表面には,供給物質2が
存在する状態がつくり出され,なおかつ,金属部材1の
表面に機械的エネルギーが付与された。Hereinafter, this will be described in detail. In this example,
As a means for applying the mechanical energy, a method of repeatedly colliding particles made of the supply material 2 with the metal member 1 at high speed was used. Specifically, particles made of the supply material 2 were ejected at a high speed by compressed air 8 using the shot blasting device 7 and collided with the surface of the metal member 1. As a result, a state in which the supply material 2 exists was created on the surface of the metal member 1, and mechanical energy was applied to the surface of the metal member 1.
【0045】供給物質2としては,粒径30〜60μm
のFe−3wt%C粉末を用いた。また,供給物質2の
噴出は,4kgf/cm2の圧縮空気8を用いて,ノズ
ル70から1分間噴出させた。なお,ノズル先端70か
ら金属部材1までの距離は100mmとした。この条件
により機械的エネルギーを付与した結果,金属部材1の
表面には,微粒子分散体10が形成された。The supply material 2 has a particle size of 30 to 60 μm.
Fe-3wt% C powder was used. In addition, the supply material 2 was ejected from the nozzle 70 for 1 minute using the compressed air 8 of 4 kgf / cm 2 . The distance from the nozzle tip 70 to the metal member 1 was 100 mm. As a result of applying mechanical energy under these conditions, a fine particle dispersion 10 was formed on the surface of the metal member 1.
【0046】次に,図2(a)に示すごとく,微粒子分
散体10に対して,高密度エネルギービームとしての電
子ビーム5を照射した。電子ビーム5の照射は,出力
5.4kwのビームを電子銃50より330mmの距離
の金属部材1に高速で偏向周波数7kHz・偏向幅7m
mの正方形範囲で照射しながら,10m/分のスピード
で移動させるという条件により行った。Next, as shown in FIG. 2A, the fine particle dispersion 10 was irradiated with an electron beam 5 as a high-density energy beam. The irradiation of the electron beam 5 is performed by applying a beam of 5.4 kW to the metal member 1 at a distance of 330 mm from the electron gun 50 at a high speed with a deflection frequency of 7 kHz and a deflection width of 7 m.
The irradiation was carried out at a speed of 10 m / min while irradiating in a square area of m.
【0047】図2(a)(b)に示すごとく,電子ビー
ム5が照射された部分は,溶融して溶融部3となった。
この溶融部3は,上記微粒子分散体10の厚さとほぼ同
等の深さまで形成された。また,この溶融部3は,その
形成直後に金属部材1の自己放冷により十分に急冷され
再凝固した。これにより,溶融部3は,マルテンサイト
変態領域まで急冷され,マルテンサイト組織を有する焼
入れ硬化層としての改質層4に変化した。As shown in FIGS. 2A and 2B, the portion irradiated with the electron beam 5 was melted to form a fused portion 3.
The molten portion 3 was formed to a depth substantially equal to the thickness of the fine particle dispersion 10. Immediately after the formation, the molten portion 3 was sufficiently rapidly cooled by self-cooling of the metal member 1 and re-solidified. As a result, the melted portion 3 was rapidly cooled to the martensitic transformation region and changed to a modified layer 4 as a quench hardened layer having a martensite structure.
【0048】断面組織観察の結果,マルテンサイト組織
の改質層4は表面から10μmの厚みを有する層として
形成されていた(図示略)。なお,本例では,上記改質
層4は,約4mm幅のライン状に形成し,その周囲は微
粒子分散体10のまま残した。As a result of observation of the sectional structure, the modified layer 4 having a martensite structure was formed as a layer having a thickness of 10 μm from the surface (not shown). In this example, the modified layer 4 was formed in a line shape having a width of about 4 mm, and the periphery thereof was left as the fine particle dispersion 10.
【0049】次に,本例では,得られた金属部材1にお
ける,上記改質層4の硬さを荷重50gfの条件により
測定した。その結果を符号E1として図3に示す。同図
は,後述する他の実施形態例についても合わせて示した
ものであり,横軸に供給物質2の種類等をとり,縦軸に
硬度(Hv)をとったものである。Next, in this example, the hardness of the modified layer 4 in the obtained metal member 1 was measured under the condition of a load of 50 gf. The result is shown in FIG. 3 as E1. This figure also shows another embodiment example to be described later, in which the horizontal axis represents the type of the supply material 2 and the vertical axis represents the hardness (Hv).
【0050】また,比較のために,金属部材1の母材
(SPC340)のままの比較品C11と,供給物質2
を供給せずに上記と同様の電子ビームの照射処理だけの
比較品C12を準備し,これらの硬度も測定した。同図
より知られるごとく,上記比較品C11はHv156,
C12はHv196であったのに対し,本例の改質層4
はこれらに比べて大幅に硬度が上昇し,Hv313とい
う非常に高い硬度を示した。For comparison, a comparative product C11 as it is as the base material (SPC340) of the metal member 1 and a supply material 2
A comparative product C12 was prepared by simply applying the same electron beam irradiation treatment as above without supplying the same, and their hardness was also measured. As can be seen from the figure, the comparative product C11 is Hv156,
C12 was Hv196, whereas the modified layer 4 of this example was Hv196.
Showed significantly higher hardness compared to these, showing a very high hardness of Hv313.
【0051】次に,上記改質層4の表面粗さを測定し
た。この場合にも比較のために,金属部材1の母材(S
PC340)のままの比較品C11と,微粒子分散体1
0のまま残存している電子ビーム照射前の状態の比較品
C13を準備し,これらの表面粗さも測定した。Next, the surface roughness of the modified layer 4 was measured. Also in this case, for comparison, the base material (S
Comparative product C11 as it is with PC340) and fine particle dispersion 1
A comparative product C13 before electron beam irradiation, which remained as 0, was prepared, and their surface roughness was also measured.
【0052】測定結果を図4に示す。本例の改質層4は
符号E1として示す。同図は,後述する他の実施形態例
についても合わせて示したものであり,横軸に母材(C
11),電子ビーム照射前(C13),電子ビーム照射
後(E1)の区別をとり,縦軸に粗さRZ値(μm)を
とったものである。FIG. 4 shows the measurement results. The modified layer 4 of the present example is indicated by reference numeral E1. This figure also shows another embodiment example described later, and the base material (C
11), before electron beam irradiation (C13) and after electron beam irradiation (E1), the vertical axis represents the roughness RZ value (μm).
【0053】同図より知られるごとく,上記比較品C1
1の表面粗さがRZ7.5μm,比較品C13の表面粗
さがRZ6.5μmであったのに対し,本例の改質層4
(E1)の表面粗さは格段に小さくなり,RZ値が2.
8μmとなった。このことから,上記表面改質方法は表
面形状の修正に有効であり,非常に平坦な表面形状を有
する改質層4を得ることができるということが分かっ
た。As can be seen from FIG.
1 had a surface roughness of RZ 7.5 μm and a comparative product C13 had a surface roughness of RZ 6.5 μm, whereas the modified layer 4 of this example had a surface roughness of RZ 6.5 μm.
The surface roughness of (E1) is significantly reduced, and the RZ value is 2.
8 μm. From this, it was found that the surface modification method was effective for correcting the surface shape, and that the modified layer 4 having a very flat surface shape could be obtained.
【0054】実施形態例2 本例は,実施形態例1におけるSPC340よりなる鋼
部材に代えて,S23CB(JIS)よりなる鋼部材を
金属部材1に適用した例である。また,供給物質2とし
ては,実施形態例1と同様に,粒径30〜60μmのF
e−3wt%C粉末を用いた。その他は実施形態例1と
同様にして,金属部材1の表面から約10μmの部分に
改質層4を得た(図示略)。Embodiment 2 This embodiment is an example in which a steel member made of S23CB (JIS) is applied to the metal member 1 instead of the steel member made of SPC340 in Embodiment 1. In addition, as the supply material 2, as in the first embodiment, F
e-3 wt% C powder was used. Otherwise, in the same manner as in Embodiment 1, a modified layer 4 was obtained at a portion of about 10 μm from the surface of the metal member 1 (not shown).
【0055】そして,本例においても,実施形態例1と
同様に,得られた上記改質層4の硬さを測定した。その
結果を符号E2として図3に示す。なお,本例でも,比
較のために,金属部材1の母材(S23CB)のままの
比較品C21と,供給物質2を供給せずに上記と同様の
電子ビームの照射処理だけの比較品C22を準備し,こ
れらの硬度も測定した。同図より知られるごとく,上記
比較品C21がHv199,C22がHv480であっ
たのに対し,本例の改質層4(E2)は大幅に硬度が上
昇し,Hv683という非常に高い硬度を示した。In this example, as in Example 1, the hardness of the modified layer 4 was measured. The result is shown in FIG. Also in this example, for comparison, for comparison, a comparative product C21 as it is as the base material (S23CB) of the metal member 1, and a comparative product C22 which does not supply the supply material 2 but is subjected to the same electron beam irradiation processing as described above. Were prepared, and their hardness was also measured. As can be seen from the figure, while the comparative product C21 had Hv199 and C22 had Hv480, the modified layer 4 (E2) of this example had a significantly increased hardness and exhibited a very high hardness of Hv683. Was.
【0056】次に,上記改質層4の表面粗さを測定し
た。この場合にも比較のために,金属部材1の母材(S
23CB)のままの比較品C21と,微粒子分散体10
のまま残存している電子ビーム照射前の状態の比較品C
23を準備し,これらの表面粗さも測定した。測定結果
を図4に示す。本例の改質層4は符号E2として示す。Next, the surface roughness of the modified layer 4 was measured. Also in this case, for comparison, the base material (S
23CB) and the fine particle dispersion 10
Comparative product C before irradiation with electron beam remaining as it is
23 were prepared, and their surface roughness was also measured. FIG. 4 shows the measurement results. The modified layer 4 of the present example is indicated by reference numeral E2.
【0057】同図より知られるごとく,比較品C21の
表面粗さがRZ10.5μm,比較品C23の表面粗さ
がRZ6.5μmであるのに対し,本例の改質層4(E
2)の表面粗さは格段に小さくなり,粗さRZ値は2.
8μmとなった。このことから,金属部材がS23CB
の場合にも,上記表面改質方法は表面形状の修正に有効
であり,非常に平坦な表面形状を有する改質層4を得る
ことができるということが分かった。As can be seen from the figure, the surface roughness of the comparative product C21 is RZ 10.5 μm and the surface roughness of the comparative product C23 is RZ 6.5 μm, whereas the modified layer 4 (E
The surface roughness of 2) is much smaller, and the roughness RZ value is 2.
8 μm. From this, the metal member is S23CB
In this case also, it was found that the above surface modification method was effective for correcting the surface shape, and that the modified layer 4 having a very flat surface shape could be obtained.
【0058】実施形態例3 本例は,実施形態例1における高炭素鋼よりなる粉末に
代えて,粒径40〜70μmのSiC粉末を供給物質2
として用いた例である。なお,金属部材1は,上記のご
とく,SPC340よりなる鋼部材である。その他は実
施形態例1と同様にして,金属部材1の表面から約10
μmの部分に改質層4を得た(図示略)。Embodiment 3 In this embodiment, a SiC powder having a particle size of 40 to 70 μm is used as a supply material 2 instead of the powder made of high carbon steel in Embodiment 1.
This is an example of using The metal member 1 is a steel member made of the SPC 340 as described above. Others are the same as in the first embodiment, and the
A modified layer 4 was obtained at a portion of μm (not shown).
【0059】次に,本例においても,実施形態例1と同
様に,得られた改質層の硬さを荷重50gfの条件によ
り測定した。その結果を上記図3に符号E3として示
す。本例の改質層(E3)は,上記比較品C11,C1
2に比べて格段に硬度が高くなり,Hv725となっ
た。Next, also in this example, similarly to the first embodiment, the hardness of the obtained modified layer was measured under the condition of a load of 50 gf. The result is shown as E3 in FIG. The modified layer (E3) of this example is made of the comparative products C11 and C1 described above.
The hardness was much higher than that of No. 2 and was Hv 725.
【0060】次に,上記改質層の表面粗さも実施形態例
1と同様に測定した。その結果を図4に符号E3として
示す。同図より知られるごとく,本例の改質層の表面粗
さ(E3)は,比較品C11,C13に比べて格段に小
さくなり,そのRZ値は3.3μmとなった。Next, the surface roughness of the modified layer was measured in the same manner as in the first embodiment. The result is shown as E3 in FIG. As can be seen from the figure, the surface roughness (E3) of the modified layer of this example was much smaller than that of the comparative products C11 and C13, and the RZ value was 3.3 μm.
【0061】実施形態例4 本例は,実施形態例2における高炭素鋼よりなる粉末に
代えて,粒径40〜70μmのSiC粉末を供給物質2
として用いた例である。なお,金属部材1は,上記のご
とく,S23CBよりなる鋼部材である。その他は実施
形態例1と同様にして,金属部材1の表面から約10μ
mの部分に改質層4を得た(図示略)。Embodiment 4 In this embodiment, a SiC powder having a particle size of 40 to 70 μm is used as a supply material 2 instead of the powder made of high carbon steel in Embodiment 2.
This is an example of using Note that, as described above, the metal member 1 is a steel member made of S23CB. Others are the same as those in the first embodiment, and are approximately 10 μm from the surface of the metal member 1.
The modified layer 4 was obtained at the position of m (not shown).
【0062】次に,本例においても,実施形態例1と同
様に,得られた改質層の硬さを荷重50gfの条件によ
り測定した。その結果を上記図3に符号E4として示
す。本例の改質層(E4)は,上記比較品C21,C2
2に比べて格段に硬度が高くなり,Hv1042となっ
た。Next, in this example, as in the first embodiment, the hardness of the obtained modified layer was measured under the condition of a load of 50 gf. The result is shown as E4 in FIG. The modified layer (E4) of this example is made of the comparative products C21, C2
The hardness was significantly higher than that of No. 2 and was Hv1042.
【0063】次に,上記改質層の表面粗さも実施形態例
1と同様に測定した。その結果を図4に符号E4として
示す。同図より知られるごとく,本例の改質層の表面粗
さ(E4)は,比較品C11,C23に比べて格段に小
さくなり,そのRZ値は3.3μmとなった。Next, the surface roughness of the modified layer was measured in the same manner as in the first embodiment. The result is shown as E4 in FIG. As can be seen from the figure, the surface roughness (E4) of the modified layer of this example was much smaller than that of the comparative products C11 and C23, and the RZ value was 3.3 μm.
【0064】実施形態例5 本例は,実施形態例1における高炭素鋼よりなる粉末に
代えて,粒径30〜60μmのFeCrC粉末を供給物
質2として用いた例である。このFeCrC粉末は,C
rを64wt%,Cを8wt%含有するFe合金であ
る。なお,金属部材1は,上記のごとく,SPC340
よりなる鋼部材である。その他は実施形態例1と同様に
して,金属部材1の表面から約10μmの部分に改質層
4を得た(図示略)。Embodiment 5 This embodiment is an example in which FeCrC powder having a particle size of 30 to 60 μm is used as the supply material 2 instead of the powder made of high carbon steel in Embodiment 1. This FeCrC powder is
This is an Fe alloy containing 64 wt% of r and 8 wt% of C. The metal member 1 is, as described above, an SPC 340
It is a steel member made of. Otherwise, in the same manner as in Embodiment 1, a modified layer 4 was obtained at a portion of about 10 μm from the surface of the metal member 1 (not shown).
【0065】次に,本例においても,実施形態例1と同
様に,得られた改質層の硬さを荷重50gfの条件によ
り測定した。その結果を上記図3に符号E5として示
す。本例の改質層(E5)は,上記比較品C11,C1
2に比べて格段に硬度が高くなり,Hv412となっ
た。Next, in this example, as in the first embodiment, the hardness of the obtained modified layer was measured under the condition of a load of 50 gf. The result is shown as E5 in FIG. The modified layer (E5) of this example is made of the comparative products C11 and C1 described above.
The hardness was much higher than that of No. 2 and was Hv412.
【0066】実施形態例6 本例は,実施形態例2における高炭素鋼よりなる粉末に
代えて,粒径30〜60μmのFeCrC粉末を供給物
質2として用いた例である。このFeCrC粉末は,C
rを64wt%,Cを8wt%含有するFe合金であ
る。なお,金属部材1は,上記のごとく,S23CBよ
りなる鋼部材である。その他は実施形態例1と同様にし
て,金属部材1の表面から約10μmの部分に改質層4
を得た(図示略)。Embodiment 6 This embodiment is an example in which FeCrC powder having a particle size of 30 to 60 μm is used as the supply material 2 instead of the powder made of high carbon steel in Embodiment 2. This FeCrC powder is
This is an Fe alloy containing 64 wt% of r and 8 wt% of C. Note that, as described above, the metal member 1 is a steel member made of S23CB. Otherwise, in the same manner as in the first embodiment, the modified layer 4 is formed on a portion about 10 μm from the surface of the metal member 1.
(Not shown).
【0067】次に,本例においても,実施形態例1と同
様に,得られた改質層の硬さを荷重50gfの条件によ
り測定した。その結果を上記図3に符号E6として示
す。本例の改質層(E6)は,上記比較品C21,C2
2に比べて格段に硬度が高くなり,Hv842となっ
た。Next, also in this example, similarly to Embodiment 1, the hardness of the obtained modified layer was measured under the condition of a load of 50 gf. The result is shown as E6 in FIG. The modified layer (E6) of this example is made of the comparative products C21, C2
The hardness was much higher than that of No. 2 and was Hv842.
【0068】実施形態例7 本例は,実施形態例1における高炭素鋼よりなる粉末に
代えて,平均粒径10μmのWC粉末を供給物質2とし
て用いた例である。なお,金属部材1は,上記のごと
く,SPC340よりなる鋼部材である。その他は実施
形態例1と同様にして,金属部材1の表面から約10μ
mの部分に改質層4を得た(図示略)。Embodiment 7 This embodiment is an example in which WC powder having an average particle size of 10 μm is used as the supply material 2 instead of the powder made of high carbon steel in Embodiment 1. The metal member 1 is a steel member made of the SPC 340 as described above. Others are the same as those in the first embodiment, and are approximately 10 μm from the surface of the metal member 1.
The modified layer 4 was obtained at the position of m (not shown).
【0069】次に,本例においても,実施形態例1と同
様に,得られた改質層の硬さを荷重50gfの条件によ
り測定した。その結果を上記図3に符号E3として示
す。本例の改質層(E3)は,上記比較品C11,C1
2に比べて格段に硬度が高くなり,Hv892となっ
た。Next, also in this example, the hardness of the obtained modified layer was measured under the condition of a load of 50 gf, as in Example 1. The result is shown as E3 in FIG. The modified layer (E3) of this example is made of the comparative products C11 and C1 described above.
The hardness was much higher than that of No. 2 and was Hv892.
【0070】実施形態例8 本例は,実施形態例2における高炭素鋼よりなる粉末に
代えて,平均粒径10μmのWC粉末を供給物質2とし
て用いた例である。なお,金属部材1は,上記のごと
く,S23CBよりなる鋼部材である。その他は実施形
態例1と同様にして,金属部材1の表面から約10μm
の部分に改質層4を得た(図示略)。Embodiment 8 This embodiment is an example in which WC powder having an average particle size of 10 μm is used as the supply material 2 instead of the powder made of high carbon steel in Embodiment 2. Note that, as described above, the metal member 1 is a steel member made of S23CB. Others are the same as in the first embodiment, approximately 10 μm from the surface of the metal member 1.
A modified layer 4 was obtained in the portion (not shown).
【0071】次に,本例においても,実施形態例1と同
様に,得られた改質層の硬さを荷重50gfの条件によ
り測定した。その結果を上記図3に符号E8として示
す。本例の改質層(E8)は,上記比較品C21,C2
2に比べて格段に硬度が高くなり,Hv904となっ
た。Next, also in this example, similarly to Embodiment 1, the hardness of the obtained modified layer was measured under the condition of a load of 50 gf. The result is shown as E8 in FIG. The modified layer (E8) of this example is made of the comparative products C21, C2
The hardness was significantly higher than that of No. 2 and was Hv904.
【0072】なお,上記各実施形態例においては,電子
ビーム5の照射形状を正方形としたが,これに代えて円
形その他の照射形状とすることも勿論可能である。ま
た,高密度エネルギービームとして電子ビーム5を用い
たが,これに代えてレーザービーム等の他の高密度エネ
ルギービームを用いることも可能である。In each of the above embodiments, the irradiation shape of the electron beam 5 is square, but it is of course possible to use a circular or other irradiation shape instead. Although the electron beam 5 is used as the high-density energy beam, another high-density energy beam such as a laser beam can be used instead.
【0073】[0073]
【発明の効果】上述のごとく,本発明によれば,高い改
質効果が得られ,かつ,平坦な表面に仕上げることがで
きる金属部材の表面改質方法および改質層を有する金属
部材を提供することができる。As described above, according to the present invention, there is provided a metal member surface modification method and a metal member having a modified layer which can obtain a high modification effect and can be finished to a flat surface. can do.
【図1】実施形態例1における,微粒子分散体形成過程
を示す説明図。FIG. 1 is an explanatory view showing a process of forming a fine particle dispersion in a first embodiment.
【図2】実施形態例1における,溶融部の形成及び急冷
の過程を示す,(a)横断面方向から見た説明図,
(b)平面方向から見た説明図。FIGS. 2A and 2B are explanatory views showing a process of forming a molten part and a process of quenching in Embodiment 1; FIG.
(B) Explanatory drawing seen from the plane direction.
【図3】実施形態例1〜8における,改質層形成による
硬度向上効果を示す説明図。FIG. 3 is an explanatory view showing a hardness improving effect by forming a modified layer in the first to eighth embodiments.
【図4】実施形態例1〜4における,改質層形成による
表面粗さ向上効果を示す説明図。FIG. 4 is an explanatory view showing a surface roughness improving effect by forming a modified layer in the first to fourth embodiments.
1...金属部材, 10...微粒子分散体, 2...供給物質, 3...溶融部, 4...改質層, 5...高密度エネルギービーム(電子ビーム), 7...ショットブラスト装置, 8...圧縮空気, 1. . . Metal member, 10. . . 1. fine particle dispersion, . . 2. feed material, . . Melting part, 4. . . 4. Modified layer, . . 6. high-density energy beam (electron beam); . . 7. shot blasting device, . . Compressed air,
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 24/02 C23C 24/02 24/04 24/04 // B23K 103:02 (72)発明者 川原 博 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 斎藤 卓 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 西野 和彰 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 大林 巧治 愛知県安城市藤井町高根10番地 アイシ ン・エイ・ダブリュ株式会社内 Fターム(参考) 4E066 AA03 BA05 BB05 CC04 4E068 AH01 CB07 CD06 CE03 CE04 DB01 4K018 BA09 BA13 BC16 BD09 JA24 KA02 4K044 AA02 AA06 BA02 BA11 BA14 BA18 BA19 BB01 BC01 CA07 CA23 CA29 CA42 CA48 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C23C 24/02 C23C 24/02 24/04 24/04 // B23K 103: 02 (72) Inventor Hiroshi Kawahara Aichi, Aichi (1) Inside the Toyota Central R & D Laboratories Co., Ltd. (72) Inventor Taku Saito 41-Cho, Toyoda Central R & D Laboratories Co., Ltd. (72) Invention Person Kazuaki Nishino 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central R & D Laboratories Co., Ltd. F term (reference) 4E066 AA03 BA05 BB05 CC04 4E068 AH01 CB07 CD06 CE03 CE04 DB01 4K018 BA09 BA13 BC16 BD09 JA24 KA02 4K044 AA02 AA06 BA02 BA11 BA14 BA18 BA19 BB01 BC01 CA07 CA23 CA29 CA42 CA48
Claims (7)
が異なる供給物質が存在する状態において機械的エネル
ギーを付与することにより,上記金属部材の表面に上記
供給物質よりなる微粒子を分散させてなる微粒子分散体
を形成し,その後,該微粒子分散体に高密度エネルギー
ビームを照射して少なくとも上記微粒子分散体の一部を
溶融して溶融部を形成し,次いで該溶融部を急冷するこ
とにより改質層を形成することを特徴とする金属部材の
表面改質方法。1. A method of applying mechanical energy to a surface of a metal member in the presence of a supply material having a composition different from that of the metal member to disperse fine particles of the supply material on the surface of the metal member. Forming a melted part by irradiating the fine particle dispersion with a high-density energy beam to melt at least a part of the fine particle dispersion, and then rapidly cooling the melted part. A method for modifying a surface of a metal member, comprising forming a modified layer by:
は,上記微粒子と上記金属部材との間に機械的合金化層
を有していることを特徴とする金属部材の表面改質方
法。2. The method according to claim 1, wherein the fine particle dispersion has a mechanical alloying layer between the fine particles and the metal member.
は,Al,Fe,Mg,Tiのうちのいずれか1種以上
の金属あるいは該金属を用いた合金により作製されてい
ることを特徴とする金属部材の表面改質方法。3. The method according to claim 1, wherein the metal member is made of at least one metal selected from the group consisting of Al, Fe, Mg, and Ti, and an alloy using the metal. Surface modification method of a metal member to be used.
はFe合金より作製されており,かつ,上記供給物質
は,C又はNの少なくとも一方の元素を含む物質である
ことを特徴とする金属部材の表面改質方法。4. The metal according to claim 1, wherein the metal member is made of an Fe alloy, and the supply material is a material containing at least one element of C or N. A method for modifying the surface of a member.
は,マルテンサイト変態領域まで行い,上記改質層をマ
ルテンサイト組織を主体とする組織とすることを特徴と
する金属部材の表面改質方法。5. The surface modification of a metal member according to claim 4, wherein the quenching of the molten portion is performed to a martensite transformation region, and the modified layer has a structure mainly composed of a martensite structure. Method.
が異なる供給物質が存在する状態において機械的エネル
ギーを付与することにより,上記金属部材の表面に上記
供給物質よりなる微粒子を分散させてなる微粒子分散体
を形成し,その後,該微粒子分散体に高密度エネルギー
ビームを照射して少なくとも上記微粒子分散体の一部を
溶融して溶融部を形成し,次いで該溶融部を急冷するこ
とにより形成した改質層を有していることを特徴とする
改質層を有する金属部材。6. A method of applying mechanical energy to a surface of a metal member in the presence of a supply substance having a composition different from that of the metal member to disperse fine particles of the supply substance on the surface of the metal member. Forming a melted part by irradiating the fine particle dispersion with a high-density energy beam to melt at least a part of the fine particle dispersion, and then rapidly cooling the melted part. A metal member having a modified layer, characterized by having a modified layer formed by:
は,上記微粒子と上記金属部材との間に機械的合金化層
を有していることを特徴とする改質層を有する金属部
材。7. The metal member according to claim 6, wherein the fine particle dispersion has a mechanical alloying layer between the fine particles and the metal member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11076330A JP2000273653A (en) | 1999-03-19 | 1999-03-19 | Surface modifying method for metallic member, and metallic member with modified layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11076330A JP2000273653A (en) | 1999-03-19 | 1999-03-19 | Surface modifying method for metallic member, and metallic member with modified layer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000273653A true JP2000273653A (en) | 2000-10-03 |
Family
ID=13602352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11076330A Pending JP2000273653A (en) | 1999-03-19 | 1999-03-19 | Surface modifying method for metallic member, and metallic member with modified layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000273653A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003106265A (en) * | 2001-09-27 | 2003-04-09 | Aisin Aw Co Ltd | Aluminum oil pump and its manufacturing method |
JP2007169753A (en) * | 2005-12-26 | 2007-07-05 | Muneharu Kutsuna | Laser peening treatment method and laser absorption powder layer sheet |
JP2007169754A (en) * | 2005-12-26 | 2007-07-05 | Muneharu Kutsuna | Surface treatment method, laser absorption powder layer sheet and powder spray for laser peening |
WO2008090662A1 (en) * | 2007-01-26 | 2008-07-31 | Ltt Bio-Pharma Co., Ltd. | Metal surface treatment method |
WO2009098904A1 (en) * | 2008-02-08 | 2009-08-13 | Ltt Bio-Pharma Co., Ltd. | Method for treating tableting surface of pestle or mortar for tableting tablets, pestle or mortar that has been surface treated by the method, and tablets tableted by the pestle or mortar |
JP2009185339A (en) * | 2008-02-06 | 2009-08-20 | Kanagawa Prefecture | Composite material of aluminum-based alloy |
JP2019157143A (en) * | 2018-03-07 | 2019-09-19 | トヨタ紡織株式会社 | Manufacturing method of locally strengthened component, and locally strengthened component |
-
1999
- 1999-03-19 JP JP11076330A patent/JP2000273653A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003106265A (en) * | 2001-09-27 | 2003-04-09 | Aisin Aw Co Ltd | Aluminum oil pump and its manufacturing method |
JP2007169753A (en) * | 2005-12-26 | 2007-07-05 | Muneharu Kutsuna | Laser peening treatment method and laser absorption powder layer sheet |
JP2007169754A (en) * | 2005-12-26 | 2007-07-05 | Muneharu Kutsuna | Surface treatment method, laser absorption powder layer sheet and powder spray for laser peening |
WO2008090662A1 (en) * | 2007-01-26 | 2008-07-31 | Ltt Bio-Pharma Co., Ltd. | Metal surface treatment method |
JPWO2008090662A1 (en) * | 2007-01-26 | 2010-05-13 | 株式会社Lttバイオファーマ | Metal surface treatment method |
JP2009185339A (en) * | 2008-02-06 | 2009-08-20 | Kanagawa Prefecture | Composite material of aluminum-based alloy |
WO2009098904A1 (en) * | 2008-02-08 | 2009-08-13 | Ltt Bio-Pharma Co., Ltd. | Method for treating tableting surface of pestle or mortar for tableting tablets, pestle or mortar that has been surface treated by the method, and tablets tableted by the pestle or mortar |
JP2019157143A (en) * | 2018-03-07 | 2019-09-19 | トヨタ紡織株式会社 | Manufacturing method of locally strengthened component, and locally strengthened component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Solid-state cold spraying of Ti and its alloys: A literature review | |
US4015100A (en) | Surface modification | |
US3996398A (en) | Method of spray-coating with metal alloys | |
KR20060071315A (en) | Laser enhancements of cold sprayed deposits | |
EP3068574B1 (en) | Method of welding first and second metallic workpiece with cold spraying a layer of weld modifying material to one of the surfaces | |
US9358644B2 (en) | Method for repairing a damage point in a cast part and method for producing a suitable repair material | |
JPH05504172A (en) | Plasma spraying of rapidly solidifying aluminum-based alloys | |
US20070098913A1 (en) | Method for coating turbine engine components with metal alloys using high velocity mixed elemental metals | |
JP5605901B2 (en) | Method for repairing metal material by cold spray method, method for producing powder material for cold spray, and cold spray film | |
JP2000273653A (en) | Surface modifying method for metallic member, and metallic member with modified layer | |
US9115421B2 (en) | Method for nitriding surface of aluminum or aluminum alloy by cold spray method | |
JP2020076146A (en) | Dynamically impacting method for simultaneously peening and film-forming on substrate as bombarded by metallic glass particles | |
CN108048785A (en) | A kind of preparation method of thermal spraying nitride enhancing high-entropy alloy coating | |
JP2736525B2 (en) | Spray method | |
JPS61113757A (en) | Treatment of film of different metals formed on surface of metallic substrate with laser | |
Novichenko et al. | Carbide-reinforced metal matrix composite by direct metal deposition | |
JP4913112B2 (en) | Cutting press die cutting method | |
Yilbas et al. | Laser alloying of metal surfaces by injecting titanium carbide powders | |
Bray et al. | Development of a laser assisted material spray process | |
JP2906012B2 (en) | Surface hardening method for aluminum material or its alloy material | |
WO1995012473A1 (en) | Production of sprayed deposits | |
JP2002097581A (en) | Surface modification method for metal member and metal member having modified layer | |
JP2769338B2 (en) | Manufacturing method of aluminum alloy material with excellent wear resistance | |
CA3175537A1 (en) | Printable hard ferrous metallic alloys for additive manufacturing by direct energy deposition processes | |
CA1065561A (en) | Tool steel |