JPH08153928A - Manufacture of semiconductor laser array - Google Patents

Manufacture of semiconductor laser array

Info

Publication number
JPH08153928A
JPH08153928A JP29286094A JP29286094A JPH08153928A JP H08153928 A JPH08153928 A JP H08153928A JP 29286094 A JP29286094 A JP 29286094A JP 29286094 A JP29286094 A JP 29286094A JP H08153928 A JPH08153928 A JP H08153928A
Authority
JP
Japan
Prior art keywords
diffraction grating
mask
layer
active layer
selective growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29286094A
Other languages
Japanese (ja)
Other versions
JP2655498B2 (en
Inventor
Hirohito Yamada
博仁 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6292860A priority Critical patent/JP2655498B2/en
Publication of JPH08153928A publication Critical patent/JPH08153928A/en
Application granted granted Critical
Publication of JP2655498B2 publication Critical patent/JP2655498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To make the detuning amount of each element equal, and make the oscillation wave amplitude large, by a method wherein a laser active layer is formed by growing an optical guide layer so as to fill a diffraction grating, and performing selective growth on the guide layer, by using a mask for selective growth wherein the mask width is different between adjacent elements. CONSTITUTION: A diffraction grating 2 is formed on an N-type InP substrate 1. An InGaAsP layer 3 is buried in the whole part of the substrate where the diffraction grating 2 is formed, and turned into an optical guide layer. Thereon a mask 4 for selective growth is formed which is to be used for forming an active layer stripe. The mask 4 is so formed that the width is incremented 10μm in 10-40μm range between neighboring active layer stripes. By performing selective growth using the mask 4, the lower side SCH layer is sequentially grown and active layer stripes for 4 channels are formed just above the buried diffraction grating. After that, unnecessary parts 6 and the mask 4 for growth are eliminated, and a current blocking layer 7 is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザアレイの
製造方法に関し、特に隣合う素子同士の波長間隔を等間
隔に並べた、波長多重(WDM)光通信用半導体レーザ
アレイの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor laser array, and more particularly to a method for manufacturing a semiconductor laser array for wavelength division multiplexing (WDM) optical communication in which adjacent elements are arranged at equal wavelength intervals.

【0002】[0002]

【従来の技術】WDM用光源として、隣合う素子同士で
発振波長が等間隔に並んだ半導体レーザアレイが求めら
れている。従来この様なレーザアレイを作製する方法と
しては、電子ビーム露光等により隣合う分布帰還型(D
FB)あるいは分布反射型(DBR)レーザの回折格子
ピッチを少しずつ変えて、隣同士で発振波長が僅かずつ
異なるレーザアレイを作製する方法があった。しかしな
がらこの方法では、活性層はどの素子も同じであるた
め、発振波長と利得ピーク波長の差のディチューニング
量が隣合う素子により異なり、高々20nm程度しか波
長を振れないという問題があった。
2. Description of the Related Art As a light source for WDM, there is a demand for a semiconductor laser array in which oscillation wavelengths of adjacent elements are arranged at equal intervals. Conventionally, as a method of manufacturing such a laser array, adjacent distributed feedback (D
There has been a method in which the diffraction grating pitch of the FB) or distributed reflection (DBR) laser is slightly changed to produce a laser array in which the oscillation wavelengths slightly differ from each other. However, in this method, since the active layer is the same for all the elements, the amount of detuning of the difference between the oscillation wavelength and the gain peak wavelength differs depending on the adjacent element, and there is a problem that the wavelength can be shifted only up to about 20 nm.

【0003】一方、選択成長を用いる方法も試みられて
いる。選択成長を用いれば、DFBレーザ等の光ガイド
層の組成や厚さをマスクパターンにより制御でき、回折
格子ピッチは一定でも等価屈折率を変調することによ
り、発振波長の分布を持たせることができる。例えば、
加藤らによるMOVPE選択成長を用いた4波DBRレ
ーザアレイ(1994年春季 第41回応用物理学関係
連合講演会,講演番号29p−K−15)では、成長阻
止マスクの幅を隣合う素子同士で0,15,30,50
μmと変化させ、光導波路層の厚さを変調することによ
り、5nm間隔で15nm発振波長をシフトさせた4チ
ャンネルのDBRレーザアレイを実現している。
On the other hand, a method using selective growth has been attempted. If selective growth is used, the composition and thickness of an optical guide layer such as a DFB laser can be controlled by a mask pattern, and even if the diffraction grating pitch is constant, the equivalent refractive index can be modulated to give an oscillation wavelength distribution. . For example,
In a four-wave DBR laser array using MOVPE selective growth by Kato et al. 0, 15, 30, 50
By changing the thickness of the optical waveguide layer to μm and modulating the thickness of the optical waveguide layer, a 4-channel DBR laser array in which the oscillation wavelength of 15 nm is shifted at 5 nm intervals is realized.

【0004】また筒井らは、同じく選択成長を用いるこ
とにより、約2.5nm間隔で計10.1nmの波長可
変幅を得ている(1994年春季 第41回応用物理学
関係連合講演会,講演番号29p−K−14)。しかし
ながらこの場合は、光ガイド層と同時にMQW活性層も
成長させるため、活性層の組成と厚さも同時に変調され
てしまい、利得ピーク波長と発振波長とを独立に制御す
ることはできなかった。従ってこの場合も、個々の素子
のディチューニング量を広い波長範囲に渡り制御するこ
とは困難であった。
Also, Tsutsui et al. Have obtained a wavelength tunable width of 10.1 nm at intervals of about 2.5 nm by using the selective growth in the same manner (Spring 1994 41st Lecture Meeting on Applied Physics) No. 29p-K-14). However, in this case, since the MQW active layer is grown simultaneously with the optical guide layer, the composition and thickness of the active layer are also modulated, and the gain peak wavelength and the oscillation wavelength cannot be controlled independently. Therefore, also in this case, it is difficult to control the detuning amount of each element over a wide wavelength range.

【0005】[0005]

【発明が解決しようとする課題】本発明は、この様な従
来の波長多重光源用半導体レーザアレイの欠点を除去
し、個々のレーザのディチューニング量を制御すること
により、50nmを越える広い波長範囲に渡り発振波長
をカバーできる半導体レーザアレイを実現することにあ
る。
DISCLOSURE OF THE INVENTION The present invention eliminates the drawbacks of the conventional semiconductor laser array for wavelength-division multiplex light sources and controls the detuning amount of each laser, thereby providing a wide wavelength range over 50 nm. It is to realize a semiconductor laser array capable of covering the oscillation wavelength over a wide range.

【0006】[0006]

【課題を解決するための手段】本発明の半導体レーザア
レイの製造方法は、半導体基板上にアレイ状に形成する
分布帰還型または分布反射型半導体レーザにおいて、少
なくとも隣合う素子同士で回折格子のピッチが少しずつ
異なる様に回折格子を形成する工程と、その上に回折格
子を埋め込むように前記基板とは異なる第2の半導体か
らなる光ガイド層を成長する工程と、その上にさらに隣
合う素子同士でマスク幅の異なる選択成長用マスクを用
いて選択成長を行うことにより、レーザの活性層を形成
する工程とを合わせ持つことを特徴とする。
According to a method of manufacturing a semiconductor laser array of the present invention, in a distributed feedback type or distributed reflection type semiconductor laser formed in an array on a semiconductor substrate, at least pitches of diffraction gratings between adjacent elements. Forming a diffraction grating so that the diffraction gratings are slightly different from each other, a step of growing an optical guide layer made of a second semiconductor different from the substrate so as to fill the diffraction grating, and an element further adjacent thereto. It is characterized by having a step of forming an active layer of a laser by performing selective growth using masks for selective growth having different mask widths.

【0007】また、本発明の半導体レーザアレイの製造
方法は、半導体基板上にアレイ状に形成する分布帰還型
または分布反射型半導体レーザにおいて、少なくとも隣
合う素子同士でマスク幅の異なる選択成長用マスクを用
いて選択成長を行うことにより、レーザの活性層を形成
する工程と、さらにその上に前記基板と異なる第2の半
導体からなる光ガイド層を成長する工程と、さらにその
光ガイド層上に隣合う素子同士で回折格子のピッチが少
しずつ異なる様に回折格子を形成する工程とさらにその
上に回折格子を埋め込むように基板と同種類の半導体か
らなるクラッド層を成長する工程とを合わせ持つことを
特徴とする。半導体基板としては、n型またはP型のI
nP,GaAsを用いることができる。
Further, according to the method of manufacturing a semiconductor laser array of the present invention, in a distributed feedback type or distributed reflection type semiconductor laser formed in an array on a semiconductor substrate, a selective growth mask having a mask width different between at least adjacent elements. By performing selective growth using the above method, a step of forming an active layer of the laser, a step of growing an optical guide layer made of a second semiconductor different from the substrate on the active layer, and a step of further growing the optical guide layer on the optical guide layer. It has both the step of forming a diffraction grating so that the pitch of the diffraction grating is slightly different between adjacent elements and the step of growing a clad layer made of the same kind of semiconductor as the substrate so as to bury the diffraction grating on it. It is characterized by As a semiconductor substrate, n-type or P-type I
nP and GaAs can be used.

【0008】[0008]

【作用】以下に本発明の原理について説明する。本発明
は、WDM用光源等に適用することを目的として、各々
の素子の発振波長が制御できてかつ、各々の素子のディ
チューニング量も独立に制御できるレーザアレイの製造
方法を提供することにある。
The principle of the present invention will be described below. The present invention provides a laser array manufacturing method capable of controlling the oscillation wavelength of each element and independently controlling the detuning amount of each element for the purpose of being applied to a WDM light source or the like. is there.

【0009】図3(a)に、従来の電子ビーム露光等を
用いて回折格子のピッチのみを変調させる方法で作製す
るWDMレーザアレイの、各々の素子の発振波長と利得
ピーク波長との関係を示す。この方法では、各素子の活
性層構造は同じであるので、利得ピーク波長はどの素子
も全く同じである。そこで、回折格子ピッチのみを変え
て各素子で波長を変化させる場合、図に示す様にディチ
ューニング量(発振波長と利得ピーク波長との差のこ
と)が素子ごとに異なってしまう。通常このディチュー
ニング量が±5nm程度以上になると、レーザはもはや
発振困難となるので、この方法により変化させることが
できるアレイレーザの波長範囲はせいぜい20nm程度
である。
FIG. 3A shows the relationship between the oscillation wavelength of each element and the gain peak wavelength of a WDM laser array manufactured by modulating only the pitch of the diffraction grating using conventional electron beam exposure or the like. Show. In this method, since the active layer structure of each element is the same, the gain peak wavelength is exactly the same for all elements. Therefore, when only the diffraction grating pitch is changed and the wavelength is changed in each element, the detuning amount (difference between the oscillation wavelength and the gain peak wavelength) varies from element to element as shown in the figure. Normally, when the detuning amount exceeds about ± 5 nm, the laser becomes difficult to oscillate any more. Therefore, the wavelength range of the array laser which can be changed by this method is at most about 20 nm.

【0010】一方、前に述べた選択成長を用いる方法で
も、波長を変化させることができる。選択成長では、使
用するマスクの幅を変化させることにより、成長層の組
成および膜厚を変調することが可能である。従って、隣
同士で異なるマスク幅の選択成長マスクを用いれば、光
ガイド層あるいは活性層の組成および膜厚を隣同士で変
えられるので、たとえ回折格子ピッチが同じでも発振波
長を変化させることができる。しかしながらこの方法で
は図3(b)に示す様に、発振波長と同時に利得ピーク
波長も変調されてしまうので、やはり発振波長とディチ
ューニング量を独立に制御することができなかった。
On the other hand, the wavelength can also be changed by the above-described method using selective growth. In the selective growth, the composition and thickness of the growth layer can be modulated by changing the width of the mask used. Therefore, the composition and the film thickness of the optical guide layer or the active layer can be changed between the adjacent layers by using the selective growth masks having the different mask widths between the adjacent layers, so that the oscillation wavelength can be changed even if the diffraction grating pitch is the same. . However, in this method, as shown in FIG. 3B, the gain peak wavelength is modulated simultaneously with the oscillation wavelength, so that the oscillation wavelength and the detuning amount cannot be controlled independently.

【0011】これに対して、これら二つの方法を組み合
わせる本発明の方法では、図3(c)に示す様に、レー
ザアレイの各々の素子の発振波長とディチューニング量
を独立に制御することが可能となる。即ち本発明の方法
では、電子ビーム露光等による回折格子ピッチの変調に
より発振波長を振り、さらに選択成長による活性層のバ
ンドギャップ制御により、各々の素子の利得ピーク波長
と発振波長との関係を全ての素子に対して一定にするこ
とができる。
On the other hand, in the method of the present invention in which these two methods are combined, as shown in FIG. 3C, the oscillation wavelength and the detuning amount of each element of the laser array can be controlled independently. It will be possible. That is, in the method of the present invention, the oscillation wavelength is changed by modulation of the diffraction grating pitch by electron beam exposure or the like, and the bandgap control of the active layer by selective growth is performed, so that the relationship between the gain peak wavelength and the oscillation wavelength of each element is entirely changed. Can be made constant with respect to the element.

【0012】[0012]

【実施例】次に図面を参照しながら本発明について説明
する。図1は、本発明の第1の実施例である分布帰還型
レーザアレイ(この場合は4チャンネル)の製造方法を
示す図である。まず最初に図1(a)に示す様に、n型
InP基板1上に、隣同士でピッチが202nmから2
03.2nmまで、0.4nm間隔で変化している回折
格子2を形成する。この様に隣同士でピッチの異なる回
折格子は、電子ビーム露光を用いれば容易に形成でき
る。次に図1(b)に示す様に、この回折格子2を形成
した基板全面を、バンドギャップ組成1.05μmのI
nGaAsP層3で埋め込む。この層は厚さ100nm
程度であり、分布帰還型レーザにおける光ガイド層とな
る。さらにこの層の上に図1(b)に示すように、活性
層ストライプを形成するための選択成長用マスク(通常
SiO2マスクを用いる)4を形成するが、この場合マ
スクの幅が隣合う活性層ストライプ間で、10μmから
40μmまで10μmごとに広くなる様なマスクを形成
する(このマスクの幅は成長装置および成長条件が違え
ば異なることもある)。この様なマスクを用いて選択成
長することにより、下側SCH層を順次成長して図1
(c)示すように、埋め込まれた回折格子の直上に、4
チャンネル分の活性層ストライプ5を形成する。この時
各チャンネルの活性層ストライプの間に、選択成長によ
り不必要な部分6も同時に形成されるので、この部分は
後にエッチングにより除去する。さらにこの後選択成長
用マスクを除去し、図1(d)に示す様に活性層ストラ
イプを電流ブロック層7を形成しながら埋め込む。この
後の電極形成工程等は、通常の半導体レーザのプロセス
と同様である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. 1 is a diagram showing a method of manufacturing a distributed feedback laser array (four channels in this case) which is a first embodiment of the present invention. First, as shown in FIG. 1A, a pitch between adjacent ones is changed from 202 nm to 2 on an n-type InP substrate 1.
The diffraction grating 2 changing at intervals of 0.4 nm up to 03.2 nm is formed. Such a diffraction grating having a different pitch between adjacent ones can be easily formed by using electron beam exposure. Next, as shown in FIG. 1B, the entire surface of the substrate on which the diffraction grating 2 is formed is covered with an I
The nGaAsP layer 3 is embedded. This layer is 100 nm thick
It becomes a light guide layer in a distributed feedback laser. Further, as shown in FIG. 1B, a selective growth mask (usually using an SiO 2 mask) 4 for forming an active layer stripe is formed on this layer, and in this case, the active masks whose widths are adjacent to each other are formed. A mask is formed between the layer stripes so as to increase from 10 μm to 40 μm every 10 μm (the width of this mask may be different depending on the growth apparatus and growth conditions). By selectively growing using such a mask, the lower SCH layer is sequentially grown, and FIG.
(C) As shown in FIG.
Active layer stripes 5 for channels are formed. At this time, since unnecessary portions 6 are simultaneously formed between the active layer stripes of the respective channels by selective growth, these portions are later removed by etching. After that, the mask for selective growth is removed, and the active layer stripe is embedded while forming the current block layer 7 as shown in FIG. Subsequent electrode forming steps and the like are similar to those of a normal semiconductor laser process.

【0013】このように本実施例では、回折格子のピッ
チを変調させかつ選択成長で利得のピーク波長も変えて
いるので、各チャンネルの素子で発振波長とディチュー
ニング量を独立に制御でき、発振波長を大きく振ること
ができる。
As described above, in this embodiment, since the pitch of the diffraction grating is modulated and the peak wavelength of the gain is changed by selective growth, the oscillation wavelength and the detuning amount can be controlled independently by the elements of each channel, and the oscillation can be controlled. The wavelength can be greatly changed.

【0014】次に本発明の第2の実施例について説明す
る。図2は、本発明の第2の実施例である分布帰還型レ
ーザアレイ(この場合は4チャンネル)の製造方法を示
す図である。まず最初に図2(a)に示す様に、n型I
nP基板1に活性層ストライプを形成するための選択成
長用マスク(通常SiO2マスクを用いる)4を形成す
るが、この場合マスクの幅が隣合う活性層ストライプ間
で、10μmから40μmまで10μmごとに広くなる
様なマスクを形成する(このマスクの幅は成長装置およ
び成長条件が違えば異なることもある)。次に、この様
なマスクを用いて選択成長することにより、下側SCH
層,活性層(MQWでも可能)および光ガイド層を順次
成長して図2(b)示すように活性層ストライプ5を形
成する。続いて各素子の活性層ストライプ5上に、隣同
士でピッチが202nmから203.2nmまで、0.
4nm間隔で変化している回折格子2を形成する。この
様に隣同士でビッチの異なる回折格子は、電子ビーム露
光を用いれば容易に形成できる。次に、同時に選択成長
された活性層ストライプ以外の領域をエッチングにより
除去し、図2(d)に示す様に活性層ストライプを電流
ブロック層7を形成しながら埋め込む。そして最後にウ
エハ全面をp型InPクラッド層,p型InGaAsP
キャップ層で埋め込む。この後の電極形成工程等は、通
常の半導体レーザのプロセスと同様である。この実施例
においても、第1の実施例と同様の効果が得られた。
Next, a second embodiment of the present invention will be described. FIG. 2 is a view showing a method of manufacturing a distributed feedback laser array (four channels in this case) according to a second embodiment of the present invention. First, as shown in FIG.
A selective growth mask (usually using a SiO2 mask) 4 for forming active layer stripes is formed on the nP substrate 1. In this case, the mask width is 10 μm to 40 μm between adjacent active layer stripes every 10 μm. A mask is formed so that it becomes wider (the width of this mask may differ depending on the growth apparatus and growth conditions). Next, the lower SCH is selectively grown by using such a mask.
A layer, an active layer (also MQW) and an optical guide layer are sequentially grown to form an active layer stripe 5 as shown in FIG. Subsequently, on the active layer stripe 5 of each element, the pitch between adjacent ones is from 0.2 nm to 203.2 nm.
The diffraction grating 2 changing at intervals of 4 nm is formed. Such a diffraction grating having a different bite between adjacent ones can be easily formed by using electron beam exposure. Next, the regions other than the active layer stripes that have been selectively grown at the same time are removed by etching, and the active layer stripes are buried while forming the current block layer 7 as shown in FIG. 2D. Finally, the entire surface of the wafer is formed with a p-type InP clad layer and a p-type InGaAsP.
Embed with cap layer. Subsequent electrode forming steps and the like are similar to those of a normal semiconductor laser process. In this embodiment, the same effects as those of the first embodiment were obtained.

【0015】なお、上記実施例は、n型InP基板を用
いる場合について説明したが、p型でもよいし、またG
aAs基板を用いることもできる。また、本発明は分布
反射型半導体レーザアレイにも適用できる。
In the above embodiment, the case where an n-type InP substrate is used has been described, but a p-type substrate may be used.
An aAs substrate can also be used. The present invention is also applicable to a distributed reflection type semiconductor laser array.

【0016】[0016]

【発明の効果】以上説明した様に本発明の方法では、電
子ビーム露光等にり回折格子のピッチ変調と選択成長に
よる利得ピーク波長制御の方法を組み合わせることによ
り、各々の素子でディチューニング量が等しくかつ発振
波長を大きく振ることが可能な半導体レーザアレイが実
現できる。
As described above, in the method of the present invention, the detuning amount can be reduced in each element by combining the method of pitch modulation of the diffraction grating and the method of gain peak wavelength control by selective growth by electron beam exposure or the like. A semiconductor laser array which is equally and can greatly vary the oscillation wavelength can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(d)は本発明の第1の実施例の分布
帰還型レーザアレイの製造工程を示す図である。
FIGS. 1 (a) to 1 (d) are views showing a manufacturing process of a distributed feedback laser array according to a first embodiment of the present invention.

【図2】(a)〜(d)は本発明の第2の実施例の分布
帰還型レーザアレイの製造工程を示す図である。
FIGS. 2A to 2D are diagrams showing a manufacturing process of a distributed feedback laser array according to a second embodiment of the present invention.

【図3】(a)〜(c)は本発明の原理を説明するため
の図である。
FIGS. 3A to 3C are views for explaining the principle of the present invention.

【符号の説明】[Explanation of symbols]

1 n−InP基板 2 回折格子 3 InGaAsP層 4 選択成長用マスク 5 活性層ストライプ 6 不要な部分 7 電流ブロック層 REFERENCE SIGNS LIST 1 n-InP substrate 2 diffraction grating 3 InGaAsP layer 4 mask for selective growth 5 active layer stripe 6 unnecessary portion 7 current blocking layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上にアレイ状に形成する分布
帰還型または分布反射型半導体レーザにおいて、少なく
とも隣合う素子同士で回折格子のピッチが少しずつ異な
る様に回折格子を形成する工程と、その上に回折格子を
埋め込むように前記基板とは異なる第2の半導体からな
る光ガイド層を成長する工程と、その上にさらに隣合う
素子同士でマスク幅の異なる選択成長用マスクを用いて
選択成長を行うことにより、レーザの活性層を形成する
工程とを有することを特徴とする半導体レーザアレイの
製造方法。
In a distributed feedback type or distributed reflection type semiconductor laser formed in an array on a semiconductor substrate, a step of forming a diffraction grating so that a pitch of the diffraction grating is slightly different between at least adjacent elements; A step of growing a light guide layer made of a second semiconductor different from the substrate so as to embed a diffraction grating thereon, and a step of selectively growing the light guide layer by using a selective growth mask having a different mask width between adjacent elements. Forming a laser active layer by performing the following steps.
【請求項2】 半導体基板上にアレイ状に形成する分布
帰還型または分布反射型半導体レーザにおいて、少なく
とも隣合う素子同士でマスク幅の異なる選択成長用マス
クを用いて選択成長を行うことにより、レーザの活性層
を形成する工程と、さらにその上に前記基板と異なる第
2の半導体からなる光ガイド層を成長する工程と、さら
にその光ガイド層上に隣合う素子同士で回折格子のピッ
チが少しずつ異なる様に回折格子を形成する工程と、さ
らにその上に回折格子を埋め込むように基板と同種類の
半導体からなるクラッド層を成長する工程とを有するこ
とを特徴とする半導体レーザアレイの製造方法。
2. A distributed feedback type or distributed reflection type semiconductor laser formed in an array on a semiconductor substrate by selectively growing at least adjacent elements using selective growth masks having different mask widths. Forming an active layer, further growing a light guide layer made of a second semiconductor different from the substrate on the active layer, and further reducing the pitch of the diffraction grating between adjacent elements on the light guide layer. Forming a diffraction grating so as to be different from each other, and further growing a cladding layer made of the same kind of semiconductor as the substrate so as to embed the diffraction grating thereon. .
JP6292860A 1994-11-28 1994-11-28 Method of manufacturing semiconductor laser array Expired - Fee Related JP2655498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6292860A JP2655498B2 (en) 1994-11-28 1994-11-28 Method of manufacturing semiconductor laser array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6292860A JP2655498B2 (en) 1994-11-28 1994-11-28 Method of manufacturing semiconductor laser array

Publications (2)

Publication Number Publication Date
JPH08153928A true JPH08153928A (en) 1996-06-11
JP2655498B2 JP2655498B2 (en) 1997-09-17

Family

ID=17787315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6292860A Expired - Fee Related JP2655498B2 (en) 1994-11-28 1994-11-28 Method of manufacturing semiconductor laser array

Country Status (1)

Country Link
JP (1) JP2655498B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10117040A (en) * 1996-10-08 1998-05-06 Nec Corp Semiconductor laser element and manufacture of the same
US6204078B1 (en) 1998-06-23 2001-03-20 Nec Corporation Method of fabricating photonic semiconductor device using selective MOVPE
US6228671B1 (en) 1998-06-10 2001-05-08 Nec Corporation Process for production of semiconductor laser grating
US6228670B1 (en) 1998-04-23 2001-05-08 Nec Corporation Method of manufacturing a semiconductor optical waveguide array and an array-structured semiconductor optical device
KR100424774B1 (en) * 1998-07-22 2004-05-17 삼성전자주식회사 Mask for forming selection area diffraction grating and growing selection area and method of manufacturing semiconductor device using the same
US9397474B2 (en) 2014-01-10 2016-07-19 Mitsubishi Electric Corporation Method for manufacturing semiconductor device and semiconductor device
CN110061424A (en) * 2018-12-07 2019-07-26 深圳市特发信息股份有限公司 A kind of distributed feedback laser array and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102387A (en) * 1986-10-20 1988-05-07 Shinko Electric Ind Co Ltd Package for semiconductor laser device
JPS6424488A (en) * 1987-07-20 1989-01-26 Rohm Co Ltd Semiconductor laser device
JPH01163362U (en) * 1988-05-06 1989-11-14
JPH04255921A (en) * 1991-02-08 1992-09-10 Fujitsu Ltd Optical information recording and reproducing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102387A (en) * 1986-10-20 1988-05-07 Shinko Electric Ind Co Ltd Package for semiconductor laser device
JPS6424488A (en) * 1987-07-20 1989-01-26 Rohm Co Ltd Semiconductor laser device
JPH01163362U (en) * 1988-05-06 1989-11-14
JPH04255921A (en) * 1991-02-08 1992-09-10 Fujitsu Ltd Optical information recording and reproducing device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10117040A (en) * 1996-10-08 1998-05-06 Nec Corp Semiconductor laser element and manufacture of the same
US5953359A (en) * 1996-10-08 1999-09-14 Nec Corporation Laser diode array and fabrication method thereof
US6228670B1 (en) 1998-04-23 2001-05-08 Nec Corporation Method of manufacturing a semiconductor optical waveguide array and an array-structured semiconductor optical device
US6228671B1 (en) 1998-06-10 2001-05-08 Nec Corporation Process for production of semiconductor laser grating
US6204078B1 (en) 1998-06-23 2001-03-20 Nec Corporation Method of fabricating photonic semiconductor device using selective MOVPE
KR100424774B1 (en) * 1998-07-22 2004-05-17 삼성전자주식회사 Mask for forming selection area diffraction grating and growing selection area and method of manufacturing semiconductor device using the same
US9397474B2 (en) 2014-01-10 2016-07-19 Mitsubishi Electric Corporation Method for manufacturing semiconductor device and semiconductor device
US9793093B2 (en) 2014-01-10 2017-10-17 Mitsubishi Electric Corporation System for manufacturing semiconductor device
CN110061424A (en) * 2018-12-07 2019-07-26 深圳市特发信息股份有限公司 A kind of distributed feedback laser array and its manufacturing method

Also Published As

Publication number Publication date
JP2655498B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
US5953359A (en) Laser diode array and fabrication method thereof
US6399404B2 (en) Fabricating method of optical semiconductor device
US7083995B2 (en) Optical semiconductor device and process for producing the same
US20150093115A1 (en) Semiconductor optical element, optical module and method of manufacturing semiconductor optical element
JPH07302952A (en) Manufacture of semiconductor device
US5606573A (en) Method and apparatus for control of lasing wavelength in distributed feedback lasers
JP2655498B2 (en) Method of manufacturing semiconductor laser array
US6643315B2 (en) Distributed feedback semiconductor laser device and multi-wavelength laser array
JP2000031595A (en) Optical semiconductor element as well as method and apparatus for manufacture of optical semiconductor element
JPH06132610A (en) Semiconductor laser array element and manufacture thereof
JP2690840B2 (en) Distributed light reflector and wavelength tunable semiconductor laser using the same
JPH06283802A (en) Semiconductor laser device and fabrication thereof
JP2003060284A (en) Manufacturing method of optical integrated device
JPH02252284A (en) Semiconductor laser array and manufacture thereof
JP2827952B2 (en) Semiconductor laser
JPH1027936A (en) Method of forming laser with modulator
JP2867984B2 (en) Electron beam exposure method
JPH05327119A (en) Manufacture of multi-wavelength integrated semiconductor laser
JPH1056229A (en) Fabrication of semiconductor optical integrated element
GB2369492A (en) (Ga,In)(N,As) Laser structures using distributed feedback
JP2914235B2 (en) Semiconductor optical device and method of manufacturing the same
JP2658821B2 (en) Method for manufacturing semiconductor wafer and wafer for optical semiconductor device
JPH07335977A (en) Semiconductor laser and optical integrated device and manufacture thereof
JP2001044571A (en) Semiconductor optical element and manufacture thereof
JPH07109922B2 (en) Method for manufacturing distributed reflection semiconductor laser

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 14

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees